
Predictive Runtime Code Scheduling for
Heterogeneous Architectures

Vı́ctor J. Jiménez1, Llúıs Vilanova2, Isaac Gelado2, Marisa Gil2,
Grigori Fursin3, and Nacho Navarro2

1 Barcelona Supercomputing Center (BSC)
victor.javier@bsc.es

2 Departament d’Arquitectura de Computadors (UPC)
{igelado,vilanova,marisa,nacho}@ac.upc.edu

3 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University
grigori.fursin@inria.fr

All the authors are members of the HiPEAC European Network of Excellence

Abstract. Heterogeneous architectures are currently widespread. With
the advent of easy-to-program general purpose GPUs, virtually every re-
cent desktop computer is a heterogeneous system. Combining the CPU
and the GPU brings great amounts of processing power. However, such
architectures are often used in a restricted way for domain-specific appli-
cations like scientific applications and games, and they tend to be used
by a single application at a time. We envision future heterogeneous com-
puting systems where all their heterogeneous resources are continuously
utilized by different applications with versioned critical parts to be able
to better adapt their behavior and improve execution time, power con-
sumption, response time and other constraints at runtime. Under such a
model, adaptive scheduling becomes a critical component.

In this paper, we propose a novel predictive user-level scheduler based on
past performance history for heterogeneous systems. We developed sev-
eral scheduling policies and present the study of their impact on system
performance. We demonstrate that such scheduler allows multiple appli-
cations to fully utilize all available processing resources in CPU/GPU-
like systems and consistently achieve speedups ranging from 30% to 40%
compared to just using the GPU in a single application mode.

1 Introduction

The objectives of this work are twofold. On the one hand, fully exploiting the
computing power available in current CPU/GPU-like heterogeneous systems and
thus, increasing overall system performance is pursued. On the other hand, ex-
ploring and understanding the effect of different scheduling algorithms for het-
erogeneous architectures is intended.

Currently almost every desktop system is an heterogeneous system. They
both have a CPU and a GPU, two processing elements (PEs) with different



characteristics but undeniable amounts of processing power. Some time ago pro-
gramming a GPU for general purpose computations was a major programming
challenge. However, with the advent of GPUs designed with general purpose com-
putation in mind it has become simpler. Games still represent the big market
for graphical card manufacturers, but thanks to execution models like CUDA [2]
now it is possible to use such GPUs as data parallel computing devices.

Applications with great amounts of data parallelism perform considerably
better on a GPU than on a CPU. [13] Thus, the GPU is seen as a device destined
to run very specific workloads. The current trend to program these systems is as
following: (1) Profile the application to be ported to a GPU and detect the most
expensive parts in terms of execution time and the most amenable ones to fit the



on both CPU and GPU providing explicit data transfer if needed. Considering
this study is performed on top of real hardware with a multi-ISA architecture,
it does not seem feasible to use a granularity finer than function-level. Indeed,
that level seems a good choice for the programmer to provide both versions of
the code (CPU and GPU). It it important to mention that the generation of
function versions for every PE is orthogonal to this work and it is expected for
future compilers to be able to generate multiple versions which can be adap-
tively used at runtime. [6, 7] Additionally, there are already studies which allow
to automatically generate a function version for one PE given the version for
another PE. [16]

The code scheduler has been implemented as a dynamic library for the
GNU/Linux OS. Being a process-level scheduler, parts of the library must be
shared among all the processes which use it (see Figure 1). Specifically the data
for the PE management and the task queues for each PE are shared (a task,
composed by a function and its arguments, is used as the basic unit of schedul-
ing from now on in this text). Other implementation options such as creating a
kernel-level scheduler have been considered. However, it poses many difficulties,
involving a longer development cost and the necessity to deal with NVIDIA’s
proprietary driver. Being simpler and, at the same time, enough to perform this
study, the implementation uses the dynamic library approach. The interface to
the scheduler is a set of C++ classes.

process process

private
area

private
area

shared area
(e.g., task queue)

OS

HW

...

scheduling library

...

Fig. 1. Call scheduler implementation overview.

2.2 Usage

A matrix multiplication is used as an example of the scheduler usage. A typical
implementation would provide a function, matrix mul, which implements the
matrix multiply operation. This function would be called with two input matrices
and one output matrix. Additionally, the matrix size would be also provided:



matrix_mul(A,B,C,N);

If this function must run on several PEs, multiple implementations are nec-
essary. In the case of a CPU and a GPU they could be named matrix mul cpu
and matrix mul gpu. Considering this is already done, the interaction with the
scheduler is quite simple. The user would get an instance of the main scheduler
class (CallScheduler). Then the user constructs a call (Func, Args) and executes
the schedule method. This creates a Task which is added to the queue for the
PE selected by the scheduling algorithm. Different algorithms can be plugged-in
in the scheduling system, thus making the system very flexible for trying new
scheduling algorithms. Following is the extra code necessary to be able to let the
scheduler select at runtime which PE will be used to perform the operation:

CallScheduler* cs = CallScheduler::getInstance();

MatrixMulFunc* f = new MatrixMulFunc();

MatrixMulArgs* a = new MatrixMulArgs(A,B,C,N);

cs->schedule(f,a);

where class MatrixMulArgs is a very simple class which just stores the values
for the arguments to the function and MatrixMulFunc is a wrapper which allows
to select the right function version to execute in a given PE. This is easily doable
because CUDA stores both versions in the same executable file. In our imple-
mentation just a call to either matrix mul cpu or matrix mul gpu is necessary.
Although it may seem a considerable amount of code, it is possible to use some
“syntactic sugar” which would allow, for instance, a source-to-source compiler
to generate all that code from a line similar to:

#pragma cs matrix_mul(A,B,C,N) matrix_mul_cpu matrix_mul_gpu

2.3 Scheduling Algorithms

In a heterogeneous scheduling process the following two steps can be distin-
guished: PE selection and task selection. The former is the process to decide
on which PE a new task should be executed. It does not mean the execution is
going to start at that time. The latter it is the mechanism to choose which task
must be executed next in a given PE. It typically takes place just after another
task finishes and its PE becomes free.

Several options have been tested for the first step. All the algorithms basically
follow a variant of the first-free (FF) design, meaning that tasks are first tried
to be scheduled in a PE which is not being used. As the results will show, this
approach does not work consistently good all the time and thus, new algorithms
based on performance-prediction have been developed.

For the second step, all the algorithms implemented in this work follow a
first-come, first-served (FCFS) design. It could be also possible to implement
some more advanced techniques such as work stealing in order to increase the
load balance of the different PEs. However, the main goal of the study was to
find algorithms which led to a good scheduling depending on the code to be



executed and the characteristics of the PEs present in the system. Thus, the
study for load balancing techniques is left for future work.

Several variants of different families of algorithms have been developed. The
following description gives the general scheme for these families. The specific
parts for every variant are abstracted as calls to functions (g and h).

Algorithm 1 shows the general scheme for a FF design. It traverses the PE
list in search for a not busy one. As soon as one is found it is selected as the
target PE. If none is idle the algorithm must decide which PE to use. Several
variants have been tried and thus the algorithm contains a call to a function g
which will be responsible to select somehow a PE in case all of them are busy.

Algorithm 1 First-Free algorithm family.
for all pe ∈ PElist do

if pe is not busy then
return pe

return g(PElist)

As the CPU and the GPU present different characteristics, the same function
may perform differently in both PEs. It could be the case that one of them
performs better for some kind of tasks. Therefore a modification to the previous
algorithm is introduced, allowing to queue more elements into one PE, thus
introducing a bias in the scheduling system. This can also be seen as a simple
load balancing mechanism. Algorithm 2 is still first-free-based, but in case all
the PEs are busy it will assign tasks to PEs following a distribution given by a
parameter k = (k1, . . . , kn). Given two PEs, a and b, the ratio ka/kb determines
the amount of work which will be given to them. For instance, with k = (1, 4)
the number of tasks given to the second PE will be four times bigger.

Algorithm 2 First-Free Round Robin (k).
for all pe ∈ PElist do

if pe is not busy then
return pe

if k[pe] = 0 ∀pe ∈ PElist then
set k with initial values

for all pe ∈ PElist do
if k[pe] ≥ 0 then
k[pe] = k[pe]− 1
return pe

The idea behind this algorithm is that if a set of applications is biased towards
one of the PEs, consistently obtaining better performance on it, the scheduler
may address the load imbalance by biasing the assignment towards the other



PE. However it may also happen that performance for an application drastically
differs depending on the PE where it is run. In those cases the previous algorithm
may not perform well. This observation motivated the introduction of a perfor-
mance history-based scheduler (algorithm 3). Basically a performance history is
kept for every pair of PE and task. During the initial phase, the performance
history is built by forcing the first n calls to the same function to execute on the
different n PEs. In the next phase every time a call to that function is made,
the scheduler looks for any big unbalance between the performance on the dif-
ferent PEs. Thus, a list (allowedPE) is built where only the PEs without such a
big unbalance are kept. If that list came to be empty, g would determine which
PE to select. h performs the corresponding action when there is more than one
possibility to schedule the task.

Algorithm 3 Performance History Scheduling.
if ∃pe ∈ PElist : history[pe, f ] = null then

return pe
allowedPE = {pe| 6 ∃pe′ : history[pe, f ]/history[pe′, f ] > θ}
if ∃pe ∈ allowedPE : pe is not busy then

return pe
if allowedPE = ∅ then

return g(PElist)
else

return h(allowedPE)

Relying on this performance prediction mechanism, a variant of algorithm 3
has been developed. It uses the performance history to predict the waiting time
for every PE. This version aims at a better load balancing among the PEs.

3 Experimental Methodology

The runtime CPU/GPU scheduler has been evaluated on a real machine with a
set of benchmarks. In the following subsections the benchmarks will be described
in detail as well as the experimental setup.

3.1 Workload

A mix of synthetic and real benchmarks have been used in order to evaluate the
performance speedup obtained with the use of the runtime code scheduler for
the CPU/GPU system. The benchmarks used are: matmul, ftdock, cp and sad.
Their performance characterization can be seen in table 1.

matmul is a synthetic benchmark which performs multiple square-matrix mul-
tiplications using either the ATLAS library [21] for the CPU and the CUBLAS
library [2] for the GPU. As can be seen in table 1, performance on GPU does not
extremely differ from performance on CPU. As the input size is increased, the



Benchmark CPU GPU Speedup TX time Comp Time Ratio

cp 28.79s 0.39s 74X 0.13s 0.14s 1.08
sad 0.79s 0.87s ∼ 0.9X 0.11s 0.04s 0.36

FTDock 38.77s 19.99s ∼ 1.9X ∼ 0.03s 0.34s 11.75
matmul 38.52s 12.65s 3X 0.01s 0.04s 3.89

Table 1. Benchmark list characterization.

GPU can better amortize the cost of bringing data in and out to main memory.
The matrices used are considerable large (1024× 1024).

FTDock [8] is a real application which computes the interaction between two
molecules (docking). FFTW [5] is used in order to speedup this process. A hybrid
version has been developed allowing to execute any of the rotations either on
the CPU or the GPU. NVIDIA’s CUFFT library [2] is used for the GPU. The
changes introduced in the program are minimal since both libraries have almost
the same interface. Although the GPU version runs twice as fast, the difference
with the CPU is not big.

The Parboil Benchmark Suite [1] is a set of benchmarks designed to measure
the performance of a GPU platform. They are available from the Impact Re-
search Group at University of Illinois (UIUC). The benchmarks used here are cp
and sad. cp computes the coulombic potential at each grid point over on plane
in a 3D grid in which point charges have been randomly distributed. sad is used
in MPEG video encoders in order to perform a sum of absolute differences be-
tween frames. While sad performs almost equal on both PEs, cp does so much
more efficiently on the GPU. The application speedup is really large, thus, it is
really crucial to schedule the application to the right PE (the GPU in this case).
Due to some constraints, such as a big memory footprint for some of the others
benchmarks included in the suite, only those two benchmarks have been used
to evaluate the scheduling system. The GPU has a limited amount of memory,
but a recent work proposes an architecture which would remove this constraint
allowing to use virtual memory from the coprocessor (the GPU in this case). [9]

3.2 Experimental Setup

All the experiments have been run on real hardware. A machine with an Intel
Core 2 E6600 processor running at 2.40GHz and 2GB of RAM has been used.
The GPU is an NVIDIA 8600 GTS with 512MB of memory. The operating
system is Red Hat Enterprise Linux 5.

The execution of the benchmarks is organized as combinations of N bench-
marks running in parallel. In order to evaluate the scheduling system, different
values of N have been tried. The amount of memory on the GPU limits how
many processes can be concurrently run on it. Therefore, the values selected for
N are N = {4, 6}. In order to keep experimenting time under reasonable values,
fifteen randomly selected combinations have been chosen from all the possible
permutations. In early tests performed with all the executions it was not possible
to observe any significant change in the results, so the number selected seems a
good compromise between results accuracy and experimenting running time.



As a way to improve results accuracy, experiments are repeated a small num-
ber of times and the results are averaged. The results obtained show that variance
is not very high between executions (< 6% for the prediction-based algorithms).

4 Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

cc
cc

cc
cs

cc
ss

cs
ss

fc
cc

fc
cs

fc
ss ffc
c

ffc
s

fff
c

fff
f

fff
s

ffs
s

fs
ss

m
cc

c
m

cc
s

m
cs

s
m

fc
c

m
fc

s
m

ffc
m

fff
m

ffs
m

fs
s

m
m

cc
m

m
cs

m
m

fc
m

m
ff

m
m

fs
m

m
m

c
m

m
m

f
m

m
m

m
m

m
m

s
m

m
ss

m
ss

s
ss

ss
av

g

S
pe

ed
up

Benchmarks

82

cpu gpu

Fig. 2. CPU versus GPU performance.

Every experiment is composed of the execution of several combinations of
benchmarks. Short names for the benchmark combinations are in the X-axis for
some of the following figures (first letter for every benchmark name is used).

Figure 2 shows the performance obtained when running the combinations
of benchmarks on just the CPU or the GPU. The GPU performs much better
in around half of the cases and slightly better in the rest, with just one case
being the other way around. Considering most of the benchmarks fit quite well
the data-level parallelism paradigm, it is not surprising to see those results.
Although it would be interesting to study the effect of a more balanced set of
benchmarks, where some of the benchmarks performed better in the CPU than
the GPU, this situation is still very interesting for the study. As some of the
benchmarks perform much better on a specific PE, the scheduler must be very
careful about its decisions in order not to damage performance. It will be shown
that by using performance prediction algorithms the risk of scheduling a task on
a very poor performing PE can be greatly reduced.

For the rest of the performance graphs no bar for the CPU is plotted since
its performance is consistently worse than the one for the GPU. Therefore, the
baseline for speedup graphs is the performance of the GPU alone executing the
benchmarks serially (Figure 2). A trivial algorithm like a plain first-free one could



also be used as the baseline as well. However, current systems do not allow the
user to schedule tasks either on the CPU or the GPU, and thus it would not
reflect the real benefit against current ways of CPU/GPU-systems utilization.

In general the benchmarks run using the heterogeneous scheduler achieve a
considerable speedup compared to running them on a single PE. As can be seen
in Figures 3 and 4, the average speedup obtained compared to the baseline is
between 30% and 40% (individual speedups for each combination are averaged
using the harmonic mean). This is obviously a noticeable speedup which confirms
to be worth to consider all the PEs in the system as resources where code can
be scheduled for execution.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

cc
cs

fc
cs

fc
ss ffs
s

fs
ss

m
cc

c

m
cc

s

m
ffc

m
fs

s

m
m

cs

m
m

fc

m
m

ff

m
m

m
f

m
m

m
s

m
m

ss

av
g

S
pe

ed
up

Benchmarks

ff-fifo-gpu
ff-fifo-rrk:1,4

history-gpu
estimate-hist

Fig. 3. Performance speedup for N = 4.

4.1 First-free Algorithms

Figures 3 and 4 show the relative speedup compared to the GPU for two first-
free algorithm variants (ff-fifo-gpu and ff-fifo-rrk:1,4). They work as described in
algorithms 1 and 2 in section 2. In case both PEs are busy, the first algorithm
chooses the GPU, while the second schedules four tasks to the GPU for each one
scheduled to the CPU in a round-robin way.

Despite being considerably simple, these algorithms perform well enough for
some cases, reaching up to a 60% speedup over the baseline for a specific case
(fffffc in Figure 4). However, they are quite sensible to heavily-biased tasks. If a
task performs much better on one PE than in the other ones, scheduling it on
the wrong PE will considerably degrade overall system performance. This can
be seen for instance in Figure 4 for the benchmark combination mmcccs. That
combination contains three times the benchmark cp, which is strongly biased
towards the GPU.



 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

ffc
cs

s

fff
ffc

fff
ss

s

ffs
ss

s

m
ffc

cs

m
ffc

ss

m
fff

cs

m
m

cc
cs

m
m

cc
ss

m
m

fc
ss

m
m

ffs
s

m
m

m
fc

c

m
m

m
ffc

m
m

m
fff

m
m

m
fs

s

av
g

S
pe

ed
up

Benchmarks

ff-fifo-gpu
ff-fifo-rrk:1,4

history-gpu
estimate-hist

Fig. 4. Performance speedup for N = 6.

 0

 10

 20

 30

 40

 50

 60

 70

0 1 2

%
 ti

m
es

Number of tasks waiting

N=4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 1 2 3 4

%
 ti

m
es

Number of tasks waiting

N=6

0.12%

Fig. 5. Task queue usage histogram.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

cp ftdock matmul sad

P
E

 d
is

tr
ib

ut
io

n

Benchmarks

ff-
fif

o-
gp

u

ff-
fif

o-
rr

k

hi
st

or
y-

gp
u

es
tim

at
e-

hi
st

gpu
cpu

Fig. 6. PE distribution for different benchmarks and scheduling algorithms.



As first-free algorithms blindly select a PE without taking into account the
characteristics of the PEs and the task to be scheduled, they eventually schedule
cp to the CPU, resulting in a dramatic loss of performance. This behavior can be
observed in Figure 6, where the distribution of PEs is shown for every benchmark
and scheduling algorithm. The figure shows how few executions of cp are placed
on the CPU. Even such a small percentage can greatly reduce performance, and
if cp is not scheduled to the CPU more times is because by the time cp executions
on the CPU finish, the rest of the benchmarks have already finished, leaving the
GPU free and allowing cp to be scheduled on the GPU the rest of the time.

Nonetheless, despite being ill-suited for workloads with highly-biased tasks,
these algorithms perform quite acceptable in average, reaching around 10%
speedup for N = 4 and 20% for N = 6. Other FF variants have been evalu-
ated but they are not listed here since their performance was typically worse.

4.2 Predictive Algorithms

The algorithms studied here are two: history-gpu and estimate-hist. Both are
based on algorithm 3 described in section 2. They keep the performance history
for every pair (task, PE) in such a way that it is not allowed to schedule a task
on a PE if the performance ratio to all the other PEs is worse than a threshold
θ. Experimentally, the value θ = 5 has been selected.

Both algorithms determine the set of PEs which can be used to schedule a
task, allowedPE . After that, history-gpu looks for the first idle PE in that set and
if there is not such a PE, it selects the GPU as the target. A more fair version
which schedules a task randomly to any of the PEs in allowedPE has also been
evaluated, but the performance was not as good and results are not shown here.

The behavior of estimate-hist after allowedPE has been computed is quite
different. It basically estimates the waiting time in each queue and schedules the
task to the queue with the smaller waiting time (in case both queues are empty it
chooses the GPU). For that purpose the scheduler uses the performance history
for every pair (task, PE) to predict how long is going to take until all the tasks
in a queue complete their execution.

Both algorithms achieve significant speedups compared to the baseline. For
N = 4 estimate-hist has around a 30% speedup and history-gpu obtains a 20%
speedup. Those speedups become bigger when N = 6, reaching almost a 40%
in both cases. As can be seen in the Figures 3 and 4 both algorithms perform
consistently well across all benchmark combinations compared to first-free algo-
rithms. The main reason for that is the proper scheduling of cp to the GPU.
However there seem to be other factors as well, as for some combinations of
benchmarks where cp is not appearing (for instance, mmmfff in Figure 4) these
algorithms, and especially estimate-hist, perform noticeably better than first-free
based ones. The reason for that is that estimate-hist manages to better balance
CPU and GPU task queues. This observation can be seen in Figure 6 where both
predicting algorithms tend to schedule a higher percentage of the total number
of tasks executed on the system to the CPU. Obviously, this is done without
falling into scheduling a strongly-biased benchmark, as cp, to the CPU.



One interesting thing to note is the relatively poor results of estimate-hist
for N = 6, not being able to improve history-gpu performance as much as in
the N = 4 case. Due to the non-deterministic nature of scheduling there may
not be just a single explanation for this effect. However, it has been observed
how the prediction accuracy decreases by more than a 10% when the number of
concurrent tasks increases from N = 4 to N = 6. estimate-hist, having two levels
of predictions, is more affected by this loss of accuracy than history-gpu. In order
to improve the analysis this effect it would be interesting to conduct new tests
on, for instance, quad-core machines where one or two cores can be freed from
executing tasks, thus reducing possible interferences.

4.3 Effect of the Number of Tasks on the Scheduler

The number of simultaneous benchmarks run in an experiment is denoted by the
value of N . As N increases, the number of tasks which compete for execution
raises as well. This effect can be seen in Figure 5, which shows the number of
waiting tasks that are in the queue every time a new task is being scheduled
on a PE. Left graph is for the case where there are four benchmarks running at
the same time, whereas right one depicts the case for six. The number of tasks
waiting at the queues substantially increases from one case to the other because
more processes are simultaneously using the scheduler.

If the number of tasks to be scheduled increases means it is possible to get
closer to fully use all the PEs in the system. Thus, the number of times that the
PEs are idle is reduced. Theoretically this must improve the throughput, as can
be seen in Figures 3 and 4. When running four benchmarks a speedup of around
30% is achieved, whereas for the case of six the speedup is around 40%.

However, increasing the number of tasks increases the pressure on all the PEs.
While on the GPU only tasks are being run, on the CPU parts of the benchmarks
not corresponding to tasks and other processes such as Linux system processes
are run at the same time as well. Increasing the number of tasks running on
the CPU leaves less processing power for non-task parts and in some cases the
overall performance may degrade.

In the future, and especially considering new processors with 4 and 8 cores,
it may be worth reserving some cores for non-task computations, in order to
decrease the interferences between task execution and other processes.

5 Related Work

Job and resource scheduling is a vastly explored topic. However, it seems just
a few studies target scheduling for heterogeneous architectures. It is true that
heterogeneity has been present in many scheduling studies, but it was mainly
from the perspective of distributed and grid systems. The area of scheduling for
heterogeneous architectures (i.e., within a single machine) is relatively new and
has not been studied in detail yet. Some of the few papers on this topic [12, 19]
also agree on this lack of studies.



Scheduling for heterogeneous distributed systems is somehow similar to the
problem being dealt here. PEs across different machines or within a single ma-
chine are heterogeneous and thus, they present different performance character-
istics. However, in the case of distributed systems, the scheduling is burdened
with many more complexities such as interprocessor communication (typically
done across some kind of external network), distributed management and vari-
ant amount of computing resources (some resources may disappear suddenly,
whereas others can turn up). [18, 3]

Most of the studies related to heterogeneous distributed systems propose
new scheduling algorithms in order to improve the performance through job
and resource allocation. They mathematically represent a program as a graph
where every node is a task which can be mapped on a PE. Tasks which depend
on each other are connected in the graph with the edge weight meaning the
communication cost. The list of nodes is generated at compile time and the cost
of running tasks on every PE is known in advance. Some relevant works on this
area are [20, 11, 14, 15]. However, communication cost in heterogeneous multicore
systems is several orders of magnitude smaller than in distributed systems.

A few papers [12, 19] do study the effect of scheduling for heterogeneous ar-
chitectures. Similarly to the schedulers for distributed systems, programs are also
represented as graphs with nodes corresponding to tasks in the program using
information known a priori. In order to conduct performance measurements they
mainly use random graphs as the input for the scheduler. This is one of the main
differences compared to this work, where all the measurements are conducted
on real hardware with a real software implementation and real applications.

In [4] a runtime scheduling system for the IBM Cell processor which eases
application partitioning among different PEs is presented. However, in that work
the heterogeneous architecture is viewed in the common way where the copro-
cessors are responsible for executing the computationally expensive parts while
the main PE is just used to control the coprocessors.

As far as the authors know, this is the first work which deals with scheduling
for a heterogeneous architecture using a real implementation and considering
the system as a pool of PEs, being able to schedule tasks to any PE.

Initially a set of “classical” scheduling algorithms have been used. FF (first-
free), FCFS (first come, first served), SJF (shortest job first) and RR (round-
robin) are very well-known algorithms. Because of its simplicity and its relatively
good performance, several variations of the FF algorithm have been tested in
this study. It is difficult to track down the origin of those algorithms, so the
reader is referred to Tanenbaum’s work [17] for their description.

6 Conclusions and Future Work

This work shows how using a predictive scheduler for a CPU/GPU-like hetero-
geneous architectures can improve overall system performance. By adaptively
scheduling versioned functions at run-time we can obtain speedups as high as
40% on average compared to perform the computation serially on the GPU.



Some specific applications achieve a large speedup when executed on a data-
processing architectures such as a GPU. For these applications, with speedups
over 100X, it may not be worth to execute computationally expensive parts
of them on the CPU. However, as this study demonstrates, there are other
applications which can greatly increase performance by using a system like the
one presented here.

Different kinds of scheduling algorithms have been tried. first-free-based ones
perform noticeably well for some cases; however they fail to do so for biased com-
putations where one PE performs much better than the others. Performance
predicting algorithms, being able to avoid these cases and better balancing the
system load, perform consistently better. We intend to study new algorithms in
order to further improve overall system performance. Additionally, other bench-
marks with different characteristics will be also tried. We expect that with a
more realistic set of benchmarks (not only GPU-biased) the benefits of our sys-
tem would be increased.

The results show how the tasks can receive interferences from other compu-
tation occurring in the system. Exploring how the number of cores present in the
CPU affect that interference is an interesting future work. Additionally, a way
to couple (or even merge) the scheduler presented here with the OS scheduler
can greatly help to increase performance.

Finally, we plan to consider different program inputs and analyze their in-
fluence on predictive scheduling and run-time adaptation. We plan to use and
extend techniques such as clustering [10], code versioning and program phase
runtime adaptation [6, 7] to improve the utilization and adaptation of all avail-
able resources in the future heterogeneous computing systems.

Acknowledgements

This work has been supported by the European Commission in the context of
the SARC Integrated Project (EU contract 27648-FP6), the HiPEAC European
Network of Excellence and the Ministry of Science and Technology of Spain and
the European Union (FEDER) under contract TIN2007-60625.

References

1. Parboil benchmark suite. http://www.crhc.uiuc.edu/impact/parboil.php.
2. CUDA Programming Guide 1.1. NVIDIA’s website, 2007.
3. Rosa M. Badia, Jesús Labarta, Raúl Sirvent, Josep M. Pérez, José M. Cela, and

Rogeli Grima. Programming grid applications with grid superscalar. J. Grid
Comput., 1(2):151–170, 2003.

4. Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Cellss: a
programming model for the cell be architecture. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, New York, NY, USA, 2006. ACM.

5. Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. special issue on ”Program Genera-
tion, Optimization, and Platform Adaptation”.



6. Grigori Fursin, Albert Cohen, Michael O’Boyle, and Oliver Temam. A practical
method for quickly evaluating program optimizations. In Proceedings of the 1st In-
ternational Conference on High Performance Embedded Architectures & Compilers
(HiPEAC 2005), number 3793 in LNCS, pages 29–46. Springer Verlag, November
2005.

7. Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen, and Olivier
Temam. Practical run-time adaptation with procedure cloning to enable continu-
ous collective compilation. In Proceedings of the GCC Developers’ Summit, July
2007.

8. Henry A. Gabb, Richard M. Jackson, and Michael J. Sternberg. Modelling protein
docking using shape complementarity, electrostatics and biochemical information.
Journal of Molecular Biology, 272(1):106–120, September 1997.

9. Isaac Gelado, John H. Kelm, Shane Ryoo, Steven S. Lumetta, Nacho Navarro, and
Wen mei W. Hwu. Cuba: an architecture for efficient cpu/co-processor data com-
munication. In ICS ’08: Proceedings of the 22nd annual international conference
on Supercomputing, pages 299–308, New York, NY, USA, 2008. ACM.

10. David J. C. Mackay. Information Theory, Inference & Learning Algorithms. Cam-
bridge University Press, June 2002.

11. Muthucumaru Maheswaran and Howard Jay Siegel. A dynamic matching and
scheduling algorithm for heterogeneous computing systems. In HCW ’98: Proceed-
ings of the Seventh Heterogeneous Computing Workshop, page 57, Washington,
DC, USA, 1998. IEEE Computer Society.

12. Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous pro-
cessors. In Euro-Par, Vol. II, pages 573–577, 1996.

13. Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded gpu using cuda. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel program-
ming, pages 73–82, New York, NY, USA, 2008. ACM.

14. G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib.
Syst., 4(2):175–187, 1993.

15. H.S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
Software Engineering, IEEE Transactions on, SE-3(1):85–93, Jan. 1977.

16. John Stratton, Sam Stone, and Wen mei Hwu. Mcuda: An efficient implementation
of cuda kernels on multi-cores. Technical Report IMPACT-08-01, University of
Illinois at Urbana-Champaign, March 2008.

17. Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

18. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006.

19. H. Topcuoglu, S. Hariri, and Min-You Wu. Task scheduling algorithms for het-
erogeneous processors. Heterogeneous Computing Workshop, 1999. (HCW ’99)
Proceedings. Eighth, pages 3–14, 1999.

20. H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and Distributed
Systems, IEEE Transactions on, 13(3):260–274, Mar 2002.

21. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing, 27(1–2):3–
35, 2001.


