DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/13215

Arxiu Descripció MidaFormat
Marco_Almagro.pdfPaper on Kansei Engineering as an example of statistical engineering, presented in the ENBIS-11 Conference in Coimbra410,73 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Marco-Almagro, L.; Tort-Martorell, J. Statistical methods in kansei engineering: a case of statistical engineering. A: ENBIS Conference. "11th Annual ENBIS Conference". Coimbra: 2011, p. 1-6.
Títol: Statistical methods in kansei engineering: a case of statistical engineering
Autor: Marco Almagro, Lluís Veure Producció científica UPC; Tort-Martorell Llabrés, Xavier Veure Producció científica UPC
Data: 2011
Tipus de document: Conference report
Resum: Kansei Engineering (KE) is a technique used to incorporate emotions in the product design process. Its basic purpose is discovering in which way some properties of a product convey certain emotions in its users. It is a quantitative method, and data is typically collected using questionnaires. Japanese researcher Mitsuo Nagamachi is the founder of Kansei Engineering. Products where KE has been successfully applied include cars, phones, packaging, house appliances, clothes or websites, among others. Kansei Engineering studies typically follow a model with three main steps: (1) spanning the semantic space: defining the responses, those emotions that will be studied; (2) spanning the space of properties: deciding on the technical properties of the products that can be freely changed and that might affect the responses (factors in a factorial design) and (3) the synthesis phase, where both spaces are linked (that is, how each factor affects each response is discovered). The procedure resembles that of an experimental design in an industrial context. However, practitioners of KE are hardly ever statisticians. Many well-known statistical methods are commonly used in KE, such as principal component analysis and regression analysis, but the techniques are sometimes misused. Furthermore, the discipline could benefit from a more extensive use of statistical methods (some of them of higher complexity, but easily implemented with existing statistical software). Statistics is thus essential in Kansei Engineering. But if statisticians do not enter into this arena, others will do, as there is a real need and interest in the topic. Kansei Engineering is a good area of application of what Roger W. Hoerl and Ron Snee call statistical engineering: focusing not in advancement of statistics – developing new techniques, fine tuning existing ones – but on how current techniques can be best used in a new area. The aim of this paper is presenting the fundamentals of Kansei Engineering while giving a practical example of statistical engineering in a promising field.
URI: http://hdl.handle.net/2117/13215
Apareix a les col·leccions:Altres. Enviament des de DRAC
GRESA - Grup de recerca en estadística aplicada. Ponències/Comunicacions de congressos
Departament d'Estadística i Investigació Operativa. Ponències/Comunicacions de congressos
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius