DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/14740

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
reducting.pdf234,68 kBAdobe PDF Accés restringit

Citació: Abío, I. [et al.]. Reducing chaos in SAT-like search: finding solutions close to a given one. A: International Conference on Theory and Applications of Satisfiability Testing. "Theory and Applications of Satisfiability Testing - SAT 2011". Ann Arbor: Springer Verlag, 2011, p. 273-286.
Títol: Reducing chaos in SAT-like search: finding solutions close to a given one
Autor: Abío Roig, Ignasi Veure Producció científica UPC; Deters, Morgan; Nieuwenhuis, Robert Lukas Mario Veure Producció científica UPC; Stuckey, Peter
Editorial: Springer Verlag
Data: 2011
Tipus de document: Conference report
Resum: Motivated by our own industrial users, we attack the following challenge that is crucial in many practical planning, scheduling or timetabling applications. Assume that a solver has found a solution for a given hard problem and, due to unforeseen circumstances (e.g., rescheduling), or after an analysis by a committee, a few more constraints have to be added and the solver has to be re-run. Then it is almost always important that the new solution is “close” to the original one. The activity-based variable selection heuristics used by SAT solvers make search chaotic, i.e., extremely sensitive to the initial conditions. Therefore, re-running with just one additional clause added at the end of the input usually gives a completely different solution. We show that naive approaches for finding close solutions do not work at all, and that solving the Boolean optimization problem is far too inefficient: to find a reasonably close solution, state-of-the-art tools typically require much more time than was needed to solve the original problem. Here we propose the first (to our knowledge) approach that obtains close solutions quickly. In fact, it typically finds the optimal (i.e., closest) solution in only 25% of the time the solver took in solving the original problem. Our approach requires no deep theoretical or conceptual innovations. Still, it is non-trivial to come up with and will certainly be valuable for researchers and practitioners facing the same problem.
ISBN: 978-3-642-21580-3
URI: http://hdl.handle.net/2117/14740
DOI: 10.1007/978-3-642-21581-0_22
Versió de l'editor: http://www.springerlink.com/content/0nl71mk67227m5u7/
Apareix a les col·leccions:Altres. Enviament des de DRAC
LOGPROG - Lògica i Programació. Ponències/Comunicacions de congressos
Departaments de Matemàtica Aplicada. Ponències/Comunicacions de congressos
Departament de Ciències de la Computació. Ponències/Comunicacions de congressos

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius