Català   Castellano   English
 Empreu aquest identificador per citar o enllaçar aquest ítem: `http://hdl.handle.net/2117/14729`

Arxiu Descripció MidaFormat
Interlacing (LAA-1999).pdfArticle principal1,22 MBAdobe PDF
Veure/Obrir

 Citació: Fiol, M. A. Eigenvalue interlacing and weight parameters of graphs. "Linear algebra and its applications", Març 1999, vol. 290, p. 275-301. Títol: Eigenvalue interlacing and weight parameters of graphs Autor: Fiol Mora, Miquel Àngel Editorial: Elsevier Data: mar-1999 Tipus de document: Article Resum: Eigenvalue interlacing is a versatile technique for deriving results in algebraic combinatorics. In particular, it has been successfully used for proving a number of results about the relation between the (adjacency matrix or Laplacian) spectrum of a graph and some of its properties. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc., have been obtained. For each parameter of a graph involving the cardinality of some vertex sets, we can define its corresponding weight parameter by giving some "weights" (that is, the entries of the positive eigenvector) to the vertices and replacing cardinalities by square norms. The key point is that such weights "regularize" the graph, and hence allow us to define a kind of regular partition, called "pseudo-regular," intended for general graphs. Here we s~aow how to use interlacing for proving results about some weight parameters and pseudo-regular partitions of a graph. For instance, generalizing a well-known result of Lovfisz, it is shown that the weight Shannon capacity 6)* of a connected graph F, with n vertices and (adjacency matrix) eigenvalues 2j > )~2 ~> '" ~> 2,, satisfies o~

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons

 Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius