DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/15988

Arxiu Descripció MidaFormat
highlighting.pdf688,42 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Cuadros, M.; Padró, L.; Rigau, G. Highlighting relevant concepts from Topic Signatures. A: International Conference on Language Resources and Evaluation. "LREC2012". Istanbul: 2012.
Títol: Highlighting relevant concepts from Topic Signatures
Autor: Cuadros Oller, Montserrat Veure Producció científica UPC; Padró, Lluís Veure Producció científica UPC; Rigau Claramunt, German Veure Producció científica UPC
Data: 2012
Tipus de document: Conference report
Resum: This paper presents deepKnowNet, a new fully automatic method for building highly dense and accurate knowledge bases from existing semantic resources. Basically, the method applies a knowledge-based Word Sense Disambiguation algorithm to assign the most appropriate WordNet sense to large sets of topically related words acquired from the web, named TSWEB. This Word Sense Disambiguation algorithm is the personalized PageRank algorithm implemented in UKB. This new method improves by automatic means the current content of WordNet by creating large volumes of new and accurate semantic relations between synsets. KnowNet was our first attempt towards the acquisition of large volumes of semantic relations. However, KnowNet had some limitations that have been overcomed with deepKnowNet. deepKnowNet disambiguates the first hundred words of all Topic Signatures from the web (TSWEB). In this case, the method highlights the most relevant word senses of each Topic Signature and filter out the ones that are not so related to the topic. In fact, the knowledge it contains outperforms any other resource when is empirically evaluated in a common framework based on a similarity task annotated with human judgements
URI: http://hdl.handle.net/2117/15988
Apareix a les col·leccions:Altres. Enviament des de DRAC
GPLN - Grup de Processament del Llenguatge Natural. Ponències/Comunicacions de congressos
Departament de Ciències de la Computació. Ponències/Comunicacions de congressos
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius