DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/13361

Arxiu Descripció MidaFormat
Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects.pdfTaylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects353,61 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Ubeda, E.; Tamayo, J.; Rius, J. Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects. "Progress in electromagnetics research (PIER)", 2011, vol. 119, p. 85-105.
Títol: Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects
Autor: Úbeda Farré, Eduard Veure Producció científica UPC; Tamayo Palau, José María Veure Producció científica UPC; Rius Casals, Juan Manuel Veure Producció científica UPC
Data: 2011
Tipus de document: Article
Resum: We present new implementations in Method of Moments of two types of second kind integral equations: (i) the recently proposed Electric-Magnetic Field Integral Equation (EMFIE), for perfectly conducting objects, and (ii) the Müller formulation, for homogeneous or piecewise homogeneous dielectric objects. We adopt the Taylor-orthogonal basis functions, a recently presented set of facet-oriented basis functions, which, as we show in this paper, arise from the Taylor's expansion of the current at the centroid of the discretization triangles. We show that the Taylor-orthogonal discretization of the EMFIE mitigates the discrepancy in the computed Radar Cross Section observed in conventional divergence-conforming implementations for moderately small, perfectly conducting, sharp-edged objects. Furthermore, we show that the Taylor-discretization of the Müller-formulation represents a valid option for the analysis of sharp-edged homogenous dielectrics, especially with low dielectric contrasts, when compared with other RWG-discretized implementations for dielectrics. Since the divergence-Taylor Orthogonal basis functions are facet-oriented, they appear better suited than other, edge-oriented, discretization schemes for the analysis of piecewise homogenous objects since they simplify notably the discretization at the junctions arising from the intersection of several dielectric regions.
ISSN: 1559-8985
URI: http://hdl.handle.net/2117/13361
DOI: 10.2528/PIER11051715
Versió de l'editor: http://www.jpier.org/PIER/pier119/05.11051715.pdf
Apareix a les col·leccions:Altres. Enviament des de DRAC
ANTENNALAB - Grup d'Antenes i Sistemes Radio. Articles de revista
Departament de Teoria del Senyal i Comunicacions. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius