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Nowadays, the establishment of new noise abatement procedures is one of the main

issues that airport authorities have to address. As a continuation of previous studies, the

authors present in this paper a strategy for designing such procedures aimed at reducing

the global annoyance perceived for the population living around the airports. Noise optimal

departing routes are computed for a specific aircraft type and for a given scenario. This

non-linear multi-objective optimal control problem is solved by using lexicographic and

hierarchical optimisation techniques. This approach establishes a hierarchical order among

all the optimisation objectives, which in this work are set as the maximum perceived noise

levels at different noise sensitive locations. If the prioritisation that should be adopted is not

clear, this work presents two techniques aimed at obtaining the best solution according to

an equitable principle, based on minimising the worst case noise annoyance. First approach

requires a high computational cost, but the best trajectory is obtained, being the opposite

case for the second technique, which is based on heuristics.

Nomenclature

Ca airliner cost
~r position vector
χ aerodynamic yaw angle
e eastwards position
γ aerodynamic pitch angle
h height
hc thrust cutback height
Ji objective function i
µ aerodynamic bank angle
n northwards position
nz vertical load factor
~p parameters vector
~x state vector
~z decision variables vector
s procedure design gradient
t time
t0 initial time
tf final time
~u control vector
v true airspeed
v2 minimum climb safe speed
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I. Introduction

The design of noise abatement procedures, aimed at reducing the noise exposure of the population around
airports, is one of the main issues that airport authorities and national navigation services providers have to
address. National navigation services providers are responsible for designing these kinds of procedures, taking
into account several factors such as obstacle clearance, airport and air traffic management issues, separation
criteria, etc. In addition, the aforementioned procedures could be designed to mitigate the aircraft noise over
sensitive locations around the airports. In this context, the horizontal flight path may be designed to avoid
over-flying sensible locations and the vertical path may be specified by scheduling different speed and/or
thrust profiles.

The International Civil Aviation Organisation (ICAO) publishes two different Noise Abatement Depar-
ture Procedures (NADP).1 NADP are generic procedures and are far from being the optimum ones regarding
noise minimisation. This is due to several factors, such as the impossibility to define a general procedure
satisfying the specific problems that may affect each particular airport, air traffic management and airport
capacity constraints or even the limitations of nowadays on-board technology. Nevertheless, some works in
theoretical optimal trajectories, minimising the noise impact in departure or approaching procedures, are
done at research level. In previous works,2,3 the authors presented a optimisation framework where noise op-
timal departing routes were computed for a specific aircraft type and for a given scenario. Similar approaches
can be found in the literature, like for example the studies made by Visser et al.,4–7 Atkins and Xue8,9 and
Clarke et al.10,11 All the results and conclusions arisen from these works are encouraging and will set the
basis for new noise abatement procedures, specially regarding the forthcoming of new navigation concepts,
such as area navigation (RNAV) or Performance Based Navigation (PBN). These concepts will allow for
air navigation procedures to be designed with a higher level of flexibility than conventional radionavigation
ones.12

A common issue when dealing with this kind of trajectory optimisation problems is that several criteria
may be satisfied at the same time. These criteria, which are the noise or noise annoyance at different
locations around the airport, are usually not compatible since the trajectory that optimise one criterion
may be completely different from the trajectory optimising another one. Thus, one has to deal with multi-
objective optimisation techniques in order to identify the absolute optimal trajectory among all the local
ones by comparing a certain global performance index. In this work it is presented a strategy that uses
lexicographic and hierarchical optimisation techniques aimed at finding the best trajectory minimising the
noise at the worst sensitive location.

Section II of this paper presents briefly the optimisation problem that is considered. A multi-objective
optimal control problem is formulated and, in section III the lexicographic and hierarchical optimisation al-
gorithms are presented. Finally, section IV presents an application example of these optimisation techniques.

II. Statement of the problem

In this section, the optimisation problem is presented as well as all involved equations that define the
optimisation criteria and constraints. For a more detailed description of this problem, please refer to Ref. 2.

A given airport with its surrounding cartography, geography and meteorological data, defines a scenario
that will be used to compute a given noise nuisance in function of the emitted aircraft noise along its
trajectory. This value, together with some airliner economic considerations, will define one or several optimi-
sation criteria. Then, an optimisation algorithm will compute the best departing or approaching trajectory
minimising these criteria and satisfying a set of trajectory constraints which, in turn, will depend on the
dynamics of the aircraft, navigation constraints and specific airspace configurations.

The optimisation process can be formally written as a constrained multi-objective optimal control problem
in a given time interval. Let ~x(t) ∈ R

nx be the state vector describing the trajectory of the aircraft over
the time t, ~u(t) ∈ R

nu the control vector that leads to a specific trajectory and ~p ∈ R
np a set of control

parameters not dependent on t. The goal is to find the best trajectory that minimises a given set of
optimisation objectives (or criteria) ~J ∈ R

nj . Namely:

min
~z∈Z

~J(~z) = min
~z∈Z

[J1(~z), J2(~z), · · · , Jnj
(~z)] (1)

where Z ⊆ R
nx+nu+np+1, is the admissible set of decision variables ~z = [~x(t), ~u(t), ~p, tf ]

T
, and Ji(~z) are
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scalar valued functions representing each individual criterion or objective.

A. Optimisation criteria

In this work, the maximum perceived sound level received at each given location (Lmax) is used as noise
nuisance criterion in the optimisation process. To compute noise functions the same methodology employed
by the Integrated Noise Model (INM)13 program is implemented. In addition, airliner cost and Air Traffic
Management (ATM) efficiency are taken into account when designing aircraft trajectories. In this context,
Fuel and/or Time spent during the trajectory may be considered as optimisation objectives too. However,
it would be incomplete to consider only these magnitudes regardless of the altitude achieved at the end of the
procedure h(tf ). Reaching a low final altitude would lead to small time or fuel consumption figures during
the departure but the consumption would increase in the following phase, when trying to gain the altitude
required to reach the optimal cruise flight level.

Current Flight Management and Guidance Systems (FMGS) equipping a wide number of aircraft deal
with a compound cost function which involves fuel and time consumption during the flight. A cost index
parameter (CI) relates the cost of time delay to the price of the fuel and its value is carefully chosen by the
operator prior to each flight. Following the same philosophy, an Height Index (HI) is proposed in this work
in order to take into account the final altitude achieved at the end of the departing trajectory. Then, an
airliner cost compound function is defined as:

Ca = Fuel + CI · Time−HI · h(tf ) (2)

where, by definition, CI > 0 and HI > 0.

B. Constraints

In order to guarantee a feasible and acceptable trajectory as a result of the optimisation process presented
above, several constraints must be taken into account, leading to the definition of the admissible set of
decision variables Z.

1. Dynamics of the aircraft

Aircraft dynamics are described by a set of differential equations:

d~x(t)

dt
= ~f [~x(t), ~u(t), ~p] (3)

where ~f contains the equations of motion corresponding to a general non-linear aircraft model.14 State
vector is defined in this work as:

~x(t) = [v(t) χ(t) γ(t) n(t) e(t) h(t)]
T

(4)

being v(t) is the module of the relative air to aircraft velocity, also known as True Airspeed (TAS), χ(t)
is the aerodynamic yaw angle and γ(t) is the aerodynamic pitch angle, also known as Flight Path Angle

(FPA). Vector ~r(t) = [n(t) e(t) h(t)]
T

represents the aircraft centre of mass position, being n(t) and e(t) the
Northwards and Eastwards distances, respectively, from a arbitrary chosen origin and h(t) the height above
the runway.

On the other hand, the control vector is defined as:

~u(t) = [nz(t) µ(t)]
T

(5)

being nz(t) the vertical load factor and µ(t) the aerodynamic bank angle.

2. Event constraints

In a departure procedure, the horizontal final coordinates, namely n(tf ) and e(tf ), are fixed and chosen by
the procedure designer. The altitude at this final point is not usually fixed, but is constrained to be higher
than a minimum safe altitude hmin

f and lower than a maximum altitude hmax
f , due to air traffic management

criteria.
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The initial take-off phase going from ground level to a height 400 ft will not be considered in the opti-
misation process since the standard operational regulations1,15 almost restrict all degrees of freedom during
this particular phase. In this initial phase the aircraft follows a straight trajectory, following the departing
runway heading, at a constant speed (usually v2 or slightly above), which depends on the aerodynamics and
the actual weight of the aircraft. For this problem, and for the sake of simplicity, initial horizontal coordi-
nates are set to zero at the point where the aircraft reaches a height of 400 ft above the runway. Moreover,
during a normal take-off, the landing gear has been completely retracted when passing 400 ft so it is not
considered in the simulations. Taking all these considerations into account, end point constraints are fixed
to known values as follows:

v(t0) = v2 χ(t0) = χ
RW Y

γ(t0) = γ2

n(t0) = 0 e(t0) = 0 h(t0) = 400 ft

n(tf ) = nf e(tf ) = ef hmin
f ≤ h(tf ) ≤ hmax

f

(6)

Here, γ2 is the flight path angle that results when the aircraft is flying at v2 speed while applying Takeoff–
Go Around thrust settings.

3. Path and Box constraints

Due to ATM reasons, a departing trajectory must be contained inside a specific airspace area in order to
guarantee a safe minimum separation with other existing procedures in the area. Mathematically speaking,
the area of admissible trajectories can be defined by:

~ψL ≤ ~ψ (~x(t)) ≤ ~ψU (7)

Functions ~ψ and bounds ~ψL and ~ψU represent all the possible restrictions in the airspace where the
departure takes place.

In addition, and for operational reasons, it is enforced that the speed and altitude of the aircraft should
not decrease during the whole departure procedure. Moreover, a minimum procedure design gradient (s)
must be guaranteed. ICAO Document 81681 specifies a default gradient of s = 3.3%, which can be higher
for obstacle clearance reasons. The value of s will be chosen in function of the scenario and the aircraft
operator. Namely:

dv

dt
≥ 0 ;

dh

dt
≥ 0 ; h ≥ h(t0) + s

√

n2 + e2 (8)

Finally, some state and control variables should be bounded in order to ensure existing operational or
safety requirements for a given aircraft. Therefore, the following constraints are defined:

v2 ≤ v(t) ≤ vmax

0.85 ≤ nz(t) ≤ 1.15

−25o ≤ µ(t) ≤ 25o

244m ≤ hc ≤ 1000m

(9)

The load factor (nz), bank angle (µ) and maximum thrust cutback height (hc) bound values correspond
to typical values applied by aircraft operators. For noise abatement, the thrust cutback height should be
greater than 800 ft.1

C. Numerical solution of the optimisation problem

The optimal control problem described above, which contains differential and algebraic constraints, is trans-
formed in two steps into a non linear programming (NLP) problem with only algebraic constraints. First,
differential equations (3) are written in its equivalent integral form:

~x(t) = ~x(t0) +

∫ t

t0

~f(~x(τ), ~u(τ), ~p) dτ (10)
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Figure 1. Graphical example of the Pareto front for a hypothetical optimisation problem with two criteria

Then, equation (10) is discretised using a sampling time ∆t = tn+1 − tn where tn+1 and tn are two
consecutive time instants using an explicit numerical integration rule to approximate the above integral, as
Euler or Runge-Kutta. For example, in case of using the Euler rule, the following equivalent discrete-time
form is obtained:

~x(k + 1) = ~x(k) + ∆t · ~f(~x(k), ~u(k), ~p) (11)

Once the problem is formulated as a NLP, it can be solved using a commercial optimisation software.
In this paper, the General Algebraic Modelling System (GAMS)a is the optimisation package used to code
and solve the NLP problem. The numerical optimisation method used to solve the problem is a generalised
reduced gradient search,16 implemented in the NLP solver CONOPTb available in the GAMS optimisation
package, which can cater for the nonlinearities of the performance index and constraints.

The CONOPT optimisation algorithm starts by finding a feasible solution; then, an iterative procedure
follows, which consists of:

• finding a search direction, through the use of the Jacobian of the constraints, the selection of a set of
basic variables and the computation of the reduced gradient.

• performing a search in this direction, through a pseudo-Newton process until a convergence criterion
is met.

A detailed description of the CONOPT algorithm and its implementation may be found in17 and in the
manuals available at the GAMS web page.

ahttp://www.gams.com
bwww.aimms.com/aimms/product/solvers/conopt.html
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III. Multi-objective optimisation

A solution ~z∗ of the multi-objective optimisation problem, presented in equation (1), is said to be Pareto
optimal iff there does not exist another ~z ∈ Z such that Ji(~z) ≤ Ji(~z

∗) for all i = 1, · · · , nj and Jj(~z) < Jj(~z
∗)

for at least one index j. In other words, a solution is Pareto optimal if and only if an objective Ji(~z) can be
reduced only at the expense of increasing at least one the other objectives. In general, there may be many
Pareto optimal solutions to an optimisation problem.

Scalarisation is a common approach to solving such multi-objective optimisation problems and, therefore,
a technique to choose a solution among all Pareto optimal ones. This means converting the problem into
a single objective optimisation problem with a real-valued objective function, termed as the scalarising
function, depending on some parameters. One of the most used strategies to obtain a scalar objective
function is to form a linearly weighted sum of the functions Ji:

min
~z∈Z

[J1(~z), J2(~z), · · · , Jnj
(~z)] = min

~z∈Z

nj
∑

i=1

wiJi(~z) (12)

The priority of the objectives are reflected by the weights wi, but choosing their value is not always a
straightforward task. Although this type of scalarisation is widely used, it has serious drawbacks associated
with it.18

In general, the most obvious problem with weighted formulae is the ad-hoc setting of the weights. This
setting is based either on a somewhat vague intuition of the user about the relative importance of different
quality criteria or in several trial and error experimentation with different weighting values. Another prob-
lem with weights is that, once a formula with precise values of weights has been defined, the optimisation
algorithm will be effectively trying to find the best model for that particular setting of weights, missing the
opportunity to find other solutions that might be actually more interesting to the user, and representing
a better trade-off between different quality criteria. In particular, weighted formulae, involving a linear
combination of different criteria, have the limitation that they cannot find solutions in a non-convex region
of the Pareto front.18 This problem is particularly serious when the weighted formula involves a summa-
tion/subtraction (rather than a multiplication/division) of terms representing different magnitudes, often
with very different scales in their units of measurement. This can be dealt by normalising the different qual-
ity criteria so that they refer to the same scale. This approach is well-known in the literature and at a first
glance it is a very satisfactory approach. There is, however, a subtle problem associated with normalisation
that is rarely discussed in the literature: in general there are several different ways of normalising, and the
decision about which normalisation procedure should be applied tends to be ad-hoc as well.

A. Lexicographic optimisation

In the present work a different multi-optimisation technique is proposed with the purpose of avoiding the
problems of the weighting approach based on lexicographic optimisation. This technique establishes a hier-
archical order among all the optimisation objectives, named lexicographic order, from the most important
J1 to the least important Jnj

. A given ~z∗ ∈ Z is a lexicographic minimiser of equation (1) iff there does not
exist a ~z ∈ Z and a j satisfying Jj(~z) < Jj(~z

∗) and Ji(~z) = Ji(~z
∗) for all i = 1, · · · , j − 1. An interpretation

of this definition is that a solution is a lexicographic minimum iff an objective Ji can be reduced only at the
expense of increasing at least one of the higher-prioritised objectives {J1, ..., J(i−1)}. Hence, a lexicographic
solution is a special type of Pareto-optimal solution that takes into account the order of the objectives. This
hierarchy defines an order on the objective function establishing that a more important objective is infinitely
more important that a less important objective.

A standard method for finding a lexicographic solution is to solve a sequential order of single objective
constrained optimisation problems. After ordering, the most important objective function is minimised,
subject to the original constraints. If this problem has a unique solution, it is the solution of the whole
multi-objective optimisation problem. Otherwise, the second most important objective function is minimised.
Now, in addition to the original constraints, a new constraint is added to guarantee that the most important
objective function preserves its optimal value. If this problem has a unique solution, it is the solution of the
original problem. Otherwise, the process goes on iteratively. More formally, the lexicographic minimum of
equation (1), lex min

~z∈Z

~J(~z), can be found by using the following algorithm:

6 of 14

American Institute of Aeronautics and Astronautics



Algorithm 1 Lexicographic multi-objective optimisation

1: J∗
1 = min

~z∈Z

[J1(~z)]

2: for i = 2 to nj do

3: J∗
i = min

~z∈Z

[

Ji(~z)|Jj(~z) ≤ J∗
j , j = 1, ..., i− 1

]

4: end for

5: Determine the lexicographic minimiser set as:
~z∗ = arg(J∗

nj
)

Lexicographic optimisation permits to sort a priori the different optimisation criteria according to its rel-
ative importance. This method has shown several benefits in front of the classical weighting methodology19,20

and has been started to be widely used in control engineering applications.21–23

B. Establishing the lexicographic order

In case the procedure designer in charge of publishing such a departure trajectory (i.e. the decision maker
of this optimisation process) has a clear idea of what prioritisations should give to each location, maybe
influenced by some political reasons, the use of the lexicographic approach is straighforward. In that case,
previous algorithm leads to the best trajectory according to the desired hierarchy. However, in the case
where this prioritisation is not clear, or when a more accurate scenario study is necessary, priorities should
be inferred in some way.

One possible naive way, would consist in determining the prioritisation that optimises a performance index
aimed at choosing the best trajectory among all the possibilities. One possible performance index is to select
the prioritisation that minimises the maximum annoyance (equitable solution) in all the annoyance control
points by running all optimisations considering all possibilities in the prioritisation order. More formally,
let J∗

i be the minimum annoyance that can be achieved at sensitive location i (i.e. when location i is in the
first priority). Let JP

i be the annoyance at location i reached with the optimal trajectory corresponding to
priority P . For each priority P a performance factor ∆P can be defined as:

∆P = max
i

(JP
i − J∗

i ) (13)

Then, the best trajectory, ~z∗ corresponds to the priority minimising this performance factor ∆P :

~z∗ = arg(min
P

(∆P )) (14)

However, the number of different prioritisations is nP = nj !, where nj is the total number of noise sensitive
locations, what makes this approach prohibitive in real situation. Alternatively, a iterative approach can be
used such that the lexicographic order is determined by fixing one by one the lexicographic priority orders
of the objectives.

The following heuristic rule suggested by Luss24 can be used to determine dynamically the lexicographic
order in which the objectives should be minimised: the first objective in the lexicographic order becomes that
one that minimises the worst-case noise annoyance in any location. Once determined the first objective by
solving an mono-optimisation problem using each time only one objective, this objective is fixed by imposing
as a restriction that its value should always be less or equal to the optimal value found. Then, a set of
mono-optimisation problems using the remainder objectives are run. From the results, the second objective
in the lexicographic prioritisation minimised is fixed to the one that minimises the worst-case noise at the
remaining locations maintaining the optimal level fixed for the first objective. This procedure is repeated
iteratively until the lexicographic order of the whole set of objectives is set. As recognised in Ref. 24, this
heuristic approach in general does not lead to the best solution (the equitable solution) provided by the
exhaustive search approach, however the solution obtained is not far and provides a good compromise with
respect to the computation time saved.

C. Hierarchical lexicographic optimisation

The previous lexicographic approach with priority discovering can be further elaborated by taking into
account that using either the exhaustive lexicographic search approach or the heuristic method proposed in

7 of 14

American Institute of Aeronautics and Astronautics



-4000

 0

 4000

 8000

 12000

-8000 -4000  0  4000  8000

N
or

th
 (

m
)

East (m)

1

2

3

4

5

lexicographic
hierarchical

Figure 2. Horizontal track for the lexicographic and hierarchical optimal trajectories satisfying the equitable

criteria

the previous section, there is no guarantee that in general the best solution based on the minimisation of
the worst-case annoyance is achieved. This is due to using previous approaches only a subset of solutions
of the Pareto optimal frontier are explored. To guarantee that the best solution is found the whole set of
solutions in the Pareto optimal frontier should be considered. However, this is again prohibitive from the
computational point of view. Alternatively, ǫ-constraint method proposed in Miettinen18 can be used coupled
to the exhaustive or heuristic lexicographic order search method. Such improvement consist in accepting
an ǫ degree of relaxation in the optimal objectives fixed as a constraints in the lexicographic optimisation
process. Varying the ǫ degree in a range the exploration of the Pareto optimal frontier is achieved and the best
solution based on on the minimisation of the worst-case annoyance is achieved. Lexicographic optimisation
using ǫ-relaxation is know in the literature as hierarchical optimisation. To exemplify graphically the benefits
of using this hierarchical approach the reader is referred to the Figure 1 where a simple case with only two
optimisation criteria (J1 and J2) is shown. This figure represents all the possible combination of values
that both objective functions can take. The admissible set of solutions is enclosed in the area Z. Point
A represents the ideal or utopic solution, where the absolute minimum value for both objectives would be
obtained. This point typically falls out of the admissible set of solutions and the decision maker has to choose
a point among the infinite Pareto-optimal solutions, which in this figure are represented by a thick line. Red
lines represent the mono-objective optimums for each criteria and when using a pure lexicographic approach,
Pareto Optimal solutions B and C are obtained using, respectively J1 and J2 as the highest priority criteria.
Points D and F shows that using ǫ-relaxation (hierarchical optimisation) with two different ǫ better results
for J1 are obtained. Points E and G shows the same for objective J2.

IV. Numerical example

In this section, some results are shown that exemplify the method presented above applied to an hypo-
thetical airport scenario where a departure route may be optimised.
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Figure 3. Lexicographic and hierarchical optimal trajectories satisfying the equitable criteria

A. Scenario description

Table 1 summarises the data that define this scenario. In addition, being all trajectories below 10000 ft
maximum airspeed becomes vmax = 250Kt.1 The chosen aircraft model corresponds to the Airbus A340-600
equipped with Trent 556 engines and operating at its Maximum Take-off Weight, (m = 368000 kg). Take-off
is supposed to be performed with CONF3 flaps/slats configuration.

Table 1. Scenario definition data

Scenario parameter Value

Departing runway heading 135o

Minimum climb gradient 3.3%

Initial point coordinates [0, 0]m

Final point coordinates [11500,−7000]m

Minimum height at final point 4000 ft

Maximum height at final point 10000 ft

Cost Index (CI) 70

Height Index (HI) 0.5

Local wind 0 kt

Ambient noise at all locations 50 dB(A)

Five different noise sensitive locations have been located in the vicinity of the departing runway. Table
2 contains the coordinates at each different noise sensitive location.

Table 2. Noise sensitive locations

Sensitive location North coordinate East coordinate

Location 1 0m 3000m

Location 2 −2000m 6000m

Location 3 6000m 4000m

Location 4 3000m 1000m

Location 5 9000m −2000m
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Figure 4. Optimal trajectories corresponding to all possible prioritisations in the lexicographic/hierarchical
ordering

B. Lexicographic solution

In this example, the number of different noise sensitive locations is nj = 5 and the total number of different
prioritisations is then nj ! = 120. The lexicographic solution for this problem has been obtained independently
by using either the exhaustive and heuristic methods described in section III.B. Algorithm 1 is slighly
modified taking into account the effect of ambient noise: when the optimal value in a given location is lower
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Figure 5. Optimal trajectories corresponding to all possible prioritisations in the lexicographic/hierarchical
ordering

than the ambient noise, noise restriction at this location becomes the ambient noise value itself. In addition,
when algorithm 1 is finished, i.e. the 5 lexicographic steps are completed, an additional lexicographic
optimisation is run minimising this time the airliner cost Ca and maintaining all previous noise restrictions.

1. Exhaustive lexicographic search

Figure 2 shows, in red, the optimal lexicographic trajectory obtained for this particular scenario. This
trajectory starts with a short straight segment continuing with the initial runway heading followed by a left
turn. This turn produces a trajectory that avoids over-flying noise sensitive location number 2, producing
a maximum noise level of 50 dB(A) in this location. Being this value the ambient noise considered for this
example, this means that this trajectory is not producing any noise disturbance at all at location number 2.
On the other hand, the maximum noise produced at first location is 65.2 dB(A). The trajectory continues by
passing someway in between locations 3 and 4, producing a maximum noise of 50.0 dB(A) and 57.4 dB(A)
respectively. Finally, another curved segment allows the aircraft to fly far enough from location 5 producing
50.0 dB(A) in this location.

Vertical and speed profiles for this trajectory are also shown, in figures 3 a) and b) respectively. The
trajectory continues with the initial climb at v2 = 180Kt followed by a small acceleration segment starting
at about 1230 ft. In this flat segment, speed reaches 198 Kt, allowing to retract the flaps and slats to CONF
2 configuration. Then, a second climb is started at constant speed until reaching 1650 ft where a second
acceleration segment takes place leaving the aircraft in CONF 1 configuration and accelerating to 245 Kt.
At this constant speed, the final climbing segment takes place reaching 5000 ft at the end of the trajectory.

In Table 3 are found the noise values at each location for this lexicographic optimisation trajectory. First
line of the table contains the utopian set of optima, i.e. the absolute best noise values that can be achieved
at each different location by running 5 independent mono-objective optimisations. In this particular case
prioritisation 2–5–3–1–4 turns to be the most equitable solution according to equation (14). In this context,
the worst location is location number 1, where the difference between its utopian value and the actual
value for this multi-objective trajectory is 10.7 dB(A). Figure 4 a) shows all the 120 lexicographic optimal
trajectories corresponding to the exhaustive search. As it can be seen, several prioritisations lead to the
same final trajectory meaning that in some cases two or more prioritisations are equivalent.

2. Heuristic method

Prioritisation 1–2–3–5–4 is found as a result of the heuristic method, where the best lexicographic ordering is
found iteratively. Table 3 contains the noise values at each location. As it can be seen, for this prioritisation
the worst case is in location number 2 where the difference between the best one can achieve there and the
actual value is 20.6 dB(A). As expected, the solution obtained by using this heuristic method differs from
the solution obtained by comparing all possible prioritisations. Prioritisation 1–2–3–5–4 turns to be the 30th
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Figure 6. Best worst-case performance index (min
P

(∆P )) for the exhaustive and heuristic hierarchical optimi-

sation optimal solutions in function of the tolerance value ǫ

Table 3. Utopian and different multi-objective optimal values at all noise sensitive locations

Optimisation method J1 J2 J3 J4 J5 min
P

(∆P )

Independent mono-objective (utopian) 54.5 50.0 50.0 50.0 50.0 –

Lexicographic–exhaustive (ǫ = 0) 65.2 50.0 50.0 57.4 50.0 10.7

Lexicographic–heuristic (ǫ = 0) 54.6 70.6 57.1 55.3 50.0 20.6

Hierarchical–exhaustive (ǫ = 7.8%) 58.7 54.2 54.0 54.3 50.0 4.2

Hierarchical–heuristic (ǫ = 7.8%) 58.9 54.6 54.0 54.1 50.0 4.6

best trajectory among all 120 possibilities. As explained before, this method does not guarantee to find
the best equitable solution, but the gain in computational cost is very significant being the sole practical
methodology when nj is high (above 7 or 8). However the advantage of using the heuristic method is much
more important when the hierarchical optimisation idea is applied, as it is explained in the next section.

C. Hierarchical optimisation

The same scenario presented above is solved now by using the hierarchical optimisation method, where
the lexicographic technique is applied by allowing a relaxation of ǫ% in the higher-priority constraints. In
this example the exhaustive and heuristic methods have been tested for different values of ǫ ranging from
0 % (pure lexicographic, as seen before) to 30 % at regular intervals of 0.5 %. Figure 6 show, in red, the
best worst-case performance index, according to equation (14), for each ǫ values. After a second round of
optimisations, with smaller ǫ intervals, it turns that ǫ = 7.8% provides with the best worst-case performance
index, i.e. with the most equitable solution. Table 3 contains the noise values at each location for this optimal
trajectory. This time, noise locations number 1 and 2 share the worst case, but thanks to the relaxation
that the hierarchical optimisation technique introduces, the difference between the utopian al value at these
locations and the actual values are only 4.2 dB(A) in both cases. This is because the trade-off that exist
now between all the optimisation criteria. Compared with the lexicographic method it can be seen that a
small noise increase at locations 2 and 3 allows to reduce significantly the noise produced at location 1.

Figures 2 and 3 show, in blue, the resulting trajectory for this hierarchical optimisation. Finally, figures
4 a) to f) and figure 5 a) and b) show all 120 possible prioritisations in function of different ǫ values. As it
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can be seen, as ǫ approaches its optimal value of 7.8% all different trajectories converge to a single one. This
means that when moving around the optimal value all the trade-offs between the optimisation criteria that
are established thanks to the ǫ tolerances lead to the same point in the Pareto front. In the two dimensional
example shown in figure 1 that particular case would be when ǫ2 value in the figure leads that F and G
points turn to be the same, meaning that the hierarchical solution is the same regardless of the prioritisation
chosen. This behaviour is particularly advantageous when using the hierarchical heuristic method. As it
was explained before, this method has the advantage of being much more computational friendly but it is
not guaranteed that the most equitable solution is obtained by using it. When using the ǫ relaxations the
convergence of all possible trajectories to a single one allows the solution obtained with the heuristic method
to be closer to the actual solution. This behaviour can be seen in figure 6 where for each ǫ value the best
worst-case performance index is plotted. Red values correspond to the exhaustive method and green ones
to the heuristic method. As it can be seen, around the optimal value of 7.8 % the difference between both
methods becomes minimal (see Table 3).

V. Conclusion

Two approaches, based on lexicographic and hierarchical optimisation techniques, are presented in this
paper. They are aimed at designing new noise abatement departure procedures where noise optimal departing
routes are computed for a specific aircraft type and for a given scenario. Thus, a non-linear multi-objective
optimal control problem is solved. First technique is an exhaustive search among all possible lexicographic
or hierarchical solutions, requiring high computational costs. A second approach is presented by using an
heuristic determination of the best lexicographic or hirerchical order. When pure lexicographic case is studied
the heuristic approach does not guarantee the global optima. However, when the optimisation constraints are
relaxed by a certain amount ǫ (i.e. hierarchical case) the convergence of all possible hierarchical trajectories
to a single one allows the solution obtained with the heuristic method to be close to the actual solution.
Therefore this combination of techniques (hierarchical and heuristic optimisation) seems to be a good and
computational friendly approach to solve this kind of problems.
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