DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/14416

Arxiu Descripció MidaFormat
Article_COSE_Herranz_Nin_postprint.pdf1,91 MBAdobe PDFThumbnail
Veure/Obrir

Citació: Herranz, J. [et al.]. Classifying data from protected statistical datasets. "Computers and security", 09 Juny 2010, vol. 29, núm. 8, p. 875-890.
Títol: Classifying data from protected statistical datasets
Autor: Herranz Sotoca, Javier Veure Producció científica UPC; Matwin, Stan; Nin Guerrero, Jordi Veure Producció científica UPC; Torra i Reventós, Vicenç
Data: 9-jun-2010
Tipus de document: Article
Resum: Statistical Disclosure Control (SDC) is an active research area in the recent years. The goal is to transform an original dataset X into a protected one X0, such that X0 does not reveal any relation between confidential and (quasi-)identifier attributes and such that X0 can be used to compute reliable statistical information about X. Many specific protection methods have been proposed and analyzed, with respect to the levels of privacy and utility that they offer. However, when measuring utility, only differences between the statistical values of X and X0 are considered. This would indicate that datasets protected by SDC methods can be used only for statistical purposes. We show in this paper that this is not the case, because a protected dataset X0 can be used to construct good classifiers for future data. To do so, we describe an extensive set of experiments that we have run with different SDC protection methods and different (real) datasets. In general, the resulting classifiers are very good, which is good news for both the SDC and the Privacy-preserving Data Mining communities. In particular, our results question the necessity of some specific protection methods that have appeared in the privacy-preserving data mining (PPDM) literature with the clear goal of providing good classification.
ISSN: 0167-4048
URI: http://hdl.handle.net/2117/14416
DOI: 10.1016/j.cose.2010.05.005
Apareix a les col·leccions:Altres. Enviament des de DRAC
MAK - Matemàtica Aplicada a la Criptografia. Articles de revista
Departament d'Arquitectura de Computadors. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius