DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/15016

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
acta_materialia.pdf1,83 MBAdobe PDF Accés restringit

Citació: Tejeda-Montse, E. [et al.]. Engineering membrane scaffolds with both physical and biomolecular signaling.. "Acta biomaterialia", 07 Setembre 2011, vol. 8, núm. 3, p. 998-1009.
Títol: Engineering membrane scaffolds with both physical and biomolecular signaling.
Autor: Tejeda-Montse, Esther; Smith, Katherine H.; Poch, Marta; López Bosque, Maria Jesús; Martín, Laura; Alonso, Matilde; Engel López, Elisabeth Veure Producció científica UPC; Mata, Álvaro
Data: 7-set-2011
Tipus de document: Article
Resum: We report on the combination of a top-down and bottom-up approach to develop thin bioactive membrane scaffolds based on functional elastin-like polymers (ELPs). Our strategy combines ELP cross-linking and assembly, and a variety of standard and novel micro/nanofabrication techniques to create self-supporting membranes down to ∼500 nm thick that incorporate both physical and biomolecular signals, which can be easily tailored for a specific application. In this study we used an ELP that included the cell-binding motif arginine–glycine–aspartic acid–serine (RGDS). Furthermore, fabrication processes were developed to create membranes that exhibited topographical patterns with features down to 200 nm in lateral dimensions and up to 10 μm in height on either one or both sides, uniform and well-defined pores, or multiple ELP layers. A variety of processing parameters were tested in order to optimize membrane fabrication, including ELP and cross-linker concentration, temperature, reaction time and ambient humidity. Membrane micro/nanopatterning, swelling and stiffness were characterized by atomic force microscopy, nanoindentation tests and scanning electron microscopy. Upon immersion in phosphate-buffered saline and an increase in temperature from 25 to 40 °C, membranes exhibited a significant increase in surface stiffness, with the reduced Young’s modulus increasing with temperature. Finally, rat mesenchymal stem cells were cultured on thin RGDS-containing membranes, which allowed cell adhesion, qualitatively enhanced spreading compared to membranes without RGDS epitopes and permitted proliferation. Furthermore, cell morphology was drastically affected by topographical patterns on the surface of the membranes.
ISSN: 1742-7061
URI: http://hdl.handle.net/2117/15016
DOI: 10.1016/j.actbio.2011.09.005
Versió de l'editor: http://www.sciencedirect.com/science/article/pii/S1742706111003898
Apareix a les col·leccions:Altres. Enviament des de DRAC
BIBITE - Biomaterials, Biomecànica i Enginyeria de Teixits. Articles de revista
Departament de Ciència dels Materials i Enginyeria Metal·lúrgica. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius