DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/10071

Arxiu Descripció MidaFormat
1752-0509-4-110.pdf843,34 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Rue, P.; Villà-Freixa, J.; Burrage, K. Simulation methods with extended stability for stiff biochemical Kinetics. "BMC systems biology", 11 Agost 2010, vol. 4, núm. 1, p. 110-123.
Títol: Simulation methods with extended stability for stiff biochemical Kinetics
Autor: Rue Queralt, Pau Veure Producció científica UPC; Villà-Freixa, Jordi; Burrage, Kevin
Data: 11-ago-2010
Tipus de document: Article
Resum: Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be wellbehaved, leading to significantly larger step sizes. Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
ISSN: 1752-0509
URI: http://hdl.handle.net/2117/10071
DOI: 10.1186/1752-0509-4-110
Versió de l'editor: http://www.biomedcentral.com/1752-0509/4/110
Apareix a les col·leccions:Departament de Física i Enginyeria Nuclear. Articles de revista
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius