DSpace Collection:
http://hdl.handle.net/2117/3918
2014-12-18T04:33:29ZNonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
http://hdl.handle.net/2117/22391
Title: Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
Authors: Cabré Vilagut, Xavier; Sire, Yannick
Abstract: This is the first of two articles dealing with the equation (-)sv = f (v) in Rn, with s ¿ (0,1), where (-)s stands for the fractional Laplacian — the in¿nitesimal generator of a Lévy process. This equation can be realized as a local linear degenerate elliptic equation in Rn+1+ together with a nonlinear Neumann boundary condition on ¿Rn+1 + =Rn.
In this ¿rst article, we establish necessary conditions on the nonlinearity f to admit certain type of solutions, with special interest in bounded increasing solutions in all of R. These necessary conditions (which will be proven in a follow-up paper to be also suficient for the existence of a bounded increasing solution) are derived from an equality and an estimate involving a Hamiltonian — in the spirit of a result of Modica for the Laplacian. Our proofs are uniform ass ¿1, establishing in the limit the corresponding known results for the Laplacian.
In addition, we study regularity issues, as well as maximum and Harnack principles associated to the equation.J2 effect and elliptic inclined periodic orbits in the collision three-body problem
http://hdl.handle.net/2117/21117
Title: J2 effect and elliptic inclined periodic orbits in the collision three-body problem
Authors: Barrabes, Esther; Cors Iglesias, Josep Maria; Pinyol, Conxita; Soler Villanueva, Jaume
Abstract: The existence of a new class of inclined periodic orbits of the collision restricted
three{body problem is shown. The symmetric periodic solutions found are perturbations of elliptic
kepler orbits and they exist only for special values of the inclination and are related to the motion
of a satellite around an oblate planet.Sufficient conditions for controllability and observability of serial and parallel concatenated linear systems
http://hdl.handle.net/2117/25002
Title: Sufficient conditions for controllability and observability of serial and parallel concatenated linear systems
Authors: García Planas, María Isabel; Domínguez García, José Luis; Um, Laurence Emilie
Abstract: This paper deals with the sufficient conditions
for controllability and observability characters of finitedimensional
linear continuous-time-invariant systems of serial
and parallel concatenated systems. The obtained conditions
depend on the controllability and observability of the systems
and in some cases, the functional output-controllability of the
first one.2014-12-11T12:39:29ZAddendum to “Frobenius and Cartier algebras of Stanley–Reisner rings” [J. Algebra 358 (2012) 162–177]
http://hdl.handle.net/2117/24996
Title: Addendum to “Frobenius and Cartier algebras of Stanley–Reisner rings” [J. Algebra 358 (2012) 162–177]
Authors: Álvarez Montaner, Josep; Yanagawa, Kohji
Abstract: We give a purely combinatorial characterization of complete Stanley–Reisner rings having a principally generated (equivalently, finitely generated) Cartier algebra.2014-12-11T09:15:25ZA new approach to the vakonomic mechanics
http://hdl.handle.net/2117/24993
Title: A new approach to the vakonomic mechanics
Authors: Llibre Saló, Jaume; Ramírez Ros, Rafael; Sadovskaia Nurimanova, Natalia Guennadievna
Abstract: The aim of this paper was to show that the Lagrange-d'Alembert and its equivalent the Gauss and Appel principle are not the only way to deduce the equations of motion of the nonholonomic systems. Instead of them we consider the generalization of the Hamiltonian principle for nonholonomic systems with non-zero transpositional relations. We apply this variational principle, which takes into the account transpositional relations different from the classical ones, and we deduce the equations of motion for the nonholonomic systems with constraints that in general are nonlinear in the velocity. These equations of motion coincide, except perhaps in a zero Lebesgue measure set, with the classical differential equations deduced with the d'Alembert-Lagrange principle. We provide a new point of view on the transpositional relations for the constrained mechanical systems: the virtual variations can produce zero or non-zero transpositional relations. In particular, the independent virtual variations can produce non-zero transpositional relations. For the unconstrained mechanical systems, the virtual variations always produce zero transpositional relations. We conjecture that the existence of the nonlinear constraints in the velocity must be sought outside of the Newtonian mechanics. We illustrate our results with examples.2014-12-11T08:01:15ZZero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system
http://hdl.handle.net/2117/24992
Title: Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system
Authors: Salazar, F.J.T; Masdemont Soler, Josep; Gómez Muntané, Gerard; Macau, E.E.N.; Winter, O. C.
Abstract: Assume a constellation of satellites is flying near a given nominal trajectory around L-4 or L-5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L-4 or L-5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.2014-12-11T07:49:26ZCombined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun-Earth circular restricted three-body problem
http://hdl.handle.net/2117/24981
Title: Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun-Earth circular restricted three-body problem
Authors: Mingotti, Giorgio; Sánchez Cuartielles, Joan Pau; McInnes, Colin
Abstract: In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun-Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.2014-12-10T12:43:20ZAutomatic subsystem identification in statistical energy analysis
http://hdl.handle.net/2117/24965
Title: Automatic subsystem identification in statistical energy analysis
Authors: Díaz Cereceda, Cristina; Poblet-Puig, Jordi; Rodríguez Ferran, Antonio
Abstract: An automatic methodology for identifying SEA (statistical energy analysis) subsystems within a vibroacoustic system is presented. It consists in dividing the system into cells and grouping them into subsystems via a hierarchical cluster analysis based on the problem eigenmodes. The subsystem distribution corresponds to the optimal grouping of the cells, which is defined in terms of the correlation distance between them. The main advantages of this methodology are its automatic performance and its applicability both to vibratory and vibroacoustic systems. Moreover, the method allows the definition of more than one subsystem in the same geometrical region when required. This is the case of eigenmodes with a very different mechanical response (e.g. out-of-plane or in-plane vibration in shells).2014-12-09T18:47:12ZUnderstanding and strain-engineering wrinkle networks in supported graphene through simulations
http://hdl.handle.net/2117/24943
Title: Understanding and strain-engineering wrinkle networks in supported graphene through simulations
Authors: Zhang, Kuan; Arroyo Balaguer, Marino
Abstract: Wrinkle networks are ubiquitous buckle-induced delaminations in supported graphene, which locally modify the electronic structure and degrade device performance. Although the strong property-deformation coupling of graphene can be potentially harnessed by strain engineering, it has not been possible to precisely control the geometry of wrinkle networks. Through numerical simulations based on an atomistically informed continuum theory, we understand how strain anisotropy, adhesion and friction govern spontaneous wrinkling. We then propose a strategy to control the location of wrinkles through patterns of weaker adhesion. This strategy is deceptively simple, and can in fact fail in several ways, particularly under biaxial compression. However, within bounds set by the physics of wrinkling, it is possible to robustly create by strain a variety of wrinkle network geometries and junction configurations. Graphene is nearly unstrained in the planar regions bounded by wrinkles, highly curved along wrinkles, and highly stretched and curved at junctions, which can either locally attenuate or amplify the applied strain depending on their configuration. These mechanically self-assembled networks are stable under the pressure produced by an enclosed fluid and form continuous channels, opening the door to nano-fluidic applications.2014-12-05T13:38:53ZOn minimum integer representations of weighted games
http://hdl.handle.net/2117/24931
Title: On minimum integer representations of weighted games
Authors: Freixas Bosch, Josep; Kurz, Sascha
Abstract: We study minimum integer representations of weighted games, i.e. representations where the weights are integers and every other integer representation is at least as large in each component. Those minimum integer representations, if they exist at all, are linked with some solution concepts in game theory. Closing existing gaps in the literature, we prove that each weighted game with two types of voters admits a (unique) minimum integer representation, and give new examples for more than two types of voters without a minimum integer representation. We characterize the possible weights in minimum integer representations and give examples for t >= 4 types of voters without a minimum integer representation preserving types, i.e. where we additionally require that the weights are equal within equivalence classes of voters. (C) 2013 Elsevier B.V. All rights reserved.2014-12-04T18:58:18ZAchievable hierarchies in voting games with abstention
http://hdl.handle.net/2117/24930
Title: Achievable hierarchies in voting games with abstention
Authors: Freixas Bosch, Josep; Tchantcho, Bertrand; Tedjeugang, Narcisse
Abstract: It is well known that he influence relation orders the voters the same way as the classical Banzhaf and Shapley-Shubik indices do when they are extended to the voting games with abstention (VGA) in the class of complete games. Moreover, all hierarchies for the influence relation are achievable in the class of complete VGA. The aim of this paper is twofold. Firstly, we show that all hierarchies are achievable in a subclass of weighted VGA, the class of weighted games for which a single weight is assigned to voters. Secondly, we conduct a partial study of achievable hierarchies within the subclass of H-complete games, that is, complete games under stronger versions of influence relation. (C) 2013 Elsevier B.V. All rights reserved.2014-12-04T18:40:45ZVoting games with abstention: linking completeness and weightedness
http://hdl.handle.net/2117/24929
Title: Voting games with abstention: linking completeness and weightedness
Authors: Freixas Bosch, Josep; Tchantcho, Bertrand; Tedjeugang, Narcisse
Abstract: Weighted games for several levels of approval in input and output were introduced in [9]. An extension of the desirability relation for simple games, called the influence relation, was introduced for games with several levels of approval in input in [24] (see also [18]). However, there are weighted games not being complete for the influence relation, something different to what occurs for simple games. In this paper we introduce several extensions of the desirability relation for simple games and from the completeness of them it follows the consistent link with weighted games, which solves the existing gap. Moreover, we prove that the influence relation is consistent with a known subclass of weighted games: strongly weighted games. (C) 2013 Elsevier B.V. All rights reserved.Signatura de les formes bilineals simètriques
http://hdl.handle.net/2117/24807
Title: Signatura de les formes bilineals simètriques
Authors: Rossell Garriga, Josep Maria; Rubio Díaz, PedroAn extension problem for the CR fractional Laplacian
http://hdl.handle.net/2117/24794
Title: An extension problem for the CR fractional Laplacian
Authors: Frank, Rupert L.; González Nogueras, María del Mar; Monticelli, Dario D.; Tan, Jinggang
Abstract: We show that the conformally invariant fractional powers of the sub-Laplacian
on the Heisenberg group are given in terms of the scattering operator for an extension
problem to the Siegel upper halfspace. Remarkably, this extension problem is di erent
from the one studied, among others, by Ca arelli and Silvestre.2014-11-21T11:27:55ZPreservation of controllability-observability in expanded systems
http://hdl.handle.net/2117/24791
Title: Preservation of controllability-observability in expanded systems
Authors: Bakule, Lubomir; Rodellar Benedé, José; Rossell Garriga, Josep Maria; Rubio Díaz, Pedro
Abstract: The result contributed by the article is that controllability-observability of an original continuous-time LTI dynamic system can always be simultaneously preserved in expanded systems within the inclusion principle when using block structured complementary matrices. This new structure offers more degrees of freedom for the selection of specific complementary matrices than well known used cases, such as aggregations and restrictions, which enable such preservation only in certain special cases. A complete unrestricted transmission of these qualitative properties from the original controllable-observable system to its expansion is a basic requirement on the expansion/contraction process, mainly when controllers/observers are designed in expanded systems to be consequently contracted for implementation in initially given systems. An original system composed of two overlapped subsystems is adopted as a general prototype ease. A numerical example is supplied2014-11-20T16:55:31Z