DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/16735

Arxiu Descripció MidaFormat
garcia_astron_astroph_testing_2.pdf9.9 MBAdobe PDFThumbnail
Veure/Obrir

Citació: Cabezón, R.; García, D.; Escartin, J. Testing the concept of integral approach to derivatives within the smoothed particle hydrodynamics technique in astrophysical scenarios. "Astronomy and astrophysics", 2012, vol. 545, núm. a112, p. 1-13.
Títol: Testing the concept of integral approach to derivatives within the smoothed particle hydrodynamics technique in astrophysical scenarios
Autor: Cabezón Gómez, Rubén Martín Veure Producció científica UPC; García Senz, Domingo Veure Producció científica UPC; Escartín Vigo, José Antonio Veure Producció científica UPC
Data: 2012
Tipus de document: Article
Resum: Context. The smoothed particle hydrodynamics (SPH) technique is a well-known numerical method that has been applied to simulating the evolution of a wide variety of systems. Modern astrophysical applications of the method rely on the Lagrangian formulation of fluid Euler equations, which is fully conservative. A different scheme, based on a matrix approach to the SPH equations is currently being used in computational fluid dynamics. An original matrix formulation of SPH based on an integral approach to the derivatives, called IAD0, has been recently proposed and is fully conservative and well-suited to simulating astrophysical processes. Aims. The behavior of the IAD0 scheme is analyzed in connection with several astrophysical scenarios, and compared to the same simulations carried out with the standard SPH technique. Methods. The proposed hydrodynamic scheme is validated using a variety of numerical tests that cover important topics in astrophysics, such as the evolution of supernova remnants, the stability of self-gravitating bodies, and the coalescence of compact objects. Results. The analysis of the hydrodynamical simulations of the above-mentioned astrophysical scenarios suggests that the SPH scheme built with the integral approach to the derivatives improves the results of the standard SPH technique. In particular, there is a better development of hydrodynamic instabilities, a good description of self-gravitating structures in equilibrium and a reasonable description of the process of coalescence of two white dwarfs. We also observed good conservations of energy and both linear and angular momenta that were generally better than those of standard SPH. In addition the new scheme is less susceptible to pairing instability. Conclusions. We present a formalism based on a tensor approach to Euler SPH equations that we checked using a variety of three-dimensional tests of astrophysical interest. This new scheme is more accurate because of the re-normalization imposed on the interpolations, which is fully conservative and less prone to undergoing the pairing instability. The analysis of these test cases suggests that the method may improve the simulation of many astrophysical problems with only a moderate computational overload.
ISSN: 0004-6361
URI: http://hdl.handle.net/2117/16735
DOI: 10.1051/0004-6361/201219821
Versió de l'editor: http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201219821&Itemid=129
Apareix a les col·leccions:Altres. Enviament des de DRAC
GAA - Grup d'Astronomia i Astrofísica. Articles de revista
Departament de Física i Enginyeria Nuclear. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius