DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/16655

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
fault.pdf1.02 MBAdobe PDF Accés restringit

Citació: Monroy, I. [et al.]. Fault diagnosis of a benchmark fermentation process: a comparative study of feature extraction and classification techniques. "Bioprocess and biosystems engineering", Juny 2012, vol. 35, núm. 5, p. 689-704.
Títol: Fault diagnosis of a benchmark fermentation process: a comparative study of feature extraction and classification techniques
Autor: Monroy, Isaac Veure Producció científica UPC; Villez, Kris; Graells Sobré, Moisès Veure Producció científica UPC; Venkatasubramanian, Venkat
Data: jun-2012
Tipus de document: Article
Resum: This paper investigates fault diagnosis in batch processes and presents a comparative study of feature extraction and classification techniques applied to a specific biotechnological case study: the fermentation process model by Birol et al. (Comput Chem Eng 26:1553–1565, 2002), which is a benchmark for advanced batch processes monitoring, diagnosis and control. Fault diagnosis is achieved using four approaches on four different process scenarios based on the different levels of noise so as to evaluate their effects on the performance. Each approach combines a feature extraction method, either multi-way principal component analysis (MPCA) or multi-way independent component analysis (MICA), with a classification method, either artificial neural network (ANN) or support vector machines (SVM). The performance obtained by the different approaches is assessed and discussed for a set of simulated faults under different scenarios. One of the faults (a loss in mixing power) could not be detected due to the minimal effect of mixing on the simulated data. The remaining faults could be easily diagnosed and the subsequent discussion provides practical insight into the selection and use of the available techniques to specific applications. Irrespective of the classification algorithm, MPCA renders better results than MICA, hence the diagnosis performance proves to be more sensitive
ISSN: 1615-7591
URI: http://hdl.handle.net/2117/16655
DOI: 10.1007/s00449-011-0649-1
Apareix a les col·leccions:Altres. Enviament des de DRAC
CEPIMA - Centre d´Enginyeria de Processos i Medi Ambient. Articles de revista
Departament d'Enginyeria Química. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius