DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/12103

Arxiu Descripció MidaFormat
OptimalIso.pdf1,59 MBAdobe PDFThumbnail
Veure/Obrir

Citació: Andújar, C. [et al.]. Optimizing the topological and combinatorial complexity of isosurfaces. "Computer-aided design", Juliol 2005, vol. 37, núm. 8, p. 847-857.
Títol: Optimizing the topological and combinatorial complexity of isosurfaces
Autor: Andújar Gran, Carlos Antonio Veure Producció científica UPC; Brunet Crosa, Pere Veure Producció científica UPC; Chica Calaf, Antonio Veure Producció científica UPC; Navazo Álvaro, Isabel Veure Producció científica UPC; Rossignac, Jarek; Vinacua Pla, Álvaro Veure Producció científica UPC
Editorial: Elsevier
Data: jul-2005
Tipus de document: Article
Resum: Since the publication of the original Marching Cubes algorithm, numerous variations have been proposed for guaranteeing water-tight constructions of triangulated approximations of isosurfaces. Most approaches divide the 3D space into cubes that each occupy the space between eight neighboring samples of a regular lattice. The portion of the isosurface inside a cube may be computed independently of what happens in the other cubes, provided that the constructions for each pair of neighboring cubes agree along their common face. The portion of the isosurface associated with a cube may consist of one or more connected components, which we call sheets. The topology and combinatorial complexity of the isosurface is influenced by three types of decisions made during its construction: (1) how to connect the four intersection points on each ambiguous face, (2) how to form interpolating sheets for cubes with more than one loop, and (3) how to triangulate each sheet. To determine topological properties, it is only relevant whether the samples are inside or outside the object, and not their precise value, if there is one. Previously reported techniques make these decisions based on local —per cube— criteria, often using precomputed look-up tables or simple construction rules. Instead, we propose global strategies for optimizing several topological and combinatorial measures of the isosurfaces: triangle count, genus, and number of shells. We describe efficient implementations of these optimizations and the auxiliary data structures developed to support them.
ISSN: 0010-4485
Dipòsit legal: Else
URI: http://hdl.handle.net/2117/12103
DOI: 10.1016/j.cad.2004.09.013
Apareix a les col·leccions:Altres. Enviament des de DRAC
MOVING - Grup de Recerca en Modelatge, Interacció i Visualització en Realitat Virtual. Articles de revista
Departament de Llenguatges i Sistemes Informàtics. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius