DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/15517

Arxiu Descripció MidaFormat
1236-Robot-Learning-from-Demonstration-of-Force-based-Tasks-with-Multiple-Solution-Trajectories.pdf978,7 kBAdobe PDFThumbnail

Citació: Rozo, L.; Jimenez, P.; Torras, Carme. Robot learning from demonstration of force-based tasks with multiple solution trajectories. A: International Conference on Advanced Robotics. "Proceedings of the 15th International Conference on Advanced Robotics (ICAR 2011)". Tallin: 2011, p. 124-129.
Títol: Robot learning from demonstration of force-based tasks with multiple solution trajectories
Autor: Rozo Castañeda, Leonel Veure Producció científica UPC; Jimenez Schlegl, Pablo Veure Producció científica UPC; Torras, Carme Veure Producció científica UPC
Data: 2011
Tipus de document: Conference report
Resum: A learning framework with a bidirectional communication channel is proposed, where a human performs several demonstrations of a task using a haptic device (providing him/her with force-torque feedback) while a robot captures these executions using only its force-based perceptive system. Our work departs from the usual approaches to learning by demonstration in that the robot has to execute the task blindly, relying only on force-torque perceptions, and, more essential, we address goal-driven manipulation tasks with multiple solution trajectories, whereas most works tackle tasks that can be learned by just finding a generalization at the trajectory level. To cope with these multiple-solution tasks, in our framework demonstrations are represented by means of a Hidden Markov Model (HMM) and the robot reproduction of the task is performed using a modified version of Gaussian Mixture Regression that incorporates temporal information (GMRa) through the forward variable of the HMM. Also, we exploit the haptic device as a teaching and communication tool in a human-robot interaction context, as an alternative to kinesthetic-based teaching systems. Results show that the robot is able to learn a container-emptying task relying only on force-based perceptions and to achieve the goal from several non-trained initial conditions.
URI: http://hdl.handle.net/2117/15517
DOI: 10.1109/ICAR.2011.6088633
Versió de l'editor: http://dx.doi.org/10.1109/ICAR.2011.6088633
Apareix a les col·leccions:Altres. Enviament des de DRAC
Institut de Robòtica i Informàtica Industrial, CSIC-UPC. Ponències/Comunicacions de congressos
ROBiri - Grup de Robòtica de l'IRI. Ponències/Comunicacions de congressos

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius