DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/12080

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
Voss_MUSIC_CVET_2010.pdf509,39 kBAdobe PDF Accés restringit

Citació: Voss, A. [et al.]. Segmented Symbolic Dynamics for Risk Stratification in Patients with Ischemic Heart Failure, Cardiovascular Engineering and Technology. "Cardiovascular engineering and technology", 30 Desembre 2010, vol. 1, núm. 4, p. 290-298.
Títol: Segmented Symbolic Dynamics for Risk Stratification in Patients with Ischemic Heart Failure, Cardiovascular Engineering and Technology
Autor: Voss, Andreas; Schroeder, Rico; Caminal Magrans, Pere Veure Producció científica UPC; Vallverdú Ferrer, Montserrat Veure Producció científica UPC; Brunel, Helena; Cygankiewicz, I.; Vázquez, Rafael; Bayes de Luna, Antonio
Editorial: Springer
Data: 30-des-2010
Tipus de document: Article
Resum: Chronic heart failure (CHF) is recognized as major and escalating public health problem. Approximately 69% of CHF patients suffer from cardiac death within 5 years after the initial diagnosis. Until now, no generally accepted ECG risk predictors in CHF patients are available. The objective of this study was to investigate the suitability of the new developed non-linear method segmented symbolic dynamics (SSD) for risk stratification in patients with ischemic cardiomyopathy (ICM) in comparison to other indices from time and frequency domain, non-linear dynamics, and clinical markers. Twenty-four hour Holter ECGs were recorded from 256 ICM patients. Heart rate variability (HRV) was analyzed from the filtered beat-to-beat interval time series. For calculating SSD, NN interval time series were segmented in 1 min overlapping windows with a window length of 30 min. For each window a symbol- and word-transformation was performed and probabilities of word type occurrences were calculated. Several indices from frequency domain and non-linear dynamics revealed high univariate significant differences (p<0.01) discriminating low (n = 221) and high risk ICM patients (n = 35). For multivariate risk stratification in ICM patients the two optimal mixed parameter sets consisting of either two clinical and three non-clinical indices (two from SSD) or three clinical and two non-clinical indices (one from SSD) achieved 74 and 75% sensitivity and 79 and 76% specificity, respectively. These results suggest that the new SSD enhances considerably risk stratification in ICM patients. The multivariate analysis including SSD leads to an optimum accuracy of 81%.
ISSN: 1869-408X (print version) - 1869-4098 (electronic version)
URI: http://hdl.handle.net/2117/12080
Apareix a les col·leccions:Altres. Enviament des de DRAC
SISBIO - Senyals i Sistemes Biomèdics. Articles de revista
Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial. Articles de revista

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius