DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/11184

Arxiu Descripció MidaFormat
msr-tr-2010-137.pdf581,75 kBAdobe PDFThumbnail
Veure/Obrir

Títol: Influence maximization in social Networks when negative opinions may emerge and propagate
Autor: Yuan, Yifei; Wei, Wei; Chen, Wei; Collins, Alex; Cummings, Rachel; Ke, Te; Liu, Zhenming; Rincón Rivera, David Veure Producció científica UPC; Sun, Xiaorui; Wang, Yajun
Data: 1-oct-2010
Tipus de document: External research report
Citació: MSR-TR-2010-137
Resum: Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. In this paper, we propose an extension to the independent cascade model that incorporates the emergence and propagation of negative opinions. The new model has an explicit parameter called quality factor to model the natural behavior of people turning negative to a product due to product defects. Our model incorporates negativity bias (negative opinions usually dominate over positive opinions) commonly acknowledged in the social psychology literature. The model maintains some nice properties such as submodularity, which allows a greedy approximation algorithm for maximizing positive influence within a ratio of 1 􀀀 1=e. We define a quality sensitivity ratio (qs-ratio) of influence graphs and show a tight bound of ( p n=k) on the qs-ratio, where n is the number of nodes in the network and k is the number of seeds selected, which indicates that seed selection is sensitive to the quality factor for general graphs. We design an efficient algorithm to compute influence in tree structures, which is nontrivial due to the negativity bias in the model. We use this algorithm as the core to build a heuristic algorithm for influence maximization for general graphs. Through simulations, we show that our heuristic algorithm has matching influence with a standard greedy approximation algorithm while being orders of magnitude faster.
URI: http://hdl.handle.net/2117/11184
Versió de l'editor: http://research.microsoft.com/apps/pubs/default.aspx?id=139863
Apareix a les col·leccions:BAMPLA - Disseny i Avaluació de Xarxes i Serveis de Banda Ampla. Reports de recerca
Departament d'Enginyeria Telemàtica. Reports de recerca
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius