DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/13052

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
sdarticle.pdf3,63 MBAdobe PDF Accés restringit

Citació: Rebollo-Monedero, D; Forné, J; Soriano, M. An Algorithm for k-Anonymous Microaggregation and Clustering Inspired by the Design of Distortion-Optimized Quantizers. "Data & Knowledge Engineering", 1 Octubre 2001, vol. 70, núm. 10, p. 892-921.
Títol: An Algorithm for k-Anonymous Microaggregation and Clustering Inspired by the Design of Distortion-Optimized Quantizers
Autor: Forné Muñoz, Jorge Veure Producció científica UPC; Soriano Ibáñez, Miguel Veure Producció científica UPC
Editorial: Elsevier Science Ltd.
Data: 2011
Tipus de document: Article
Resum: We present a multidisciplinary solution to the problems of anonymous microaggregation and clustering, illustrated with two applications, namely privacy protection in databases, and private retrieval of location-based information. Our solution is perturbative, is based on the same privacy criterion used in microdata k-anonymization, and provides anonymity through a substantial modification of the Lloyd algorithm, a celebrated quantization design algorithm, endowed with numerical optimization techniques. Our algorithm is particularly suited to the important problem of k-anonymous microaggregation of databases, with a small integer k representing the number of individual respondents indistinguishable from each other in the published database. Our algorithm also exhibits excellent performance in the problem of clustering or macroaggregation, where k may take on arbitrarily large values. We illustrate its applicability in this second, somewhat less common case, by means of an example of location-based services. Specifically, location-aware devices entrust a third party with accurate location information. This party then uses our algorithm to create distortion-optimized, size-constrained clusters, where k nearby devices share a common centroid location, which may be regarded as a distorted version of the original one. The centroid location is sent back to the devices, which use it when contacting untrusted location-based information providers, in lieu of the exact home location, to enforce k-anonymity. We compare the performance of our novel algorithm to the state-of-the-art microaggregation algorithm MDAV, on both synthetic and standardized real data, which encompass the cases of small and large values of k. The most promising aspect of our proposed algorithm is its capability to maintain the same k-anonymity constraint, while outperforming MDAV by a significant reduction in data distortion, in all the cases considered.
ISSN: 0169-023X
URI: http://hdl.handle.net/2117/13052
DOI: 10.1016/j.datak.2011.06.005
Versió de l'editor: http://www.sciencedirect.com/science/article/pii/S0169023X11000838
Apareix a les col·leccions:Altres. Enviament des de DRAC
SERTEL - Serveis Telemàtics. Articles de revista
Departament d'Enginyeria Telemàtica. Articles de revista

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius