DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
COMBGRAF - Combinatòria, Teoria de Grafs i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/1403

Arxiu Descripció MidaFormat
fieldfunctions.pdf177,18 kBAdobe PDFThumbnail
Veure/Obrir

Títol: On the graph of a function over a prime field whose small powers have bounded degree
Autor: Ball, Simeon Michael Veure Producció científica UPC; Gács, Andras
Data: nov-2007
Tipus de document: Article
Resum: Let $f$ be a function from a finite field ${\mathbb F}_p$ with a prime number $p$ of elements, to ${\mathbb F}_p$. In this article we consider those functions $f(X)$ for which there is a positive integer $n > 2\sqrt{p-1}-\frac{11}{4}$ with the property that $f(X)^i$, when considered as an element of ${\mathbb F}_p [X]/(X^p-X)$, has degree at most $p-2-n+i$, for all $i=1,\ldots,n$. We prove that every line is incident with at most $t-1$ points of the graph of $f$, or at least $n+4-t$ points, where $t$ is a positive integer satisfying $n>(p-1)/t+t-3$ if $n$ is even and $n>(p-3)/t+t-2$ if $n$ is odd. With the additional hypothesis that there are $t-1$ lines that are incident with at least $t$ points of the graph of $f$, we prove that the graph of $f$ is contained in these $t-1$ lines. We conjecture that the graph of $f$ is contained in an algebraic curve of degree $t-1$ and prove the conjecture for $t=2$ and $t=3$. These results apply to functions that determine less than $p-2\sqrt{p-1}+\frac{11}{4}$ directions. In particular, the proof of the conjecture for $t=2$ and $t=3$ gives new proofs of the result of Lov\'asz and Schrijver \cite{LS1981} and the result in \cite{Gacs2003} respectively, which classify all functions which determine at most $2(p-1)/3$ directions.
URI: http://hdl.handle.net/2117/1403
Apareix a les col·leccions:COMBGRAF - Combinatòria, Teoria de Grafs i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius