DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/13872

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
p161-bhagat.pdf482,06 kBAdobe PDF Accés restringit

Citació: Bhagat, I. [et al.]. Global productiveness propagation: A code optimization technique to speculatively prune useless narrow computations. A: ACM SIGPLAN/SIGBED Conference on Languages Compilers, Tools, and Theory for Embedded Systems. "2011 ACM SIGPLAN/SIGBED Conference on Languages Compilers, Tools, and Theory for Embedded Systems". ACM Press, NY, 2011, p. 161-170.
Títol: Global productiveness propagation: A code optimization technique to speculatively prune useless narrow computations
Autor: Bhagat, Indu Veure Producció científica UPC; Gibert Codina, Enric Veure Producció científica UPC; Sanchez, Jesus; González Colás, Antonio María Veure Producció científica UPC
Editorial: ACM Press, NY
Data: 2011
Tipus de document: Conference report
Resum: This paper proposes a unique hardware-software collaborative strategy to remove useless work at 16-bit data-width granularity. The underlying motivation is to design a low power execution platform by exploiting ‘narrow’ computations. The proposal uses a strictly narrow bit-wide microarchitecture (16-bit integer datapath), which realizes the goal of a low cost, low hardware complexity, low power execution engine. Software dynamically maps the 64-bit computations by translating them into an equivalent 16-bit instruction stream and optimizing them. In this paper, we propose an optimization technique, called Global Productiveness Propagation (GPP), which is a dynamic, profile-based optimization technique that infers the minimum required dataflow by pruning narrow computations that are mostprobably useless (non-productive). More precisely, GPP speculatively prunes the static backward slices of selected narrow computations: computations that result in the same value (in their respective storage location) as that at the input of the region. This speculative optimization technique is formulated around the concept of ‘narrow’ computations because the same allow a finer granularity to distinguish between useful (productive) and useless (nonproductive) work. GPP has been evaluated on an in-order narrow bit-wide execution core, achieving an average dynamic instruction stream reduction of 6.6%, while improving overall performance by 4.2%.
URI: http://hdl.handle.net/2117/13872
Apareix a les col·leccions:Altres. Enviament des de DRAC
ARCO - Microarquitectura i Compiladors. Ponències/Comunicacions de congressos
Departament d'Arquitectura de Computadors. Ponències/Comunicacions de congressos
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius