On geodetic sets formed by boundary vertices

José Cáceres ${ }^{\mathrm{a}}$ Carmen Hernando ${ }^{\mathrm{b}}$ Mercè Mora ${ }^{\mathrm{d}}$ Ignacio M. Pelayo ${ }^{\text {c }}$ María L. Puertas ${ }^{\text {a }}$ Carlos Seara ${ }^{\text {d,2 }}$
${ }^{\text {a }}$ Departamento de Estadística y Matemática Aplicada, Universidad de Almería, Ctra. Sacramento s/n, 04120 Almería, Spain, \{jcaceres,mpuertas\} @ual.es
${ }^{\mathrm{b}}$ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, carmen.hernando@upc.es
${ }^{\mathrm{c}}$ Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain, ignacio.m.pelayo@upc.es
${ }^{\mathrm{d}}$ Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain, \{merce.mora,carlos.seara\} @upc.es

Abstract

Let G be a finite simple connected graph. A vertex v is a boundary vertex of G if there exists a vertex u such that no neighbor of v is further away from u than v. We obtain a number of properties involving different types of boundary vertices: peripheral, contour and eccentric vertices. Before showing that one of the main results in [3] does not hold for one of the cases, we establish a realization theorem that not only corrects the mentioned wrong statement but also improves it. Given $S \subseteq V(G)$, its geodetic closure $I[S]$ is the set of all vertices lying on some shortest path joining two vertices of S. We prove that the boundary vertex set $\partial(G)$ of any graph G is geodetic, that is, $I[\partial(G)]=V(G)$. A vertex v belongs to the contour $C t(G)$ of G if no neighbor of v has an eccentricity greater than v. We present some sufficient conditions to guarantee the geodeticity of either the contour $C t(G)$ or its geodetic closure $I[C t(G)]$.

Key words: Boundary, contour, eccentricity, geodesic convexity, geodetic set, periphery.

[^0]
1 Introduction

Usual Euclidean convexity can be extended, as an abstract structure, to the vertex set of a graph in a natural fashion, just by considering shortest paths between vertices [4]. This fact lies into a more general theory, the so called abstract convexity [10], that allows to translate typical convex concepts to different environments. As an example, a vertex subset S of a graph G is said to be convex if it contains all the shortest paths connecting any pair of vertices in $S[8]$. Instead of shortest paths, other path classes can be placed in this definition, such as chordless paths [4,5] or triangle-free paths [2], giving rise to interesting graph convexity structures.

We consider only finite, simple, connected graphs. For undefined basic concepts we refer the reader to introductory graph theoretical literature, e.g., [9]. Given vertices u, v in a graph $G=(V, E)$ we let $d_{G}(u, v)$ denote the distance between u and v in G. When there is no confusion, subscripts will be omitted. A $u-v$ path ρ is called a $u-v$ geodesic if it is a shortest $u-v$ path, that is, if $|E(\rho)|=d(u, v)$. The geodetic interval $I[u, v]$ is the set of vertices of all $u-v$ geodesics. For $S \subseteq V$, the geodetic closure $I[S]$ of S is the union of all geodesic closed intervals $I[u, v]$ over all pairs $u, v \in S$, i.e., $I[S]=\bigcup_{u, v \in S} I[u, v]$.

A (finite) graph convexity space is a pair (G, \mathcal{C}), formed by a finite connected graph $G=(V, E)$ and a family \mathcal{C} of subsets of V (each such set called a convex set) which is closed under intersection, which contains both V and the empty set, and such that every convex set induces a connected subgraph of G.

In this paper, we consider only the so-called geodesic convexity \mathcal{C}_{g} defined as follows. A vertex set $W \subseteq V$ is called geodesically convex (or simply convex) if $I[W]=W$. Given a set $A \subseteq V$, the smallest convex set containing is denoted $[A]$ and is called the convex hull of A. A non-empty set $A \subseteq V$ is called a hull set if $[A]=V$, and it is said to be geodetic if moreover $I[A]=V$.

Given a graph convexity space (G, \mathcal{C}) and a convex set $W \subseteq V(G)$, a vertex $v \in W$ is called an extreme vertex of W if the set $W \backslash\{v\}$ is also convex. The convexity \mathcal{C} is called a convex geometry if it satisfies the so-called KreinMilman property: Every convex set is the convex hull of its extreme vertices. Certainly, this condition can be seen as a rebuilding method, that allows us to recover any convex set from its extreme points, by means of the convex hull operator. Under this point of view, the interest of any similar property is that a small subset of any convex set keeps all the information of the whole set. For computational purposes, this fact represents a kind of store saving.

A graph is called Ptolemaic if it is distance-hereditary and chordal, that is, if every chordless path is a geodesic and every cycle of length strictly greater than three possesses a chord. In [4], Farber and Jamison proved that the
geodesic convexity \mathcal{C}_{g} of a graph G is a convex geometry if and only if G is Ptolemaic. Thus, we could think of extending this property in two different ways. On the one hand, recovering convex sets on wider graph classes, and on the other hand, using an operator simpler than the convex hull one [], such as for example the geodetic closure operator I. In both cases, finding new vertex sets playing a similar role to that of extreme vertices is necessary.

Concerning the first mentioned extension of the Krein-Milman property, Cáceres et alt. [1] obtained a similar property to this one, valid for every graph, by considering, instead of the extreme vertices, the so-called contour vertices (see Subsection 2.1). As for the second generalization, consisting in using the geodetic interval operator I, a number of results have been recently obtained $[1,6,7]$. For example, it has been proved that in the class of distance-hereditary graphs, every convex set is the geodetic closure of its contour vertices [1,7].

The rest of this paper is organized as follows. In Section 2, we focus our attention on several types of boundary vertices [3]: extreme, peripheral, contour and eccentric vertices, obtaining a number of basic structural properties. In addition, we show that one of the main results in [3] does not hold, and establish a realization theorem that not only corrects the mentioned wrong statement but also improves it. Finally, in Section 3, we approach the problem of finding geodetic sets consisting of boundary vertices, proving that the boundary vertex set $\partial(G)$ of any graph G is geodetic and presenting some sufficient conditions to guarantee the geodeticity of either the contour $C t(G)$ or its geodetic closure $I[C t(G)]$.

2 Boundary vertices

2.1 Definitions and basic properties

Let $G=(V, E)$ be a connected graph and $u, v \in V$. The vertex v is said to be a boundary vertex of u if no neighbor of v is further away from u than v [3]. A vertex v is called a boundary vertex of G if it is the boundary vertex of some vertex $u \in V$.

Definition 1 [3] The boundary $\partial(G)$ of G is the set of all of its boundary vertices:

$$
\partial(G)=\{v \in V \mid \exists u \in V \text { s.t. } \forall w \in N(v): d(u, w) \leq d(u, v)\} .
$$

Given a vertex set $W \subseteq V$, the eccentricity in W of a vertex $u \in W$ is defined as $e c c_{W}(u)=\max \{d(u, v) \mid v \in W\}$. In particular, ecc $G_{G}(u)=e c c(u)=$
$\max \{d(u, v) \mid v \in V\}$. Given $u, v \in V$, the vertex v is called an eccentric vertex of u if no vertex in V is further away from u than v, that is, if $d(u, v)=e c c(u)$. A vertex v is called a eccentric vertex of G if it is the eccentric vertex of some vertex $u \in V$.

Definition 2 The eccentricity $\operatorname{Ecc}(G)$ of G is the set of all of its eccentric vertices:

$$
\operatorname{Ecc}(G)=\{v \in V \mid \exists u \in V \text { s.t. } \operatorname{ecc}(u)=d(u, v)\} .
$$

In a similar way, we can define the eccentricity of any proper subset W of V :

$$
\operatorname{Ecc}(W)=\{v \in V \mid \exists u \in W \text { s.t. } \operatorname{ecc}(u)=d(u, v)\}
$$

A vertex $v \in V$ is called a peripheral vertex of G if no vertex in V has an eccentricity greater than $\operatorname{ecc}(v)$, that is, if the eccentricity of v is exactly equal to the diameter $D(G)$ of G.

Definition 3 The periphery $\operatorname{Per}(G)$ of G is the set all of its peripheral vertices:

$$
\operatorname{Per}(G)=\{v \in V \mid \operatorname{ecc}(u) \leq \operatorname{ecc}(v), \forall u \in V\}=\{v \in V \mid \operatorname{ecc}(v)=D(G)\}
$$

A vertex $v \in V$ is called a contour vertex of G if no neighbor vertex of v has an eccentricity greater than $\operatorname{ecc}(v)$.

Definition 4 [1] The contour $C t(G)$ of G is the set all of its contour vertices:

$$
C t(G)=\{v \in V \mid \operatorname{ecc}(u) \leq e c c(v), \forall u \in N(v)\} .
$$

Finally, a vertex $u \in V$ is called simplicial if the subgraph induced by its neighborhood, $G[N(v)]$, is a clique. Notice that a vertex is simplicial if and only if it is an extreme vertex of G.

Definition 5 The extreme set $\operatorname{Ext}(G)$ of G is the set of all its simplicial vertices:

$$
\operatorname{Ext}(G)=\{v \in V \mid G[N(v)] \text { is a clique }\} .
$$

As a direct consequence of these definitions, the following properties are immediately derived.

Proposition 6 Let $G=(V, E)$ be a connected graph. Then, the following statements hold (see Figure 1).
(1) $\operatorname{Ext}(G) \subseteq C t(G)$.
(2) $\operatorname{Per}(G) \subseteq C t(G) \cap \operatorname{Ecc}(G)$.
(3) $\operatorname{Ecc}(G) \cup C t(G) \subseteq \partial(G)$.

Figure 1. Boundary-type sets.
Next, we present a number of additional properties involving these boundary vertex sets.

Lemma 7 Let $G=(V, E)$ be a connected graph and $x \in V \backslash C t(G)$. Then, there exists a geodesic $\rho(x)=x_{0} x_{1} x_{2} \cdots x_{r}$ such that ecc $\left(x_{i}\right)=\operatorname{ecc}\left(x_{i-1}\right)+1$, $i=1, \ldots, r$ and $x_{r} \in C t(G)$.

PROOF. Since the eccentricities of two adjacent vertices differ by at most one unit, if x is not a contour vertex, then there exists a vertex $y \in V$, adjacent to x, such that its eccentricity satisfies $\operatorname{ecc}(y)=\operatorname{ecc}(x)+1$. This fact implies the existence of a path $\rho(x)=x_{0} x_{1} x_{2} \cdots x_{r}$, such that $x=x_{0}, x_{i} \notin \operatorname{Ct}(G)$ for $i \in\{0, \ldots, r-1\}, x_{r} \in C t(G)$, and $\operatorname{ecc}\left(x_{i}\right)=\operatorname{ecc}\left(x_{i-1}\right)+1=l+i$ for $i \in\{1, \ldots, r\}$, where $l=\operatorname{ecc}(x)$. Moreover, $\rho(x)$ is a shortest $x-x_{r}$ path, since otherwise, the eccentricity of x_{r} would be less than $l+r$.

Proposition 8 Let $G=(V, E)$ be a connected graph.
(1) If $C t(G)=\operatorname{Per}(G)$, then $I[C t(G)]=V$.
(2) If $|\operatorname{Per}(G)|=|\operatorname{Ct}(G)|=2$, then either $|\partial(G)|=2$ or $|\partial(G)| \geq 4$.
(3) If $|\operatorname{Ecc}(G)|=|\operatorname{Per}(G)|+1$, then $|\partial(G)|>|\operatorname{Ecc}(G)|$.
(4) If $|\operatorname{Ecc}(G)|>|\operatorname{Per}(G)|$, then $|\partial(G)| \geq|\operatorname{Per}(G)|+2$.

PROOF.

(1) Let x be a vertex of $V(G) \backslash C t(G)$. According to Lemma 7, there exist a vertex $x_{r} \in C t(G)$ and a $x-x_{r}$ geodesic $\rho(x)$ of length r such that $\operatorname{ecc}\left(x_{r}\right)=l+r$, where $l=\operatorname{ecc}(x)$. But $x_{r} \in C t(G)=\operatorname{Per}(G)$ implies that $\operatorname{ecc}\left(x_{r}\right)=D$ and $D=l+r$. Thus, there exists a vertex $z \in \operatorname{Per}(G)$ such that $D=d\left(z, x_{r}\right) \leq d(z, x)+d\left(x, x_{r}\right) \leq e c c(x)+r=l+r=D$, that is,
$d\left(z, x_{r}\right)=d(z, x)+d\left(x, x_{r}\right)$. Hence, x is on a shortest path between the vertices $z, x_{r} \in \operatorname{Per}(G)=C t(G)$.
(2) Suppose that $|\partial(G)|=3$, that is, $\operatorname{Per}(G)=C t(G)=\{a, b\}$ and $\partial(G)=$ $\{a, b, c\}$. According to the previous item, the vertex c lies on some $a-b$ geodesic P. Let W be the set of all vertices of which c is a boundary vertex. Notice that $W \cap V(P)=\emptyset$. Take a vertex $y \in W$ satisfying $d(y, c)=\max _{x \in W} d(x, c)=h$. Certainly, $y \notin \partial(G)$, since $y \notin V(P)$ and $|\partial(G)|=3$. In particular, y is not a boundary vertex of the vertex c, i.e., there exists a neighbor z of y such that $d(c, z)=h+1$ (see Figure 2). Notice that $z \notin V(P)$ since c is a boundary vertex of y. If w is an arbitrary neighbor of the vertex c, then $d(z, w) \leq d(z, y)+d(y, w) \leq$ $1+h=d(z, c)$. Hence, we have proved that z is a boundary vertex of c, which is a contradiction.

Figure 2.
(3) Let $x \in \operatorname{Ecc}(G) \backslash \operatorname{Per}(G)$. Take the set $W=\{y \in V \mid d(y, x)=\operatorname{ecc}(y)\}$. Notice that $W \cap \operatorname{Per}(G)=\emptyset$, since $x \notin \operatorname{Per}(G)$. Observe also that $W \cap \operatorname{Ecc}(G)=\emptyset$, since $\operatorname{Ecc}(G)=\operatorname{Per}(G) \cup\{x\}$. Consider a vertex $z \in W$ such that $\operatorname{ecc}(z)=\max _{y \in W} \operatorname{ecc}(y)$. In order to prove that z is a boundary vertex of x, let us suppose, on the contrary, that there exists a vertex $w \in N(z)$ such that $d(w, x)=d(z, x)+1$. It means both that $\operatorname{ecc}(w)=\operatorname{ecc}(z)+1$ and $w \in W$, which is a contradiction. Hence, $z \in \partial(G)$ and we are done.
(4) This result is a corollary of the previous one since $\operatorname{Per}(G) \subset E c c(G) \subseteq$ $\partial(G)$.

2.2 A realization theorem

As a direct consequence of Propositions 6 and 8 , we obtain the following result.
Corollary 9 Let G be a nontrivial connected graph such that $|\operatorname{Per}(G)|=a$, $|C t(G)|=b,|\operatorname{Ecc}(G)|=c$ and $|\partial(G)|=d$. Then,

$$
\left\{\begin{array}{l}
2 \leq a \leq b \leq d \\
2 \leq a \leq c \leq d \\
(a, b, c, d) \neq(2,2,2,3),[*] \\
(a, b, c, d) \neq(a, b, a+1, a+1) \cdot[* *]
\end{array}\right.
$$

In [3], Chartrand, Erwin, Johns and Zhang included the following realization theorem:

Theorem 10 [3] For each triple a, c, d of integers with $2 \leq a \leq c \leq d$, there is a connected graph G such that $\operatorname{Per}(G)$ has order a, Ecc (G) has order c, and $\partial(G)$ has order d.

Notice that, as a consequence of the constraint [**] displayed in Corollary 9, it is immediately derived that this result is false for the case $a+1=c=d$.

At this point, we ask ourselves the following question: Are there further restrictions concerning the cardinalities of the sets $\operatorname{Per}(G), C t(G), E c c(G)$ and $\partial(G)$? Next, we present a realization theorem showing the answer to be negative. Before showing it, we first give out five lemmas. We omit the proofs as they are rather straightforward.

Lemma 11 Let $G=(V, E)$ be a connected graph, $x \in V$ and $\lambda \geq 1$. Let \widehat{G} be the graph obtained from G by replacing the vertex x by a complete graph K_{λ} and joining every vertex of K_{λ} to every neighbor of x in G. Then,
(1) for every vertex $x_{i} \in V\left(K_{\lambda}\right), \operatorname{ecc}_{\widehat{G}}\left(x_{i}\right)=\operatorname{ecc}_{G}(x)$,
(2) for every vertex $y \in \widehat{G} \backslash V\left(K_{\lambda}\right)$, ecc $\widehat{G}^{(}(y)=\operatorname{ecc}_{G}(y)$.

Lemma 12 Let G_{1}, G_{2} and G_{3} be the graphs illustrated in Figures 3, 4(a) and $\nleftarrow(c)$ respectively. Then,
(1) $\operatorname{Per}\left(G_{1}\right)=\{1,7\}, \operatorname{Ecc}\left(G_{1}\right)=\{1,7,10\}, \operatorname{Ct}\left(G_{1}\right)=\{1,7,10,11\}, \partial\left(G_{1}\right)=$ $\{1,4,7,10,11\}$.
(2) $\operatorname{Per}\left(G_{2}\right)=\operatorname{Ct}\left(G_{2}\right)=\operatorname{Ecc}\left(G_{2}\right)=\{1,5\}, \partial\left(G_{2}\right)=\{1,3,5,6\}$.
(3) $\operatorname{Per}\left(G_{3}\right)=\operatorname{Ct}\left(G_{3}\right)=\operatorname{Ecc}\left(G_{3}\right)=\{1,4,6\}, \partial\left(G_{3}\right)=\{1,2,4,6\}$.

Lemma 13 Let G be the graph illustrated in Figure 3, and $r \geq 1, s \geq 1$, $t \geq 1, u \geq 1$. Let \widehat{G} be the graph obtained from G by replacing the vertices 1, 10, 11 and 4 by K_{r}, K_{s}, K_{t} and K_{u}, respectively, as shown in Lemma 11. Then,

$$
\begin{gathered}
|\operatorname{Per}(\widehat{G})|=r+1, \quad|\operatorname{Ecc}(\widehat{G})|=r+s+1 \\
|\operatorname{Ct}(\widehat{G})|=r+s+t+1, \quad|\partial(\widehat{G})|=r+s+t+u+1
\end{gathered}
$$

Lemma 14 Let G be the graph illustrated in Figure $4(a)$, and $r \geq 1$. Let \widehat{G}

Figure 3. a) Vertex labelling, b) eccentricities.

Figure 4. a) and c) Vertex labelling, b) and d) eccentricities.
be the graph obtained from G by replacing the vertex 6 by K_{r}, as shown in Lemma 11. Then,

$$
|\operatorname{Per}(\widehat{G})|=|\operatorname{Ct}(\widehat{G})|=|\operatorname{Ecc}(\widehat{G})|=2, \quad|\partial(\widehat{G})|=r+3 .
$$

Lemma 15 Let G be the graph illustrated in Figure 4(c), and $r \geq 1, s \geq 1$. Let \widehat{G} be the graph obtained from G by replacing the vertices 1 and 2 by K_{r} and K_{s}, respectively, as shown in Lemma 11. Then,

$$
|\operatorname{Per}(\widehat{G})|=|\operatorname{Ct}(\widehat{G})|=|\operatorname{Ecc}(\widehat{G})|=r+2, \quad|\partial(\widehat{G})|=r+s+2 .
$$

Now we can show, as promised, our realization theorem, that not only corrects the mistake noticed in [3], but also essentially improves and completely solves the posed question.

Theorem 16 Let $(a, b, c, d) \in \mathbb{Z}^{4}$ integers satisfying the constraints displayed in Corollary 9. Then, there exists a connected graph $G=(V, E)$ satisfying:

$$
|\operatorname{Per}(G)|=a, \quad|\operatorname{Ct}(G)|=b, \quad|\operatorname{Ecc}(G)|=c, \quad|\partial(G)|=d
$$

PROOF. Consider the list of all possible cases (see Table 1).
Table 1: List of all possible cases in the proof of the realization theorem.

(i)	$2 \leq a=b=c=d$	(ii)	$2 \leq a<c<b<d$
(iii)	$2 \leq a<b<c<d$	(iv)	$2 \leq a=b<c<d$
(v)	$2 \leq a<b=c<d$	(vi)	$2 \leq a<b<c=d$
(vii)	$2 \leq a=c<b<d$	(viii)	$2 \leq a<c<b=d$
(ix)	$2 \leq a<b=c=d \quad$ s.t. $[* *]$	(x)	$2 \leq a=b<c=d$ s.t. $[* *]$
(xi)	$2 \leq a=b=c<d \quad$ s.t. $[*]$	(xii)	$2 \leq a=c<b=d$

(i) The complete graph K_{a} satisfies the desired properties.

The proof of the remaining cases is similar and based on the following procedure:
(1) Consider the fitting graph G in Figure 5.
(2) Replace in G a vertex $v_{1} \in \operatorname{Per}(G)$ by the complete graph K_{a-h} (see Lema 11), where: $h=|\operatorname{Per}(G)|-1$.
(3) If $a<b \leq c$, replace in G a vertex $v_{2} \in C t(G) \backslash \operatorname{Per}(G)$ by the complete graph K_{b-a-h}, where: $h=|C t(G)|-|\operatorname{Per}(G)|-1$. If $a<c<b$, replace in G a vertex $v_{2} \in \operatorname{Ecc}(G) \backslash \operatorname{Per}(G)$ by the complete graph K_{c-a-h}, where $h=|E c c(G)|-|\operatorname{Per}(G)|-1$.
(4) If $b<c$, replace in G a vertex $v_{3} \in \operatorname{Ecc}(G) \backslash \operatorname{Ct}(G)$ by the complete graph K_{c-b-h}, where $h=|\operatorname{Ecc}(G)|-|C t(G)|-1$. If $c<b$, replace in G a vertex $v_{3} \in C t(G) \backslash \operatorname{Ecc}(G)$ by the complete graph K_{b-c-h}, where $h=|\operatorname{Ct}(G)|-|\operatorname{Ecc}(G)|-1$.
(5) If $b \leq c<d$, replace in G a vertex $v_{4} \in \partial(G) \backslash \operatorname{Ecc}(G)$ by the complete graph K_{d-c-h}, where $h=|\partial(G)|-|E c c(G)|-1$. If $c<b<d$, replace in G a vertex $v_{4} \in \partial(G) \backslash C t(G)$ by the complete graph K_{d-b-h}, where $h=|\partial(G)|-|C t(G)|-1$.

For example, if $(a, b, c, d)=(21,24,24,35)$, then (1) the fitting graph is (v), since in both cases: $a<b=c<d$; (2) a vertex $v_{1} \in \operatorname{Per}(G)$ is replaced by the complete graph K_{20}; (3) a vertex $v_{2} \in C t(G) \backslash \operatorname{Per}(G)$ by the complete graph K_{3}; and (5) a vertex $v_{4} \in \partial(G) \backslash \operatorname{Ecc}(G)$ is replaced by the complete graph K_{11}.

For the sake of clarity, we show the complete proof for two cases.
(ii)

(iv)

(vi)

(viii)

(x)

(1)
(iii)

(v)

$$
\begin{gathered}
a=2 \\
b=c=3 \\
d=4
\end{gathered}
$$

(vii)

(ix)

(xii)

$$
\quad \begin{aligned}
& a=c=2 \\
& b=d=3
\end{aligned}
$$

(2)

Figure 5. For each graph $G, a=|\operatorname{Per}(G)|, b=|C t(G)|, c=|\operatorname{Ecc}(G)|$ and $d=|\partial(G)|$. Notice that, in all theses cases, either $C t(G) \subseteq E c c(G)$, or $\operatorname{Ecc}(G) \subseteq C t(G)$.
(ii) The graph \widehat{G} described in Lemma 13 satisfies the desired conditions just by taking:

$$
r=a-1, \quad s=c-a, \quad t=b-c, \quad u=d-b
$$

(xi)(1) If $a=2$, the graph \widehat{G} described in Lemma 14 satisfies the desired conditions just by taking $r=d-3$.
(xi)(2) If $a \geq 3$, the graph \widehat{G} described in Lemma 15 satisfies the desired conditions just by taking $r=a-2$, and $s=d-a$.

Remark 17 It remains an open question whether a similar result can be stated by also considering the extreme set, without imposing additional nontrivial constraints.

3 Boundary vertex sets as geodetic sets

In [1], Cáceres et alt. proved the following statement:
Theorem 18 [1] Let $G=(V, E)$ be a connected graph and $W \subseteq V$ a convex set. Then, W is the convex hull of its contour vertices.

As was pointed out in the same paper (see also [7]), the contour of a graph needs not to be geodetic. For example, in Figure 6, we illustrate two graphs whose contour set is $\{u, v, w\}$ and $I[\{u, v, w\}]=V \backslash\{z\}$. As for the eccentricity, it is rather easy to design a graph G such that $I[\operatorname{Ecc}(G)] \varsubsetneqq V(G)$ (see Figure 5(xii)).

Figure 6. Two graphs whose contour is not geodetic.
Next, we prove that the boundary of every connected graph is geodetic. As a matter of fact, we present the following stronger result.

Theorem 19 The so-called expanded contour $\Omega(G)=C t(G) \cup \operatorname{Ecc}(C t(G))$ of every connected graph $G=(V, E)$ is geodetic.

PROOF. Let x be a vertex of $V(G) \backslash \Omega(G)$. Since $x \notin C t(G)$, according to Lemma 7, there exist a vertex $x_{r} \in C t(G)$ and a $x-x_{r}$ geodesic $\rho(x)$ of length r such that $\operatorname{ecc}\left(x_{r}\right)=\operatorname{ecc}(x)+r$. Let y_{r} be an eccentric vertex of x_{r}, i.e., such that $d\left(y_{r}, x_{r}\right)=\operatorname{ecc}\left(x_{r}\right)$. Then,

$$
\operatorname{ecc}(x)+r=\operatorname{ecc}\left(x_{r}\right)=d\left(y_{r}, x_{r}\right) \leq \underbrace{d\left(y_{r}, x\right)}_{\leq \operatorname{ecc}(x)}+\underbrace{d\left(x, x_{r}\right)}_{=r} \leq \operatorname{ecc}(x)+r
$$

and hence we conclude that the inequalities in the formula above are all of them equalities, which means that the vertex x lies in a shortest path joining $x_{r} \in C t(G) \subset \Omega(G)$ and $y_{r} \in \operatorname{Ecc}_{G}(C t(G)) \subset \Omega(G)$.

Corollary 20 The boundary $\partial(G)$ of every connected graph $G=(V, E)$ is geodetic.

3.1 The geodetic closure of the contour

We have seen that, in general, the contour $C t(G)$ of a graph G needs not to be geodetic. But, what about its geodetic closure $I[C t(G)]$?

To begin with, we have investigated whether, for every graph $G, \partial(G) \subseteq$ $I[C t(G)]$. Notice that, according to Corollary 20, the above fact would allow us to prove the geodeticity of the geodetic closure of the contour. The following remark shows this approach to be wrong.

Remark 21 Let G be the graph illustrated in Figure 6(a). Then, it is straightforward to check that

$$
C t(G)=\{u, v, w\}, \quad I[C t(G)]=V(G) \backslash\{z\}, \quad \partial(G)=V(G) \backslash\{a\} .
$$

From Theorem 19, we obtain the following direct consequence.
Corollary 22 Let G be a connected graph. If $\operatorname{Ecc}_{G}(\operatorname{Ct}(G)) \subseteq I[C t(G)]$, then $I^{2}[C t(G)]=V$. That is, $I[C t(G)]$ is a geodetic set.

Starting from this fact, we are currently trying to prove that either, for every graph $G, \Omega(G) \subseteq I[C t(G)]$ or else find a counterexample.

Remark 23 Consider the graph G illustrated in Figure 6(b). It is rather simple to obtain the following results:

$$
\begin{gathered}
C t(G)=\{u, v, w\}, \quad \operatorname{Ecc}(G)=\{b, z, v, w, e, f, h, u\}, \quad \partial(G)=\operatorname{Ecc}(G) \\
\operatorname{Ecc}(C t(G))=\{u, w, h\}, \quad \Omega(G)=\{u, v, w, h\}, \quad I[C t(G)]=V(G) \backslash\{z\} .
\end{gathered}
$$

Although the graph above satisfies some interesting and not very common properties such as: $E c c_{G}(C t(G)) \nsubseteq C t(G)$ and $\operatorname{Ecc}(G) \nsubseteq I[C t(G)]$, it is also true that $\Omega(G) \subseteq I[C t(G)]$. As a matter of fact, we know of no example of a graph G having an expanded contour $\Omega(G)$ not contained in the geodetic closure of its contour $I[C t(G)]$.

Remark 24 We know of no example of a graph G having a contour $\operatorname{Ct}(G)$ such that its geodetic closure be not geodetic. We leave it as an open problem as to whether $I^{2}[\operatorname{Ct}(G)]=V(G)$ for every connected graph G.

Let $G=(V, E)$ be a connected graph and let $W \in V$ be a set of vertices. The geodetic iteration number $\operatorname{gin}(W)$ of W is defined as the minimum integer $k \geq 1$ such that $I^{k}[W]=[W]$, where $I^{k}[W]=I\left[I^{k-1}[W]\right]$. For example, geodetic sets are those whose iteration number is equal to 1 . Next, we show a number of conditions under which the contour of a graph is either a geodetic set or at least $I^{2}[C t(G)]=V$.

Proposition 25 Let $G=(V, E)$ be a connected graph. If $|C t(G)|=2$, then $C t(G)$ is a geodetic set.

PROOF. If $|C t(G)|=2$, then $C t(G)=\operatorname{Per}(G)$. Therefore, according to Proposition 8 (1), the contour $C t(G)$ must be geodetic.

Theorem 26 Let $G=(V, E)$ be a connected graph such that

$$
C t(G) \backslash \operatorname{Per}(G)=\left\{y_{1}, \ldots, y_{k}\right\}
$$

and $\operatorname{ecc}\left(y_{i}\right)=\operatorname{ecc}\left(y_{j}\right)$, for each $i, j=1, \ldots k$. Then, $I^{2}[\operatorname{Ct}(G)]=V$.

PROOF. Suppose that $\operatorname{Per}(G) \varsubsetneqq C t(G)$ since otherwise by Proposition 8 (1) $I[C t(G)]=V$ and we are done. If $C t(G)=\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{k}\right\}$ and $\operatorname{Per}(G)=\left\{x_{1}, \ldots, x_{h}\right\}$, then $\operatorname{ecc}\left(x_{i}\right)=D, i=1, \ldots, h, \operatorname{ecc}\left(y_{j}\right)=d, j=$ i, \ldots, k and $d<D$, where D is the diameter of G.

Notice that

$$
\operatorname{Ecc}(C t(G))=\operatorname{Per}(G) \cup \operatorname{Ecc}\left(\left\{y_{1}\right\}\right) \cup \cdots \cup \operatorname{Ecc}\left(\left\{y_{k}\right\}\right),
$$

as $\operatorname{Ecc}(\operatorname{Per}(G))=\operatorname{Per}(G)$. Take $v \in C t(G) \backslash \operatorname{Per}(G)$. Let w be an eccentric vertex of v, that is, $d(w, v)=e c c(v)$. Next, we prove that $w \in I[C t(G)]$.

Assume that $w \notin C t(G)$ since otherwise we are done. Then, by Lemma 7 , there exists a geodesic $w_{0}=w, w_{1}, \ldots, w_{r}$ such that $\operatorname{ecc}\left(w_{i}\right)=\operatorname{ecc}\left(w_{i-1}\right)+1$,
$i=1 \ldots r$ and $w_{r} \in C t(G)$. Hence, $w_{r} \in \operatorname{Per}(G)$, since $\operatorname{ecc}(v) \leq \operatorname{ecc}(w)<$ $\operatorname{ecc}\left(w_{r}\right)$. Let z be an eccentric vertex of w_{r}. Note that $z \in \operatorname{Per}(G)$ and

$$
D=d\left(z, w_{r}\right) \leq \underbrace{d(z, w)}_{\leq \operatorname{ecc}(w)}+\underbrace{d\left(w, w_{r}\right)}_{r=e c c\left(w_{r}\right)-\operatorname{ecc}(w)=D-\operatorname{ecc}(w)} \leq D
$$

Thus, w lies in a geodesic joining z and w_{r}, and $\left\{z, w_{r}\right\} \subseteq \operatorname{Per}(G) \subseteq C t(G)$. In other words, $w \in I[C t(G)]$. We conclude that $\operatorname{Ecc}_{G}(C t(G)) \subset I[C t(G)]$ and by Corollary $22, I^{2}[C t(G)]=V$.

As particular cases of the above theorem the following corollaries are immediately derived.

Corollary 27 Let $G=(V, E)$ be a connected graph such that $|C t(G)|=$ $|\operatorname{Per}(G)|+1$, then $I^{2}[C t(G)]=V$.

Corollary 28 Let $G=(V, E)$ be a connected graph such that $|\operatorname{Ct}(G)|=3$, then $I^{2}[C t(G)]=V$.

PROOF. If $|C t(G)|=3$, then $|\operatorname{Per}(G)|=2$ or $|\operatorname{Per}(G)|=3$. In the first case, $|C t(G)|=|\operatorname{Per}(G)|+1$ and we apply Corollary 27. In the second case, $C t(G)=\operatorname{Per}(G)$ and by Proposition 25 we deduce $I[C t(G)]=V$.

3.2 The k-iterated geodetic closure

Having in mind Theorem 26, this subsection examines the geodeticity of the set $I^{k}[C t(G)]$ for some $k \geq 2$. To begin with, we need to introduce the following definition.

Definition 29 An integer sequence $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ satisfying

$$
d_{1}>d_{2}>d>\cdots>d_{s}
$$

is called the eccentricity sequence of a vertex subset W of a connected graph $G=(V, E)$ if

$$
\{k \in \mathbb{N}: k=\operatorname{ecc}(v), \text { for some } v \in W\}=\left\{d_{1}, d_{2}, \ldots, d_{s}\right\} .
$$

Moreover, the integer s is called the size of the sequence.
Proposition 30 Let $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ be the eccentricity sequence of the contour of a connected graph $G=(V, E)$. Let $x \in C t(G)$ and $i \in\{1, \ldots, s\}$ such that $\operatorname{ecc}(x)=d_{i}$. Then, $\operatorname{Ecc}(\{x\}) \subseteq I^{i-1}[\operatorname{Ct}(G)]$.

PROOF. We proceed by induction on i. First, if $i=1$, then $\operatorname{ecc}(x)=d_{1}=D$, which means that $x \in \operatorname{Per}(G)$. Hence, $\operatorname{Ecc}(\{x\}) \subseteq C t(G)=I^{0}[C t(G)]$ since $\operatorname{Ecc}(\operatorname{Per}(G))=\operatorname{Per}(G)$.

Take $i \in\{2, \ldots, s\}$ and assume (as Inductive Hypothesis) that, for every vertex $z \in C t(G)$ such that $e c c(z)=d_{j}$ with $j \in\{1, \ldots, i-1\}, \operatorname{Ecc}(\{z\}) \subseteq$ $I^{j-1}[C t(G)]$. Let $x \in C t(G)$ such that $\operatorname{ecc}(x)=d_{i}$. Take $y \in \operatorname{Ecc}(\{x\})$, i.e., such that $d(x, y)=d_{i}$.

Suppose that $y \notin C t(G)$ as otherwise we are done. According to Lemma 7, there exists a geodesic $y=y_{0} y_{1} \cdots y_{r}$ such that $\operatorname{ecc}\left(y_{j}\right)=\operatorname{ecc}\left(y_{j-1}\right)+1, j=$ $1, \ldots, r$ and $y_{r} \in C t(G)$. If $z \in E c c\left(\left\{y_{r}\right\}\right)$, then $y \in I\left[z, y_{r}\right]$ since

$$
\operatorname{ecc}(y)+r=\operatorname{ecc}\left(y_{r}\right)=d\left(z, y_{r}\right) \leq \underbrace{d(z, y)}_{\leq e c c(y)}+\underbrace{d\left(y, y_{r}\right)}_{=r} \leq e c c(y)+r .
$$

Moreover, it is clear that $d_{i}=\operatorname{ecc}(x) \leq \operatorname{ecc}(y)<\operatorname{ecc}\left(y_{r}\right)$. Hence, we obtain that $\operatorname{ecc}\left(y_{r}\right)=d_{j}$ for some $j<i$, which, according to the Inductive Hypothesis, means that $z \in I^{j-1}[C t(G)] \subseteq I^{i-2}[C t(G)]$. This fact, along with the statements $y \in I\left[z, y_{r}\right]$ and $y_{r} \in C t(G)$ allows us to conclude that $y \in I^{i-1}[C t(G)]$ and we are done.

As a consequence of this proposition and Theorem 19, we immediately obtain the following results.

Corollary 31 Let $G=(V, E)$ be a connected graph whose contour has an eccentricity sequence of size s. Then,
(1) $\operatorname{Ecc}(C t(G)) \subseteq I^{s-1}[C t(G)]$,
(2) $\Omega(G) \subseteq I^{s-1}[C t(G)]$,
(3) $I^{s}[C t(G)]=V$.

This properties along with the known fact that in every graph G of diameter D there are at most $\lfloor D / 2\rfloor+1$ different eccentricities, allow us to derive the following theorem.

Theorem 32 Let $G=(V, E)$ be a connected graph of diameter D whose contour has an eccentricity sequence of size s. Then, $I^{k}[C t(G)]=V$, where $k=\operatorname{gin}(C t(G)) \leq \min \left\{|C t(G)|-1, \frac{D}{2}+1, s\right\}$.

References

[1] J. Cáceres, A. Márquez, O. R. Oellerman, M. L. Puertas, Rebuilding convex sets in graphs, submitted to Discrete Math.
[2] M. Changat, J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95.
[3] G. Chartrand, D. Erwin, G. L. Johns, P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25-34.
[4] M. Farber, R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg. Disc. Math. 7 (3) (1986) 433-444.
[5] M. Farber, R. E. Jamison, On local convexity in graphs, Discrete Math. 66 (1987) 231-247.
[6] C. Hernando, T. Jiang, M. Mora, I. M. Pelayo, C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math., accepted.
[7] C. Hernando, M. Mora, I. M. Pelayo, C. Seara, On monophonic sets in graphs, submitted to Journal of Combinatorial Theory, series B.
[8] V. P. Soltan, Metric convexity in graphs, Studia Univ. Babeş-Bolyai Math. 36 (4) (1991) 3-43.
[9] D. B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, (1999).
[10] M. Van de Vel, Theory of convex structures, North-Holland, Amsterdam, MA (1993).

[^0]: ${ }^{1}$ Research supported by projects MCYT-FEDER TIC-2001-2171, MCYT-FEDER BFM 2002-0557, Gen Cat 2001SGR00224, BFM 2001-2474 and J.A. FQM 305.
 ${ }^{2}$ Corresponding author. e-mail: carlos.seara@upc.es

