DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/12409

Arxiu Descripció MidaFormat
on_regular_representation.pdf428,23 kBAdobe PDFThumbnail
Veure/Obrir

Títol: On the regular representation of an (essentially) finite 2-group
Autor: Elgueta Montó, Josep Veure Producció científica UPC
Data: 1-des-2010
Tipus de document: External research report
Citació: MAII-IR-10-00002
Resum: The regular representation of an essentially finite 2-group $\mathbb{G}$ in the 2-category $\mathbf{2Vect}_k$ of (Kapranov and Voevodsky) 2-vector spaces is defined and cohomology invariants classifying it computed. It is next shown that all hom-categories in $\mathbf{Rep}_{\mathbf{2Vect}_k}(\mathbb{G})$ are 2-vector spaces under quite standard assumptions on the field $k$, and a formula giving the corresponding "intertwining numbers" is obtained which proves they are symmetric. Finally, it is shown that the forgetful 2-functor ${\boldmath$\omega$}:\mathbf{Rep}_{\mathbf{2Vect}_k}(\mathbb{G})\To\mathbf{2Vect}_k$ is representable with the regular representation as representing object. As a consequence we obtain a $k$-linear equivalence between the 2-vector space $\mathbf{Vect}_k^{\mathcal{G}}$ of functors from the underlying groupoid of $\mathbb{G}$ to $\mathbf{Vect}_k$, on the one hand, and the $k$-linear category $\mathcal{E} nd({\boldmath$\omega$})$ of pseudonatural endomorphisms of ${\boldmath$\omega$}$, on the other hand. We conclude that $\mathcal{E} nd({\boldmath$\omega$})$ is a 2-vector space, and we (partially) describe a basis of it.
URI: http://hdl.handle.net/2117/12409
Apareix a les col·leccions:Altres. Enviament des de DRAC
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Reports de recerca
Departaments de Matemàtica Aplicada. Reports de recerca
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius