DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/15065

Arxiu Descripció MidaFormat
prepr201104seara.pdf568,96 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Granados, A.; Hogan, S.; Martínez-Seara, M. "The Melnikov method and subharmonic orbits in a piecewise smooth system". 2011.
Títol: The Melnikov method and subharmonic orbits in a piecewise smooth system
Autor: Granados, Albert; Hogan, S. John; Martínez-Seara Alonso, M. Teresa Veure Producció científica UPC
Data: 2011
Tipus de document: External research report
Resum: In this work we consider a two-dimensional piecewise smooth system, defined in two domains separated by the switching manifold x = 0. We assume that there exists a piecewise-defined continuous Hamiltonian that is a first integral of the system. We also suppose that the system possesses an invisible fold-fold at the origin and two heteroclinic orbits connecting two hyperbolic critical points on either side of x = 0. Finally, we assume that the region closed by these heteroclinic connections is fully covered by periodic orbits surrounding the origin, whose periods monotonically increase as they approach the heteroclinic connection. When considering a non-autonomous (T-periodic) Hamiltonian perturbation of amplitude ", using an impact map, we rigorously prove that, for every n and m relatively prime and " > 0 small enough, there exists a nT-periodic orbit impacting 2m times with the switching manifold at every period if a modified subharmonic Melnikov function possesses a simple zero. We also prove that, if the orbits are discontinuous when they cross x = 0, then all these orbits exist if the relative size of " > 0 with respect to the magnitude of this jump is large enough. We also obtain similar conditions for the splitting of the heteroclinic connections.
URI: http://hdl.handle.net/2117/15065
Versió de l'editor: http://www.ma1.upc.edu/recerca/preprints/2011/
Apareix a les col·leccions:Altres. Enviament des de DRAC
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Reports de recerca
Departaments de Matemàtica Aplicada. Reports de recerca
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius