DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/13013

Arxiu Descripció MidaFormat
Villegas.pdf290,47 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Villegas, C.; Climent, J. Holistic face recognition using multivariate approximation, genetic algorithms and AdaBoost classifier: preliminary results. A: World Congress on Science, Engineering and Technology. "World Congress on Science, Engineering and Technology, WCSET 2008". Venice: 2008, p. 802-806.
Títol: Holistic face recognition using multivariate approximation, genetic algorithms and AdaBoost classifier: preliminary results
Autor: Villegas Quezada, Carlos; Climent Vilaró, Joan Veure Producció científica UPC
Data: 2008
Tipus de document: Conference report
Resum: Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p” variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ − Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F’s polynomials to each of the Fi’s polynomials. The winner is the polynomial family closer to F’s corresponding to target face in data base.
ISBN: 2070-3740
URI: http://hdl.handle.net/2117/13013
Versió de l'editor: http://www.waset.org/programs/Venice08.pdf
Apareix a les col·leccions:Altres. Enviament des de DRAC
VIS - Visió Artificial i Sistemes Intel.ligents. Ponències/Comunicacions de congressos
Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial. Ponències/Comunicacions de congressos
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius