DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/14477

Arxiu Descripció MidaFormat
1174-Segmenting-color-images-into-surface-patches-by-exploiting-sparse-depth-data.pdf4,03 MBAdobe PDFThumbnail

Citació: Dellen, B. [et al.]. Segmenting color images into surface patches by exploiting sparse depth data. A: Winter Vision Meeting: Workshop on Applications of Computer Vision. "IEEE Workshop on Applications of Computer Vision (WACV)". Kona: 2011, p. 591-598.
Títol: Segmenting color images into surface patches by exploiting sparse depth data
Autor: Dellen, Babette Veure Producció científica UPC; Alenyà Ribas, Guillem Veure Producció científica UPC; Foix Salmerón, Sergi Veure Producció científica UPC; Torras, Carme Veure Producció científica UPC
Data: 2011
Tipus de document: Conference report
Resum: We present a new method for segmenting color images into their composite surfaces by combining color segmentation with model-based fitting utilizing sparse depth data, acquired using time-of-flight (Swissranger, PMD CamCube) and stereo techniques. The main target of our work is the segmentation of plant structures, i.e., leaves, from color-depth images, and the extraction of color and 3D shape information for automating manipulation tasks. Since segmentation is performed in the dense color space, even sparse, incomplete, or noisy depth information can be used. This kind of data often represents a major challenge for methods operating in the 3D data space directly. To achieve our goal, we construct a three-stage segmentation hierarchy by segmenting the color image with different resolutions-assuming that “true” surface boundaries must appear at some point along the segmentation hierarchy. 3D surfaces are then fitted to the color-segment areas using depth data. Those segments which minimize the fitting error are selected and used to construct a new segmentation. Then, an additional region merging and a growing stage are applied to avoid over-segmentation and label previously unclustered points. Experimental results demonstrate that the method is successful in segmenting a variety of domestic objects and plants into quadratic surfaces. At the end of the procedure, the sparse depth data is completed using the extracted surface models, resulting in dense depth maps. For stereo, the resulting disparity maps are compared with ground truth and the average error is computed.
URI: http://hdl.handle.net/2117/14477
DOI: 10.1109/WACV.2011.5711558
Versió de l'editor: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5711558&tag=1
Apareix a les col·leccions:Altres. Enviament des de DRAC
Institut de Robòtica i Informàtica Industrial, CSIC-UPC. Ponències/Comunicacions de congressos
ROBiri - Grup de Robòtica de l'IRI. Ponències/Comunicacions de congressos

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius