DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/14361

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
Non-invasive estimate of blood glucose and bloos pressure from a.pdf631,73 kBAdobe PDF Accés restringit

Citació: Monte, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. "Artificial intelligence in medicine", Octubre 2011, vol. 53, núm. 2, p. 127-138.
Títol: Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques
Autor: Monte Moreno, Enrique Veure Producció científica UPC
Data: oct-2011
Tipus de document: Article
Resum: Objective: This work presents a system for a simultaneous non-invasive estimate of the blood glucose level (BGL) and the systolic (SBP) and diastolic (DBP) blood pressure, using a photoplethysmograph (PPG) and machine learning techniques. The method is independent of the person whose values are being measured and does not need calibration over time or subjects. Methodology: The architecture of the system consists of a photoplethysmograph sensor, an activity detection module, a signal processing module that extracts features from the PPG waveform, and a machine learning algorithm that estimates the SBP, DBP and BGL values. The idea that underlies the system is that there is functional relationship between the shape of the PPG waveform and the blood pressure and glucose levels. Results: As described in this paper we tested this method on 410 individuals without performing any personalized calibration. The results were computed after cross validation. The machine learning techniques tested were: ridge linear regression, a multilayer perceptron neural network, support vector machines and random forests. The best results were obtained with the random forest technique. In the case of blood pressure, the resulting coefficients of determination for reference vs. prediction were View the MathML source, View the MathML source, and View the MathML source. For the glucose estimation, distribution of the points on a Clarke error grid placed 87.7% of points in zone A, 10.3% in zone B, and 1.9% in zone D. Blood pressure values complied with the grade B protocol of the British Hypertension society. Conclusion: An effective system for estimate of blood glucose and blood pressure from a photoplethysmograph is presented. The main advantage of the system is that for clinical use it complies with the grade B protocol of the British Hypertension society for the blood pressure and only in 1.9% of the cases did not detect hypoglycemia or hyperglycemia.
ISSN: 0933-3657
URI: http://hdl.handle.net/2117/14361
DOI: 10.1016/j.artmed.2011.05.001
Apareix a les col·leccions:Altres. Enviament des de DRAC
VEU - Grup de Tractament de la Parla. Articles de revista
Departament de Teoria del Senyal i Comunicacions. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius