Ara es mostren els items 1-11 de 11

  • A geometric study of abnormality in optimal control problems for control and mechanical control systems 

    Barbero Liñán, María (Universitat Politècnica de Catalunya, 2008-12-19)
    Tesi
    Accés obert
    Durant els darrers quaranta anys la geometria diferencial ha estat una eina fonamental per entendre la teoria de control òptim. Habitualment la millor estratègia per resoldre un problema és transformar-lo en un altre ...
  • Characterization of accessibility for affine connection control systems at some points with nonzero velocity 

    Barbero Liñán, María (2011)
    Comunicació de congrés
    Accés restringit per política de l'editorial
    Affine connection control systems are mechanical control systems that model a wide range of real systems such as robotic legs, hovercrafts, planar rigid bodies, rolling pennies, snakeboards and so on. In 1997 the accessibility ...
  • Constraint algorithm for extremals in optimal control problems 

    Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos (2007-07-27)
    Article
    Accés obert
    A characterization of different kinds of extremals of optimal control problems is given if we take an open control set. A well known constraint algorithm for implicit differential equations is adapted to the study of ...
  • Geometric approach to Pontryagin's Maximum Principle 

    Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos (Springer Netherlands, 2008-10)
    Article
    Accés obert
    Since the second half of the 20th century, Pontryagin’s Maximum Principle has been widely discussed and used as a method to solve optimal control problems in medicine, robotics, finance, engineering, astronomy. Here, we ...
  • Kinematic reduction and the Hamilton-Jacobi equation 

    Barbero Liñán, María; De León, Manuel; Martin de Diego, David; Marrero, Juan Carlos; Muñoz Lecanda, Miguel Carlos (American Institute of Mathematical Sciences, 2012)
    Article
    Accés obert
    A close relationship between the classical Hamilton- Jacobi theory and the kinematic reduction of control systems by decoupling vector fields is shown in this paper. The geometric interpretation of this relationship ...
  • Optimal control problems for affine connection control systems: characterization of extremals 

    Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos (American Institute of Physics, 2008-02)
    Text en actes de congrés
    Accés obert
    Pontryagin’s Maximum Principle [8] is considered as an outstanding achievement of optimal control theory. This Principle does not give sufficient conditions to compute an optimal trajectory; it only provides necessary ...
  • Skinner-Rusk formalism for optimal control 

    Barbero Liñán, María; Echeverría Enríquez, Arturo; Martín de Diego, David; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso (2006-12)
    Article
    Accés obert
    In 1983, the dynamics of a mechanical system was represented by a first-order system on a suitable phase space by R. Skinner and R. Rusk. The corresponding unified formalism developed for optimal control systems allows us ...
  • Skinner-Rusk unified formalism for optimal control systems and applications 

    Barbero Liñán, María; Echeverría Enríquez, Arturo; Martín de Diego, David; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso (2007-05-15)
    Article
    Accés obert
    A geometric approach to time-dependent optimal control problems is proposed. This formulation is based on the Skinner and Rusk formalism for Lagrangian and Hamiltonian systems. The corresponding unified formalism developed ...
  • Strict abnormal extremals in nonholonomic and kinematic control systems 

    Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos (2008-06)
    Article
    Accés obert
    In optimal control problems, there exist different kinds of extremals, that is, curves candidates to be solution: abnormal, normal and strictly abnormal. The key point for this classification is how those extremals ...
  • Unified formalism for non-autonomous mechanical systems 

    Barbero Liñán, María; Echeverría Enríquez, Arturo; Martín de Diego, David; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso (AIP, 2008-06-01)
    Working paper
    Accés obert
    We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). ...
  • Unified formalism for non-autonomous mechanical systems 

    Barbero Liñán, María; Echeverría Enríquez, Arturo; Martín de Diego, David; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso (2008-02-29)
    Article
    Accés obert
    We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk ...