DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/13145

Arxiu Descripció MidaFormat
Chaos_21_013101.pdf8,19 MBAdobe PDFThumbnail
Veure/Obrir

Citació: Barreiro, M.; Marti, A.; Masoller, C. Inferring long memory processes in the climate network via ordinal pattern analysis. "Chaos", Març 2011, vol. 21, núm. 1, p. 1-8.
Títol: Inferring long memory processes in the climate network via ordinal pattern analysis
Autor: Barreiro, Marcelo; Marti, Arturo; Masoller Alonso, Cristina Veure Producció científica UPC
Data: mar-2011
Tipus de document: Article
Resum: We analyze climatological data from a complex networks perspective, using techniques of nonlinear time series symbolic analysis. Specifically, we employ ordinal patterns and binary representations to analyze monthly averaged surface air temperature (SAT) anomalies. By computing the mutual information of the time series in regular grid points covering the Earth’s surface and then performing global thresholding, we construct climate networks that uncover short-term memory processes, as well as long ones (5–6 yr). Our results suggest that the time variability of the SAT anomalies is determined by patterns of oscillatory behavior that repeat from time to time with a periodicity related to intraseasonal variations and to El Niño on seasonal to interannual time scales. The present work is located at the triple intersection of three highly active interdisciplinary research fields in nonlinear science: symbolic methods for nonlinear time series analysis, network theory, and non linear processes in the earth climate. While a lot of effort is being done in order to improve our understanding of natural complex systems, with many different methods for mapping time series to network representations being investigated and employed in complex systems such as the human brain, our work is the first one aimed at characterizing the global climate network in terms of oscillatory patterns that tend to repeat from time to time, with various time scales. By mapping these processes into a global network, using ordinal patterns and binary representations, we find that the structure of the network changes drastically at different time scales.
ISSN: 1054-1500
URI: http://hdl.handle.net/2117/13145
DOI: 10.1063/1.3545273
Versió de l'editor: http://chaos.aip.org/resource/1/chaoeh/v21/i1/p013101_s1
Apareix a les col·leccions:Altres. Enviament des de DRAC
DONLL - Dinàmica no lineal, òptica no lineal i làsers. Articles de revista
Departament de Física i Enginyeria Nuclear. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius