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Barcelona, Spain.

Abstract

This paper presents a particle-based Lagrangian-Eulerian algorithm for the solution of the unsteady advection-
diffusion-reaction heat transfer equation with phase change. The algorithm combines a Lagrangian formulation for the
advection + reaction problem with the Eulerian-based heat source method for the diffusion + phase change problem.
The coupling between the Lagrangian and Eulerian subproblems is achieved with a phase change detector scheme
based on a local latent heat balance and a consistent/conservative interpolation technique between Lagrangian particles
and the Eulerian grid. This technique makes use of an auxiliary (finer) Eulerian grid that provides a simple and
efficient method of tracking internal heterogeneities (e.g. phase boundaries), allows the use of higher order integration
quadratures, and facilitates the implementation of multiscale techniques. The performance of the proposed algorithm
is compared against one- and two-dimensional benchmark problems, i.e. pure rigid-body advection, isothermal and
non-isothermal phase change, two-phase advective heat transfer and chemical reactions coupled with diffusion and
advection. The numerical results confirm that the proposed solution method is accurate, oscillation-free and useful
for and applicable to a wide range of fully coupled problems in science and engineering.

Keywords: Advection-Diffusion-Reaction, Phase Change, Heat Source Method, Lagrangian-Eulerian FEM,
Interpolation

1. Introduction

Phase change transformations arise in many natural and industrial applications, e.g. metal casting and molding,
composites manufacture, solar energy storage, groundwater transport problems, magmatic systems, planetary con-
vection, etc. In addition, this phenomenon often takes place simultaneously with other physical processes such as
advection, diffusion or chemical reactions. This is the case e.g. in geoscience, biological and planetary processes,
where both solid-solid and solid-liquid transformations are coupled to chemical reactions over a range of spatial and
temporal scales. Given the relevance of advection-diffusion-reaction (ADR) and phase change processes in both nat-
ural systems and industrial processes, much effort has been invested in the development of sophisticated numerical
methods capable of providing accurate temporal and spatial solutions to these problems.

Among the many existing numerical methods to deal with ADR problems, Lagrangian-Eulerian (LE) approaches
have become very popular [[1] [2] [3] [4] [5]]. In general, the LE approach takes advantage of appropriate operator
splitting techniques to solve different aspects of the physical model with the most suitable Lagrangian or Eulerian
formalism, avoiding thus the need of e.g. correction terms (e.g. SUPG, SCM, etc) to stabilize advection-reaction-
dominated problems [[6] [7]]. Moreover, the use of Lagrangian particles instead of Lagrangian meshes mitigate (and
in most cases, eliminate) the problem associated with the distortion of the mesh when large deformations are modelled
[8]. For instance, the Particle Transport Method [5] computes the reactive term along moving (Lagrangian) particles
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while the diffusion is solved with standard finite element (FE) methods in the Eulerian mesh. However, despite their
many advantages, particle-based LE methods have the drawback of having to transfer information from the Lagrangian
particles to the Eulerian nodes (typically an overdetermined problem) and vice-versa (underdetermined problem)
throughout the simulation, which inevitably introduces errors into the transferred fields. The transfer of information is
commonly achieved by interpolation or projection techniques (e.g. global vs local information, damped least-squares,
etc, [9],[10]), which are generally problem-dependent and require careful design, as seemingly small errors during
the interpolation process can accumulate rapidly due to the large number of interpolations performed during a typical
simulation [11]. Also, while splitting the physical operators facilitates the implementation of different solvers within
the numerical scheme (lending itself to parallel computing), and greatly simplifies the numerical procedure, traditional
splitting techniques are typically unable to achieve high-order accuracy (i.e. of order more than two). This, however,
can be mitigated by using iterative splitting approaches [[12] [13]]. The authors refer to [14] and references therein
for more details about the existing operator-splitting techniques.

Contrary to the vast literature on LE methods for traditional ADR problems, the extension of particle-based LE
approaches to deal with ADR problems that include phase changes is a much less explored field. Furthermore, the au-
thors are unaware of any study of operator-splitting particle-based LE approach with phase change. Current numerical
strategies to deal with phase change problems are generally grouped into fixed-domain (fixed-grid) and front-tracking
methods (e.g. adaptive, moving mesh or deforming grid methods). The latter provide accurate predictions of both
isothermal and non-isothermal phase changes by explicitly modelling the location of the phase change interface [15]
[16]. The main drawback of such adaptive methods is the high computational cost, as sophisticated re-meshing
strategies are needed in order to accurately track the phase change boundaries. Moreover, when multiple scales are
involved in the phase change problem of interest (e.g. dendritic interfaces within a much larger convecting system),
front-tracking methods can become impractical. Fixed-domain methods offer a more general solution as they account
for the phase change conditions implicitly. “Effective heat capacity” [17] [18], “enthalpy method” [19] [20] [21] [22],
“heat source method” [23] [24] [25], “capacitance method” [21] [26] [27], “Temperature Transformation Methods
(TTM)” [28] and “temperature recovery techniques” [29] are some examples of fixed-domain methods (see [30] for a
review).

Among fixed domain methods, the “heat source method”, also referred to as the “fictitious heat-flow method”
[23, 24, 25], represents an attractive procedure for several practical reasons outlined below. The central idea behind
this method is to treat the absorption or release of thermal energy accompanying phase transformations as an internal
heat source (thus moved to the right-hand side of the energy equation) [23, 30]. The resulting energy equation
becomes non-linear, as the localized heat source is temperature dependent. However, this non-linearity can be dealt
with efficiently through an iterative procedure which adapts the release or absorption of heat until all the available
latent heat is consumed by the phase change [23]. The nodal temperature is essential for this method since it is
not only used to compute the release or absorbtion of the latent heat, but also identifies phases and tracks the phase
change front without any additional computational effort. Compared to other approaches, the heat source method
often reaches similar accuracy with significantly fewer iterations (rapid convergence) and it has no restrictions as to
the nature (isothermal vs non-isothermal) of the phase transition. It also offers a more flexible platform to introduce
algorithm modifications (as in this paper, see also [31] [32]), it allows relatively coarse meshes and large time steps,
and it is stable and robust. In spite of the mentioned advantages over other approaches, the extension of the heat
source method to work under particle-based Lagrangian-Eulerian approaches for general ADR problems is a poorly
studied topic.

In this paper, we present a particle-based LE algorithm for the solution of general ADR problems including phase
change. For this purpose, the general problem is divided into two subproblems: a) advection + reaction and b)
diffusion + phase change. The former is solved with a particle-based Lagrangian method, and the latter with the heat
source FEM [23]. Since the original heat source method is a purely transient Eulerian approach, initial conditions at
any time step are the nodal solutions from the previous one. This is not the case in our LE approach, where nodal
values need to be initialized with the information coming from the Lagrangian particles, including the phase change
front position. The particle-to-node interpolation is performed by a fast local linear interpolation technique, and the
node-to-particle interpolation by a new scheme able to i) preserve sharp discontinuities, ii) account for their natural
diffusivity, and iii) minimize inconsistencies in interpolated magnitudes between Lagrangian particles and Eulerian
nodes. Both interpolation schemes make use of an auxiliary finer grid, which also facilitates the implementation
of higher accuracy numerical integration quadratures and/or recently developed multiscale techniques (e.g. MsFEM
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[33]) within the general algorithm. However, as with any LE approach, this interpolation technique can introduce
some errors in the nodal temperature field. Since the the original heat source method depends on nodal temperatures,
the coupling of both methods requires two additional steps. Firstly, we propose a phase detection technique that
uses the evolution of the released latent heat during phase changes rather than nodal temperatures as in [23]. This
overcomes the problem associated with inaccurate nodal temperatures resulting from interpolation techniques and
effectively initializes the Eulerian heat source FEM with the particle latent heat information. Secondly, we introduce a
local node-to-particle latent heat balance which ensures its exact conservation and accurately tracks the phase change
front in our algorithm.

The rest of the paper is organised as follows. Section 2 introduces the governing equations and problem statement.
A detailed explanation of the Lagrangian-Eulerian FEM coupled with the heat source method is introduced in Section
3, where the particle-to-grid and grid-to-particle projection procedures are described. Numerical examples and bench-
marks are presented in Section 4 to illustrate the performance and accuracy of the algorithm to solve both individual
and coupled ADR problems with phase change. The applicability of the presented Lagrangian-Eulerian method to
model chemical reactions is also tested in Section 4. Finally, future work and main conclusions are discussed in
Section 5.

2. Governing Equations. Problem Statement

Let us consider the thermal advection-diffusion-reaction equation with phase change,

ρcp

(
∂T
∂t

+ v · ∇T
)

= ∇ · (k∇T ) + QPC + Q in Ω × (0, tend)

T (x, 0) = T0 in Ω

T = TD on ΓD × (0, tend)
k (n · ∇T ) = h on ΓN × (0, tend)

(1)

where x {x : Ω ⊂ Rd, d = 1, 2, 3} is the space variable, T = T (x, t) is temperature, ρ = ρ (x, t) is the density,
cp = cp (x, t) is the heat capacity, k = k (x, t) is the thermal conductivity, v = v (x, t) is the given velocity field
on Ω × [0, tend] and, time t varies in the interval [0, tend]. For simplicity, throughout the paper we assume d = 2
and ∇ · v = 0, but these conditions can be easily relaxed. The body source term is broken into the phase change
contribution, QPC = QPC (x, t), and any other heat source, Q = Q (x, t), (e.g. enthalpy of chemical reactions, shear
heating, radioactive decay, etc). ΓD and ΓN are portions of the domain boundary ∂Ω (ΓD ∪ ΓN = ∂Ω), where Dirichlet
and Neumann boundary conditions are respectively defined. n is the unit vector normal to the boundary, and h is a
constant.

Lastly, the heat source term related to phase change processes is described as a function of latent heat L as

QPC = ρ
∂

∂t

(∫
Ω

L dΩ

)
(2)

3. Numerical Method

The original problem stated in (1) is divided into two subproblems, an advection + reaction subproblem and a
diffusion + phase change subproblem. In the following two sections we describe the general LE numerical method;
the coupling of the phase change problem is addressed in section 3.3; a brief algorithm summary is given in section
3.4.

3.1. Lagrangian-Eulerian approach

The advection + reaction subproblem is defined by
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ρcp

(
∂T
∂t

+ v · ∇T
)

= Q in Ω × [tm−1, tm]

T (x, t) = T (x, tm−1) in Ω × {t = tm−1}

T = TD on ΓD × [tm−1, tm]

(3)

whereas the diffusion + phase change subproblem reads

ρcp
∂T
∂t

= ∇ · (k∇T ) + QPC in Ω × [tm−1, tm]

T (x, t) = T ∗ (x, tm−1) in Ω × {t = tm−1}

T = TD on ΓD × [tm−1, tm]
k (n · ∇T ) = h on ΓN × [tm−1, tm]

(4)

The time interval [0, tend] is divided into M (possibly irregular) subintervals [tm−1, tm], m = 1, 2, ...,M, where t0 = 0
and tM = tend. Both subproblems are subsequently solved at each time step until tm = tend. The solution of subproblem
(3), T ∗ (x, tm−1) = T (x, tm), is used as the initial condition for (4). Therefore, a single time step of our LE method
consists of the following five steps: (i) solve the advection + reaction subproblem with a Lagrangian scheme, (ii)
transfer the intermediate solution T ∗ (x, tm−1) from the particles onto the Eulerian grid, (iii) solve the diffusion + phase
change subproblem with the Eulerian FEM, (iv) project the final nodal temperatures onto the advected particles and
(v) update temperature-dependent physical properties at the particles.

3.1.1. Lagrangian subproblem
The continuum is discretized into a set of Lagrangian moving particles, p, which carry (time-dependent) informa-

tion of the physical properties of the medium. Using a Lagrangian notation, eq. (3) is rewritten for each particle p
as

dT p

dt
= Qp (5)

which is solved subject to appropriate initial conditions. For time step m , 1, the initial conditions are the discrete
values of the function T computed in the diffusion + phase change subproblem for each particle at their initial positions
(Xp

m−1),

T p
m−1 = T p

(
Xp

m−1, tm−1

)
(6)

It is clear from (5) that the source term Qp represents an integrated effect along the trajectories of the individual
particles. Particle trajectories are defined as,

dXp

dt
= vp (Xp, t) (7)

In absence of boundary conditions, eq. (7) is a simple ODE. In order to find the new particles’ positions after a
certain time step, one solves eq. (7) on the time interval [tm−1, tm], m = 1, 2, ...,M with the initial conditions at time
tm−1

Xp
m−1 = Xp (tm−1) (8)

Equations (5)-(6) and (7)-(8) can be integrated in time by any ODE solver (e.g. explicit Runge-Kutta, n-stage
explicit Padé, etc) to obtain T p

m∗ = T p
(
Xp

m, tm
)
, i.e. the particle temperature for the advection + reaction subproblem.

The order of the chosen method is usually dictated by accuracy considerations, and since particles are independent
from each other, schemes of different order could be used for different particles. Stiff solvers could be used if the
reactive problem requires it. Higher accuracy can also be obtained reducing the time step whenever needed.
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3.1.2. Eulerian subproblem
The standard Galerkin FE discretization is used to transform eq. (4) into the matrix form

M
dT̂
dt

+ KT̂ = QPC (9)

where T̂ is the vector containing the nodal temperature values T I (I = 1, ... number of nodes). M is the mass matrix,
K the stiffness matrix and QPC the right-hand-side vector (source term), which is computed as in the original heat
source method of Rolph and Bathe [23]. An overview of the original heat source method can be found in Appendix
A.

Supplemented with appropriate boundary and initial conditions, eq. (9) gives the solution to the discrete diffusion
+ phase change subproblem at the nodes. The initial conditions are obtained by interpolating the Lagrangian solution
T p

m∗ on the Eulerian grid. M and K are assembled at every time step using the auxiliary subcells {i j} (see section
3.2.1). For sake of clarity, we describe the method a Cartesian Eulerian grid, but other type of grids can be also used.

The time derivative is discretized with standard finite differences and the resulting system (9) is solved with the
most suitable implicit or explicit method.

3.2. Interpolation techniques
While physical information, B, is defined exclusively in the particles, solutions for temperature, T , are obtained

at particles and Eulerian nodes. Moreover, the Eulerian FEM requires discrete physical information not only at the
nodes but also at the Gaussian points to initialize the system (9). Therefore, in the following we define the necessary
particle-to-grid and node-to-particle interpolation techniques.

Particle

Eulerian node

p

Bij

∆xij

Eulerian grid

Eulerian subcells

Minimal Triangle

Centroid domain

Eulerian subcell centroid

∆xp
ij

∆
y
ij

∆
y
pij

∆x

∆
y

∆xpIJ

∆
y
p I
J

Numerical quadrature points

T I

IJ

p

a) b)

Figure 1: Representation of the Eulerian grid, Lagrangian particles and particle-to-grid interpolation. The Eulerian grid is formed by nodes and
Eulerian subcells. a) Minimum triangles (gray) are employed as particle-to-node interpolation technique for the temperature (T I ); b) the particle-to-
subcell communication is performed by bilinear interpolation for any other physical parameter (Bi j) at a given centroid. The numerical quadrature
points are also shown, 4x4 in here, but this number may vary depending on the required accuracy at the integration.

3.2.1. Particle-to-grid interpolation
There are two different types of particle-to-grid interpolation. First, a particle-to-node interpolation is performed

to obtain initial nodal temperatures. A minimal triangle is defined for each node by the triad of closest particles;
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a Global Discrete Coordinate System (GDCS) is used to build these minimal triangles [5]. This results in a highly
efficient algorithm to locate particles associated with Eulerian nodes [9]. The three closest particles define an unique
plane in space and the nodal temperature T I can be readily computed on it (see figure 1-A). In general, this local
linear interpolation would introduce some smearing into the nodal temperature field (more details in section 3.3).
This smearing can be minimized by using a higher particle density (albeit increasing the computational cost).

Second, we propose a particle-to-subcell interpolation of cp, ρ, k in order to perform the numerical integration as-
sociated with the construction of the matrices in (9). Each subcell centroid receives information from the surrounding
particles (figure 1) via the following bilinear expression [34],

Bi j =

∑
p Bpwp

i j∑
p wp

i j

wp
i j =

1 − ∆xp
i j

∆xi j

 · 1 − ∆yp
i j

∆yi j


where ∆xp

i j, ∆yp
i j, ∆xi j and ∆yi j are the distances defined in figure 1-b, and B refers to the variables ρ, cp and k. While

there are no real restrictions as to the number and shape of the Eulerian subcells, it is sensible to have at least one
particle per subcell to take full advantage of the secondary mesh. In figure 1-b, the centroid domain coincides with
the region delimited by the neighboring centroids, but the present method is not restricted to this case. The centroid
domain can be expanded (adaptively) if the local particle density is not high enough. Alternatively, adaptive particle
sets [5] can also be readily implemented.

In this manner, subgrid heterogeneities represented by the set of particles are explicitly considered/preserved at the
subcell scale, rather than simply lumped at Eulerian nodes. The presence of the auxiliary subcell grid also facilitates
the implementation of higher accuracy numerical integration quadratures or recently developed multiscale techniques
(e.g. MsFEM [33]) within the general algorithm. In the first case, the integration points receive the information of
the subcell they are situated in, thus allowing for more accurate integrations. In the case of multiscale techniques, the
subcell grid can be used to compute the multiscale basis functions.

3.2.2. Node-to-particle interpolation
Once the diffusion + phase change subproblem is solved in the Eulerian mesh, the nodal temperature is transferred

back to the particles to compute the next time step. An accurate node-to-particle interpolation is required in order
to preserve the particle resolution. Simple linear interpolation schemes of absolute values smooth out any possible
heterogeneities at the particle scale (see figure 2-b). Consequently, the interpolation of nodal increments is preferred.
However, this last technique can lead to the creation of new maxima/minima under the presence of sharp fronts (see
figure 2-c).

We overcome these problems with an alternative node-to-particle interpolation method based on nodal incremental
values. The proposed technique aims to simulate the effects due to the diffusion + phase change subproblem at the
particle scale. We define the particle increment, ∆T p

m, as the sum of three terms: 1) a shape-preserving term
(
∆T p

m

)
sp

,

2) a diffusion term
(
∆T p

m

)
di f f

, and 3) a conservative node-particle correction term
(
∆T p

m

)
corr

. The first term preserves
initial discontinuities at the particles after solving the Eulerian subproblem through a geometric operation. In this way,
pre-existent particle heterogeneities and gradients are correctly preserved without creating new maxima or minima
(figure 2-d). The second term accounts for a potential non-zero diffusivity of the initial discontinuity, thus simulating
diffusion on a subgrid scale (without explicitly solving eq. (9) at the particles). Finally, the third term enforces that
conserved quantities (e.g. heat, mass) are actually conserved during node-to-particle interpolations. For instance, in
the case of eq. 1, this correction ensures that the global enthalpy change at Lagrangian particles (after node-to-particle
interpolation) is consistent with that computed at Eulerian nodes.

Then, the updated particle temperature reads

T p
m = T p

m∗ + ∆T p
m = T p

m∗ +
(
∆T p

m

)
sp

+
(
∆T p

m

)
di f f

+
(
∆T p

m

)
corr

(10)
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Figure 2: Representation of different node-to-particle interpolation techniques inside a rectangular element. The four large coloured circles refer
to the Eulerian nodes, and the smaller black circles to the particles. a), Initial discontinuity (at tm−1). b), the discontinuity is smoothed (reset
of particles’ values) during the interpolation of new absolute nodal values to particles (at tm). c), creation of new maxima and minima through
interpolation of increments with a standard bilinear scheme (at tm). d), proposed weighted shape-preserving interpolation (tm) technique where the
discontinuity is preserved and no new maxima nor minima is created.

In addition, temperature dependent physical properties (ρ, cp and k) are accordingly updated at each particle. More
details on the physical basis and actual computation of

(
∆T p

m

)
sp

,
(
∆T p

m

)
di f f

and
(
∆T p

m

)
corr

can be found in Appendix
B.

3.3. Coupling of the Heat Source method with the LE approach

The heat source FEM is an iterative procedure used to compute thermal effects related to phase change transforma-
tions [23]. Those phase change transformations occur at the nodes, which are understood as representative measures
of their surrounding volumes. The iterative procedure allows us to update the non-linear source term, QPC , wherever
phase transformations occur. This is done with the aid of two new variables, the amount of absorbed/released latent
heat for each node QCUMU , and the total available nodal latent heat QTOT L. The former is used to compute the source
term and it is only updated at nodes undergoing phase transformations after every iteration; the latter is used to iden-
tify nodes where the phase transformation has been completed. A phase transformation is considered to be completed
when all the available latent heat has been consumed by a given node, and therefore, QCUMU = QTOT L. Unlike the
temperature, both variables have to be conserved through the computation, as they are function of the latent heat, L.

In the original heat source method, the variables QCUMU , QTOT L and T remain unchanged between time steps
(the values obtained at the end of time step m − 1 coincide with the initial conditions at time step m). As it has
been previously shown, this is not the case in our LE formulation. Consequently, the “phase status” of a given
node (solid, liquid or undergoing phase transformation) needs to be initialized at the beginning of every time step m.
Originally, a node is considered to undergo phase transformation if its temperature is between the liquidus (Tliq) and
the solidus (Tsol) temperatures after any time step or iteration (see Appendix A for further details). Therefore, using the
temperature as a phase change detector in our coupled LE approach would be the natural choice. However, as the local
linear particle-to-node interpolation technique presented in section 3.2.1 inevitably introduces smearing, temperature
is no longer a reliable variable to detect nodes undergoing phase change (see figure 3 for an isothermal phase change
example). Therefore, we propose a phase change detector technique based on the latent heat (a conservative variable)
and not the temperature (see section 3.3.1).
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Tliq = Tsol

Solid state

Phase Change

Liquid state Particle

Eulerian node

Representative Volume undergoing phase change

RV RVRV

Space

RV RVRV

Space

RV RVRV

Space

Tliq = Tsol Tliq = Tsol

Local particle-to-node linear interpolation

Representative volumeRV

Nodal temperature correction (node I)

Temperatures after time step m− 1 Temperatures before time step m
Corrected nodal Temperatures

before time step ma) b) c)

node I node I
correction of

T T T

node I

phase change

particle

Figure 3: Illustration of a 1D isothermal phase change problem. For the sake of clarity, particles remain steady (no advection or reaction is
computed). a), temperature distribution at nodes and particles after computing time step m − 1. Here, a single particle is undergoing phase change,
which is located inside the pink representative volume (RV). Node I is considered to undergo phase transition too (T I

m−1 = Tliq = Tsol), since not all
the latent heat has been consumed by the phase transformation in its RV. b), the Eulerian grid is initialized at the beginning of time step m through
the particle-to-node local linear interpolation scheme. Node I has not recovered the isothermal phase transformation temperature (T I

m , Tliq = Tsol),
as the nodal solution has been smeared due to the interpolation. According to the temperature, node I is not undergoing phase change despite the
presence of particles undergoing phase change inside its RV. This is in contradiction with the original Rolph and Bathe heat source method [23],
where a node is considered to have completed phase transformation when all the available latent heat in its RV has been consumed. Therefore, we
proceed to time step m identifying particles undergoing phase change inside any RV and consequently correcting the nodal temperatures, as in c)
(see section 3.3.1 for further explanation of the nodal temperature correction).

In order to complete the coupling of both methods, the absorbed or released nodal latent heat needs to be trans-
ferred back to the particles. An effective coupling of the heat source method with the LE approach depends on both
the spatial accuracy of this node-to-particle QCUMU transference, and the conservation of QCUMU at every stage of
the algorithm. We ensure these properties with a local balance of the nodal QCUMU inside each representative volume
(RV) undergoing phase change (see section 3.3.2).

3.3.1. Phase Change detection technique
Firstly, QCUMU and QTOT L need to be lumped from the particles to the corresponding nodes (figure 4). Each node

receives this information from the particles inside their RV. Secondly, nodes undergoing phase change are flagged
using this lumped information rather than nodal temperatures, as done in the original heat source method ([23]). As
mentioned above, this overcomes the problem of inaccurate nodal temperature values and enables an effective phase
change detection mechanism (figure 3-c). The flagging system (Q f lag = {0,1,-1}) is defined as follows: -1 indicates
liquid phase, 1 indicates solid phase, and 0 indicates a node undergoing phase change. At any stage of the simulation,
three possible scenarios can occur at the nodes:

1. QCUMU = 0. The node has not been affected by a phase change at any previous time step. Therefore, Q f lag = ±1
depending on the problem (i.e. solidification or melting).

2. |QCUMU | ≤ QTOT L. The node is undergoing phase change, so Q f lag = 0. In this case, the nodal temperature
generally needs to be corrected to keep it consistent with the computed amount of latent heat released/absorbed.
We use

Tm−1 = Tliq −
|QCUMU |

QTOT L

(
Tliq − Tsol

)
solidification

Tm−1 = Tsol +
|QCUMU |

QTOT L

(
Tliq − Tsol

)
melting
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assuming linear evolution of latent heat with temperature [23].
3. |QCUMU | = QTOT L. All the available latent heat in the node has been previously released or absorbed (i.e. the

phase change has been completed). Therefore, Q f lag = ±1 depending on the problem.

This flagging system requires accurate computations of both QCUMU and QTOT L. This is achieved with a conser-
vative node-to-particle projection of these variables, as described below.

tm−1 tm

Solid state, Qflag = 1

Phase Change, Qflag = 0

Liquid state, Qflag = −1

Particle

Eulerian nodeEulerian Subcell

Diffusion-Phase Change

B

A

D

C

Phase Change Front

Representative Volume

SubproblemParticle-to-grid Grid-to-particle

Subcell undergoing phase change

QCUMU transference direction

Figure 4: Particle-to-grid and grid-to-particle communication schemes for phase change related variables. At tm−1, the accumulated latent heat is
lumped from the particles to the Eulerian nodes, they are flagged and their temperature corrected according to the three possible scenarios described
in section 3.3.1. Once the diffusion - phase change subproblem is complete, QCUMU is transferred back from the Eulerian nodes to the subcell grid
at tm. New nodes may undergo phase change at every time step, and QCUMU is distributed to the subcells surrounding these new phase change
Eulerian nodes. A, B, C and D refer to the different possibilities in the node-to-particle QCUMU projection. This enables an accurate phase change
front tracking system (in purple).

3.3.2. Conservative node-to-particle projection for phase change variables
QCUMU is projected from the nodes to the particles through a local balance of QCUMU inside their RVs. This

technique is spatially accurate since it takes advantage of the Eulerian subcells (figure 1). It also takes into account
the shape of the phase front. Moreover, the conservation of the latent heat is strictly ensured by this balance.

For this purpose, the spacial gradient of the ratio QCUMU/QTOT L is computed at each node using the 2D stencil
shown in figure 5. The direction of the gradient and the phase change propagation direction are assumed to be the
same (represented by the plane π in figure 5). Therefore, the spatial distribution of QCUMU in the subcells becomes a
1D problem and it is solved using ∑

sc

(
A + xre fA−sc · tanα

)
Qsc

TOT L = QCUMU (11)

where A is the unknown ratio QCUMU/QTOT L for a reference subcell (re fA), xre fA−sc is the distance between re fA and
the projected subcell positions into π, tanα is the value of the QCUMU/QTOT L gradient, and the subindex sc refers to
the individual subcells (sc = 1, ... number of subcells) (see figure 5). Eq. (11) distributes the nodal QCUMU among the
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α
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2D Stencil

Representative volume where QCUMU is distributed

Reference subcell

Eulerian Grid

Plane π
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Qsc
CUMU/Q

sc
TOTL = A+ xrefA−sc

· tanα

0

Figure 5: Main steps to distribute the absorbed/released latent heat by a certain node, QCUMU , back to the representative volume. First the
spatial gradient of the ratio QCUMU/QTOT L is computed at nodes undergoing phase change using the 2D stencil represented by blue nodes in
a). Then, the Eulerian grid is intersected by the plane π, which is any plane parallel to the gradient direction and containing the given node. We
use the intersection between this plane π and the one containing the Eulerian grid to project the positions of the subcells centroids, as shown in
b). In here, we compute xre f A−sc which is the projected distance between any subcell and the reference subcell onto the intersection (or plane
π), (c), out of scale). The gradient value tanα is used to distribute QCUMU according to

∑
sc (A + xA−sc · tanα) Qsc

TOT L = QCUMU subjected to
0 ≤ |Qsc

CUMU |/Q
sc
TOT L ≤ 1, where the only unknown A refers to the ratio QCUMU/QTOT L at the reference subcell. After obtaining A, the remaining

subcell values, Qsc
CUMU/Q

sc
TOT L, are automatically given by Qsc

CUMU/Q
sc
TOT L = A + xre fA−sc · tanα (c))

subcells inside its representative volume, where Qsc
CUMU/Q

sc
TOT L = A + xre fA−sc · tanα and 0 ≤ |Qsc

CUMU |/Q
sc
TOT L ≤ 1.

We obtain A from eq. (11) for any arbitrary re fA, and the remaining Qsc
CUMU/Q

sc
TOT L are automatically given by the

expression above.
The variable Qp

CUMU is then updated at each particle p ⊂ sc, assuming the same ratio Qp
CUMU

Qp
TOT L

=
Qsc

CUMU
Qsc

TOT L
between the

particle p and the subcell that contains it. Indeed, this projection technique conserves the latent heat over a given RV,∑
p⊂RV

Qp
CUMU =

∑
sc⊂RV

Qsc
CUMU = QCUMU

∑
p⊂RV

Qp
TOT L =

∑
sc⊂RV

Qsc
TOT L = QTOT L

Figure 4 illustrates the four possible cases for transferring QCUMU from the nodes back to the particles at tm.
In the first case (A), a particle undergoing phase change will still be in transition after the current time step, as
|QCUMU | < QTOT L. In case (B), the phase change has been completed at the particle, as |QCUMU | = QTOT L. Scenarios
(C) and (D) are respectively the same as (A) and (B), but for particles that were not undergoing phase change at the
previous time step. This procedure uses the same Global Discrete Coordinate System (GDCS) used in the particle-to-
grid interpolation (section 3.2.1) to keep the algorithm simple and efficient.
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Finally, consistency between temperature and absorbed/released latent heat at the particles is ensured with the
following correction [23],

T p
m = Tliq −

|Qp
CUMU |

Qp
TOT L

(
Tliq − Tsol

)
solidification

T p
m = Tsol +

|Qp
CUMU |

Qp
TOT L

(
Tliq − Tsol

)
melting

3.4. Algorithm summary

The transient problem in eq. (1) is solved for m time steps until t = tend. In each time step, our particle-based LE
algorithm requires the following operations:

1. Solve the advection-reaction subproblem between tm−1 and tm and get T p
m∗ (section 3.1.1).

2. Interpolate cp, ρ, k and T p
m∗ from the set of particles onto the Eulerian nodes and subcells (section 3.2.1).

3. Lump QCUMU and QTOT L from the set of particles onto the Eulerian nodes and subcells (section 3.3.1).
4. Identify the nodes undergoing phase change from the previous time step and correct their temperatures (section

3.3.1).
5. Assemble M and K matrices and solve the eq. (9) (section 3.1.2).
6. Identify new nodes at tm undergoing phase change (Appendix A).
7. If there are no nodes undergoing phase change, go to step 10.
8. Compute QPC and solve the system of equations (9) using the iterative heat source method (Appendix A). This

can be done more efficiently by solving smaller versions of system (9) depending on the spatial distribution of
nodes experiencing phase change.

9. Project QCUMU back to the subcells and particles (section 3.3.2).
10. Interpolate the temperature at particles, T p

m, from the nodes (section 3.2.2). Correct the particle temperature, if
necessary (section 3.3.2). Update cp, ρ, k at the particles.

11. Advance time and loop back to step 1 for the next time step m + 1.

A MATLAB implementation of all the above steps is available from the authors upon request or downloadable
from: http://research.science.mq.edu.au/mg3/software/. We note that the algorithm is highly parallelizable, e.g. the
advection-reaction subproblem is solved independently for each particle. This implementation, however, is beyond
the scope of the present work.

4. Numerical Examples

4.1. 1D convection-diffusion of a Gaussian hill: experimental convergence analysis

We use a 1D convection-diffusion of a Gaussian hill problem to experimentally discuss the order of accuracy of the
presented LE particle-based method. The problem consists of solving the transient homogeneous linear convection-
diffusion equation on the 1D domain Ω = [0, 1] [35]. Eq. (1) is solved with ρ = cp = 1, k = 0.005 and v = (1, 0) and
reaction terms QPC = Q = 0. The initial condition is,

u(x, t) =
5
7

exp
(
−

(x − x0

l

)2
)

where x0 = 2/15 and l = 7
√

2/300 and with boundary conditions u(0, t) = 0 and u(1, t) = 0. The exact solution
(figure 6) is given by

u(x, t) =
5

7σ(t)
exp

− (
x − x0 − t

lσ(t)

)2 , where σ(t) =

√
1 + 4

k
ρcp

t/l2

11
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Figure 6: Analytical results for the 1D convection-diffusion of a Gaussian hill (top figure) and the spatial and temporal convergence study for our
particle-based LE method (bottom left and right figures). The relative error is evaluated in the H1(Ω) norm, at t = 0.5s. For the spatial convergence
∆t = 1/200s has been used and ∆x = 1/2000m for the time convergence. Computations have been carried out with 4 randomly distributed particles
per element.

Figure 6 shows the evolution of the error against time and space discretization of our particle-base LE method.
The error is evaluated in the H1(Ω) norm, at t = 0.5s. Results are shown for a standard Galerkin approach and our
algorithm with two different interpolation techniques with a second order Crank-Nicolson time discretization (figure
6). Contrary to Galerkin, no restriction on the timestep is needed in order to obtain oscillation-free results with our
method (since the advection operator disappears from the Eulerian framework).

In general, the Galerkin formulation converges as expected, whereas the behavior of the particle-based LE method
highly depends on the interpolation scheme used. In the spacial case (bottom left), the relative error evolves well for
both Galerkin and our method. Here, our method (green line) improves the convergence rate obtained with Galerkin
and yields significantly smaller relative errors. In the case of time convergence (bottom right), the type of interpolation
employed has a major impact on the results. When our difference-based interpolation technique is used, second order
accuracy is obtained. However, the convergence rate is drastically reduced for the case of linear interpolation, as the
interpolation error exceeds the error in time.

The second order convergence obtained by the proposed method contrasts with the first order convergence of most
splitting schemes. Traditional operator splitting methods cannot achieve higher-order accuracy in time (i.e. of order
more than two); moreover the sequential splitting is of first order [14]. This is mainly due to the errors introduced by
the decoupled equations. Several schemes have been proposed to improve the order of convergence; see for example
[12] [13] [36]. All these methods introduce an iterative-type operator splitting that couples the different physical
processes and therefore reduces the splitting errors. These studies, however, address splitting techniques where all the
operators are based on the same type of spatial dicretization (Eulerian). To our knowledge, the order of particle-based
Eulerian-Lagrangian methods have not been studied and no theoretical result are available. Our study shows that the
expected first-order accuracy for a sequential splitting can be improved with proper interpolation techniques. In our
method, the advected particles are corrected through interpolation with the information coming from the Eulerian
diffusion, which mimics the procedure followed by higher-order splitting techniques.

Other splitting techniques such as Strang-Marchuk splitting (second order), the symmetrically weigthed sequen-
tial splitting (first order) and the higher-order iterative splitting have also been tested for this example. None of
these methods significantly improves the results of the sequential-type scheme for any of the interpolation schemes.
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Consequently, they have not been used in the following examples.

4.2. Three rigid body rotation

This example is an adaptation of the three body rotation transport problem in [37] and [38] to test the performance
of our numerical scheme for advection and advection+diffusion problems in 2D.

Eq. (1) is solved in Ω = [0, 1]2, with ρ = cp = 1000, v = (0.5 − x(2), x(1) − 0.5) and reaction terms QPC = Q = 0.
Two different problems are solved: pure advection (k = 0) and advection+diffusion (k = 100). The initial setup
consists of three bodies (top right contour plot in figure 7): a slotted cylinder, a conical body, and a smooth cone.
They are centered at xc = (0.5, 0.75), xc = (0.5, 0.25) and xc = (0.25, 0.5) respectively, with radius r0 = 0.15 for
the three bodies. Outside the bodies the initial value of the field variable is 0 and Dirichlet boundary conditions are
imposed at the edges. Three auxiliary functions r(x) are defined in Ω, one for each body

r(x) =
1
r0

√
(x(1) − xc(1))2 + (x(2) − xc(2))2

The slotted cylinder, conical body and hump are given by

T (x, 0) =

1 if r(x) ≤ 1, |x(1) − xc(1)| ≥ 0.0225 or x(2) ≥ 0.85
0 else

T (x, 0) = 1 − r(x)

T (x, 0) =
1
4

(1 + cos (πmin{r(x), 1}))

In the simulations, three different rectangular regular grids have been used: 64x64, 128x128 and 256x256 Eulerian
nodes. In each element, 4x4 equidistant and (initially) regularly distributed Lagrangian particles have been used. This
results in 4,096, 16,384 and 65,536 degrees of freedom (including the Dirichlet nodes) in the Eulerian problem (eq.
(4)) and, 63,504, 258,064 and 1,040,400 total particles respectively. With the given velocity field v, the 3 bodies
rotate counter-clockwise and it takes t = 2π s for a full revolution. Three revolutions are computed for the advection
problem and one for the advection+diffusion problem. Numerical solutions are compared using an error estimate
‖E‖ =

√∑
I
∑

J EIJ/DOF, where EIJ is the nodal difference between the numerical solution and a reference solution
for each case (last column in figure 7) and DOF means degrees of freedom (in this case = number of Eulerian nodes).

Advection Advection + Diffusion
64x64 128x128 256x256 64x64 128x128 256x256

IT1 2.208e-03 7.832e-04 2.636e-04 5.300e-04 8.481e-05 1.666e-05
IT2 0 0 0 4.353e-04 4.883e-05 2.468e-05
IT3 0 0 0 3.029e-04 4.089e-05 1.104e-05

Table 1: ‖E‖ error estimation for the three body rotation problem. Results for the advection and the advection+diffusion problems for different mesh
sizes (by columns) and interpolation techniques (by rows) are given. IT1, IT2 and IT3 refer to the interpolation technique 1, 2 and 3 respectively.

Figure 7 shows contour solutions of the three body rotation problem. Each column represents a different inter-
polation technique, whereas rows show different mesh sizes. Since solutions are shown for the Eulerian mesh, they
all include the effects of the different particle-to-node-to-particle interpolation techniques discussed in sections 3.2.1
and 3.2.2. Table 1 shows the computed errors for each problem, mesh size, and used interpolation technique (linear
interpolation of absolute values = IT1; linear interpolation of increments = IT2, proposed interpolation scheme =

IT3).
For the pure advection problem (rows 1 and 2), interpolation IT1 results in an unrealistic smearing of the solution.

As expected, this smearing is significantly reduced in the finer mesh, but increases with number of revolutions. On
the other hand, for both interpolation techniques based on incremental values (IT2 and IT3), the initial condition is
recovered exactly regardless of the total number of revolutions. The small irregularity visible in the slotted cylinder for
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Figure 7: Contour plots for the three body rotation problem. Advection (3 revolutions) and Advection + Diffusion (1 revolution) problems (by
rows) for different interpolation schemes (by columns) and mesh sizes. The reference solutions are also shown (last column).

IT2 and IT3 is due to the particle-to-node interpolation, but the particle information remains unchanged at every time-
step. Therefore, the computed error shown in table 1 is 0 for both cases. The reference solution for the computation
of the error is the initial condition (last column in figure 7) for each mesh size.

For the combined advection and diffusion problem, the IT1 interpolation performs better than in the previous case
(especially in fine meshes), as the numerical diffusion is balanced with the physical diffusion (figure 7). However,
a significant smearing still is perceived. The solution with IT2 shows the numerical instability described in section
3.2.2, whereas IT3 shows no instabilities. The use of a finer mesh does not mitigate these instabilities for IT2, where
new nonphysical maximum and minimum temperatures are generated in the vicinity of sharp fronts. In some cases,
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these maxima exceed 50% the theoretical maxima. This could be avoided with an initial smoothing of the sharp fronts,
but this is in fact a linear interpolation of nodal absolute values to the particles, and therefore it is subject to the same
loss of information and smearing as IT1. In contrast, there is no appreciable numerical instability associated with the
proposed interpolation IT3. IT3 also shows good phase accuracy, since the particle with initially the highest value
inside the cone remains with the highest value after a full revolution. The reference solution for the computation of
the error is the transient diffusion problem solved in each Eulerian mesh for the same initial condition (last column in
figure 7).

4.3. 1D semi-infinite solidification with phase change

Property 1D isothermal 1D non-isothermal 2D semi-infinite Unit
Thermal conductivity - k 100 100 1 W/(m ◦C)
Specific Heat Capacity - cp 400 400 1 J/(kg ◦C)
Density - ρ 6900 6900 1 kg/m3

Latent Heat - L 130000 130000 0.1923 J/kg
Solidus Temperature - Tsol 400 395 -0.15 ◦C
Liquidus Temperature - Tliq 400 405 -0.15 ◦C
Initial Temperature - T0 450 450 1 ◦C
Boundary Temperature - Twall 0 0 -45 ◦C

Table 2: Material properties, initial and boundary conditions.

This benchmark aims to test the accuracy of our numerical scheme for both, isothermal and non-isothermal phase
change problems ([39] [40]). The problem set up is displayed in figure 8 and the material properties in Table 2. Each
representative volume in the Eulerian grid is divided in 4x4 subcells. Temperature history, temperature profiles and
the location of the phase change front are given in figure 9 for the isothermal case. Figure 10 shows the temperature
history of the non-isothermal case at x = 10 mm. Analytical solutions are only available for the isothermal case [41]
and have been summarized in Appendix C.

x

L

T (x, 0) = T0

T (0, t) = Twall
∞

v

Figure 8: Mesh, geometry, boundary conditions and initial conditions for the 1D solidification problem

Results from our algorithm differs little from those obtained with the original heat source method in the case of
non-advective phase change problems [23]. The inherent oscillations in temperature histories appearing in the original
method close to the phase change front also occur in our formulation and the analytical solutions are recovered with
the same accuracy at the nodes. Since particles remain in their positions during the whole computation, the absorbed or
released latent heat is projected (and lumped) back and forward from particles to nodes without additional difficulty.
Moreover, the phase change front can advance more than one Eulerian cell in a given time step without lost of
accuracy. Another advantage of our method is that the the phase front is defined at the particle level, which improves
the resolution for the location of the phase change front (figure 9).

For the case of non-isothermal phase change, results in figure 10 indicate that our algorithm performs well, giving
satisfactory solutions (as compared with those in the finest mesh) even for coarse meshes. As expected, better solutions
are obtained for finer meshes. The temperature oscillations close to the phase change front are mitigated in this case
(except for the coarsest mesh) due to the non-isothermal nature of the problem. Similar non-isothermal phase change
cases reported in the literature [23] have been successfully reproduced with our method (not shown here).

4.4. Two-phase convective heat transfer in a 1D semi-infinite slab
This problem couples both advection and the phase change problems. Temperature histories and profiles are

shown in figure 11. Analytical solutions are only available for cases with v = 0 [41], which are denoted by solid lines
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a)

b)

c)

Figure 9: Results for the isothermal phase change problem. a) Temperature histories for different positions. b) Temperature profiles at different
times. c) Evolution of the phase change front over time. 16
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in figure 11. We show these reference solutions for qualitative comparison only, as our simulations involve v , 0.
Boundary conditions are treated as follows. For v > 0, particles entering the system at x = 0 mm have T p

m = 0◦C,
whereas for v < 0 mm/s, particles entering the system at x = 60 mm have T p

m = 450◦C.
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Figure 11: Temperature profiles (left plots) and temperature histories (right plots) for different times (t = [0.5 s; 1 s; 2 s]) and discrete points (x =

[8 mm; 12 mm]) for ∆x = 0.5mm and ∆t = 0.015s. The top figures correspond to negative velocities (v = [-0.6 mm/s; -1.2 mm/s]), whereas the
bottom figures show solutions for positive velocities (v = [0.6 mm/s; 1.2 mm/s]). The solutions are compared to the analytical solution without
advection (v = 0 mm/s)

Results in figure 11 indicate that our algorithm also performs well for the case of advection with solidification,
regardless of the direction of advection. Our results are also in agreement with those presented by [40] for a similar
test case.

4.5. Two-phase heat transfer in a 2D semi-infinite domain
This problem is the extension of the 1D isothermal phase change for a semi-infinite rectangular corner [42] [23]

[39]. Here, the problem is slightly modified by adding localized heat sources. Consequently, our method is challenged
by the development of a highly irregular phase-change front. Boundary conditions and additional heat sources are
depicted in figure 12-E, whereas physical properties and the initial constant temperature are summarized in table 2.
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Figure 12: Sequence A-B-C-D: phase-front evolution of a two-phase heat transfer problem in a 2D semi-infinite domain (white = liquid phase,
coloured = solid phase). Figure-E shows the evolution of the phase front along the diagonal highlighted in A, whereas initial and boundary
conditions are summarized in figure-F, where the heat sources are also defined.

The sequence A-D in figure 12 shows the temporal evolution of the phase front, which is in agrement with the
position and magnitude of the heat sources. The proposed method is able to track irregular phase-change fronts and
permits the creation/removal of a phase inside another. Figure 12-F compares the position of the phase front along the
corner diagonal with the reference solution obtained from [39]. The influence of the additional heat sources is evident
at t > 0.008s, where the phase front is retarded due to the effect of the nearby positive heat sources. In absence of heat
sources, the position of the phase front is accurately recovered (not shown here).

4.6. ADR system

In this example, we demonstrate how our approach can also be used to model systems in which chemical reactions
are coupled with advection and diffusion. As a test case, we consider a closed system held at constant temperature
and volume in which three different chemical species exist and interact through chemical reactions. Depending on the
relative values of the rate constants describing each reaction, this initial value problem can be stiff and thus difficult
to solve by standard approaches [43] [44]. Identical systems have been studied in the literature, e.g. the modelling of
ozone’s concentration in the atmosphere [45]. The reaction mechanism for the three chemical species is described as
a coupled system of four reactions
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C1 + C2
k1
−→ C3

C1 + C3
k2
−→ 2C2

C2
k3(t)
−→ 2C1

C3
k4(t)
−→ C1 + C2

(12)

where k j ( j = 1, 2, 3, 4) are the reaction rate constants. Eq. (12) can be reformulated in terms of the three reaction
rates, dCi/dt = Ri (i = 1, 2, 3) as

R1 = −k1C1C2 − k2C1C3 + 2k3(t)C2 + k4(t)C3 in Ωi × (0, tend)
R2 = −k1C1C2 + 2k2C1C3 − k3(t)C2 + k4(t)C3 in Ωi × (0, tend)
R3 = k1C1C2 − k2C1C3 − k4(t)C3 in Ωi × (0, tend)

(13)

We use the following values for the reaction constants

k1 = 1.63 × 10−16

k2 = 4.66 × 10−16

k3(t) =

exp (−22.62/ sin (wt)) if sin (wt) > 0
0 else

k4(t) =

exp (−7.601/ sin (wt)) if sin (wt) > 0
0 else

(14)

With the above considerations, the complete advection-diffusion-reaction to be solved reads

∂Ci

∂t
+ v · ∇Ci = ∇ · (Di∇Ci) + Ri in Ωi × (0, tend)

C1 (x, 0) =

106 if 0.3 ≤ x(1) ≤ 0.6
0 else

C2 (x, 0) =

3.7 × 106 if 0.3 ≤ x(1) ≤ 0.6
0 else

C3 (x, 0) =

1012 if 0.3 ≤ x(1) ≤ 0.6
0 else

Ci (0, t) = 0

(15)

where Ci is the concentration of the ith chemical species (i = 1, 2, 3). For simplicity, we assume a constant diffusivity
D1 = D2 = D3 = D. Note that k3(t) and k4(t) have a periodic behavior, with maximum values of 1.5 × 10−10 and
5 × 10−4, respectively, for t = 3/2 s and w = π/3. These conditions simulate the dissociation of species C2 and C3 by
an external time-dependent factor (e.g. sunlight).

The operator splitting is performed as in section 3, dividing (15) into an advection+reaction and diffusion sub-
problems. The Eulerian and Lagrangian approaches are linked with the same interpolation technique described in
sections 3.2.1 and 3.2.2 for each component.
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Figure 13: Spatial distribution of species at three different time steps. The curves denote concentration values at Eulerian nodes. The zoom in area
is shown in 14 and includes the concentration values in the Lagrangian particles.
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Figure 14: Zoom in area in figure 13. Mesh A [100 elements x 400 particles] is compared with the mesh B [400 elements x 1600 particles]. The
particles in mesh A capture the solution at the subgrid scale.

The system (15) is solved in 1D, with Ω = [0, 2], a diffusion coefficient D = 0.5 × 10−3 and an advection velocity
v = 0.3. We use 100 elements in the Eulerian mesh and a total of 400 Lagrangian particles (4 particles per element).
The time step ∆t is set to 0.04 s. Figure 13 show the spatial distribution of each chemical species at times t = 0, 1.5, 3
s at the Eulerian nodes, whereas a zoom-in is shown in figure 14. Results in figure 13 are in perfect agreement with
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the expected evolution of the system, including the double-peak profile of C1 due to the structure of the rate constants
k3(t) and k4(t) [45].

The performance of our interpolation scheme is shown in figure 14, where the results with mesh A [100 elements
x 400 particles] are compared with a more accurate solution obtained with a finer mesh B [400 elements x 1600
particles]. Also, the importance of adding the conservative node-particle correction term (section 3.2.2 and Appendix
B) to enforce mass conservation is illustrated in figure 15. The combination of particles with our grid-to-particle
interpolation scheme provides a superior solution (with subgrid resolution) than the more common linear interpolation.
The solution captured by the particles in mesh A reproduces closely the (correct) solution obtained with the finer mesh,
but at a significantly lower computational cost. Importantly, there is no phase error between different mesh sizes, as
the Lagrangian approach computes the advection exactly. The local particle-to-node interpolation, however, smooths
the initial condition of the Eulerian subproblem at every time step. As a consequence, some minor clipping [46]
is observed, resulting in the lost of amplitude in concave and convex zones (figure 14). Although beyond of the
scope of the present paper, we mention that this effect can be easily minimized at a low cost by a local correction
for the particles’ values in the problematic zones using second nodal derivatives in space and the particle’s a priori
information.
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Figure 15: Relative mass error, εrel, at every time step for the different steps of our node-to-particle interpolation scheme in logarithmic scale. The

relative error is computed as εrel =

∣∣∣∣∣∣∣
∑

i
∑

p

(
Cp

im
−Cp

im−1

)
∑

i
∑

p Cp
im−1

∣∣∣∣∣∣∣. sp+diff refers to the particle’s concentration with the shape-preserving and diffusive terms;

the third step in section 3.2.2 is added in sp+diff+corr.

5. Conclusion

In this paper we have presented a versatile particle-based Lagrangian-Eulerian algorithm coupled with a heat
source method for the solution of a large class of unsteady advection-diffusion-reaction (ADR) problems that include
phase changes. The method combines the individual advantages of Lagrangian formulations for advection-dominated
and coupled chemical reaction problems with those of Eulerian formulations for diffusion and phase change problems.
The coupling between the Lagrangian and Eulerian subproblems is achieved with a phase change detector scheme
based on a latent heat balance and a consistent/conservative interpolation technique between Lagrangian particles
and the Eulerian grid. The use of an auxiliary Eulerian mesh facilitates the coupling of our method with the so-
called Multiscale Finite Element Method (MsFEM) [33], as we could compute the multiscale basis functions on this
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auxiliary mesh with the information coming from the particles. In addition, our algorithm offers flexibility in terms
of the number of integration points to use, since the subgrid has spatially accurate information transferred from the
particles, and is highly parallelizable. Adaptivity schemes for both, the Lagrangian particles and the Eulerian mesh
can also be implemented in order to improve the accuracy of the method.

Numerical examples show that no numerical diffusion or oscillations are introduced with this approach for ex-
clusively advective problems, even in the presence of sharp gradients. Our new coupling of the LE algorithm with
the heat source method not only maintains the original advantages of the latter for phase change problems (e.g. rela-
tively coarse meshes and large time steps can be used, efficiency, isothermal and non-isothermal problems), but also
permits a more detailed tracking (at particle level) of highly irregular phase transition fronts in both isothermal and
non-isothermal cases with or without advection. The method also performs well in advection+diffusion problems with
phase change, regardless of the advection direction. Advection-diffusion with coupled chemical reactions have also
been presented. These results show that our method is general, efficient, and can handle a great variety of challenging
problems that arise in many scientific disciplines, including those that involve advecting sharp fronts. We believe that
the simplicity, versatility and efficiency of our algorithm make it an attractive candidate for future developments of
coupled codes that also include the solution of the mass and momentum equations in the modelling of complex ADR
natural processes (e.g. planetary convection, groundwater reactive flow, bacterial pollution, etc).
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Appendix A. Heat Source Method

The internal heat source or sink term in eq. (1), QPC , can be written as,

QPC = ρ
d
dt

(∫
Ω

LdΩ

)
(A.1)

where the density, ρ, is multiplied by the change in the amount of absorbed or released latent heat, L, over time. As
the latent heat is absorbed or released according to change of temperature, the problem is non-linear. Therefore, an
iterative procedure is required to compute QPC . The following lines are devoted to the description of one iteration, k,
for any time step m [tm−1, tm] of the original heat source method by Rolph and Bathe [23].

For every iteration k, we compute,

1. Recover known data from the previous iteration k − 1, or time step, m − 1 (table (1)).
2. Solve the transient diffusion-phase change problem (A.2), by a suitable solver, in order to get T k

m,

M
dT̂ k

m

dt
+ KT̂ k

m = Qk−1
PC (A.2)

3. Detection of new nodes undergoing phase change.
For the nodes where Qk−1

f lag , 0 and

T k−1
m > Tliq > T k

m solidification

T k−1
m < Tsol < T k

m melting

We do Qk
f lag = 0.
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Variable Description
Tm−1 Temperature at each node at time tm−1.
T k

m Temperature at each node at time tm for the iteration k.
T k

corr Corrected temperature at each node undergoing phase change. Com-
puted at the end of each iteration k.

Tliq Liquidus temperature at each node. Initialized once in the beginning of
the computation.

Tsol Solidus temperature at each node. Initialized once in the beginning of
the computation.

ĉp Effective heat capacity for nodes undergoing phase change.
Q f lag Flag variable. -1 for liquid, 0 node undergoing phase change and 1 for

solid.
QMAS S Lumped mass in each node. Initialized once in the beginning of the

computation.
QTOT L Total latent heat available in each node. Initialized once in the beginning

of the computation. QTOT L = QMAS S · L
QINCR Amount of latent heat absorbed or released for each node. Set to zero

in the beginning of each iteration k
QCUMU Amount of latent heat absorbed or released for each node. Set to zero in

the beginning of the computation and updated in the iterative procedure,
until |QCUMU | ≥ |QTOT L|

QPC Heat source vector. Set to zero in every time step and updated in the
iterative procedure. The absolute value of QPC is upper limited by
|QTOT L|/∆t, where ∆t = tm − tm−1

Table A.3: Description of the variables

4. Compute the absorbed or released latent heat at each iteration.

For nodes undergoing phase change for the first time at the iteration k (Qk−1
f lag , 0 and Qk

f lag = 0), QINCR is
calculated as,

QINCR = ĉp

(
Tliq − T k

m

)
QMAS S solidification

QINCR = ĉp

(
Tsol − T k

m

)
QMAS S melting

where,

ĉp =
1(

Tliq−Tsol

L + 1
cp

)
For the nodes that where already undergoing phase change from the previous iteration k − 1, we do,

QINCR = ĉp

(
Tm−1 − T k

m

)
QMAS S

5. Update of QCUMU and QPC using QINCR

Qk
PC = Qk−1

PC +
QINCR

∆t

Qk
CUMU = Qk−1

CUMU + QINCR

6. Temperature correction for the nodes undergoing phase change, Qk
f lag = 0,

T k
corr = Tliq −

|Qk
CUMU |

QTOT L

(
Tliq − Tsol

)
solidification
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T k
corr = Tsol +

|Qk
CUMU |

QTOT L

(
Tliq − Tsol

)
melting

and reset the temperature values for those nodes doing T k
m = T k

corr.
7. Detection of nodes with complete phase change

Nodes with |Qk
CUMU | ≥ |QTOT L| have released or absorbed all the available latent heat, and they are considered

to have completed the phase transition. They are correspondingly flagged Qk
f lag = ±1.

8. Check convergence and prepare next iteration using T k
m and T k−1

m .
If convergence is not achieved or k = 1 go back to step 1, and do k = k + 1.
Otherwise, Tm = T k

m, and the iterative procedure is over.

Appendix B. Interpolation

This appendix describes the computation of the terms introduced in section 3.2.2: the shape-preserving term,(
∆T p

m

)
sp

, the subgrid diffusion,
(
∆T p

m

)
di f f

, and the conservative node-particle correction,
(
∆T p

m

)
corr

.

Appendix B.1. Shape-preserving interpolation

Initial sharp temperature gradients, exothermic chemical reactions, phase changes etc. may lead to a heterogeneous
particle temperature distribution. Through this shape-preserving term we aim to preserve this a priori heterogeneity
at the particles after solving the Eulerian subproblem. We propose a geometrical operation based on temperature
values of the particles relative to the temperatures of the surrounding nodes. Figure 2 d) shows the contribution of the
shape-preserving increment to the particles, where the sharp gradient is preserved and each of the particle’s value is
adapted to the new nodal values.

In order to define the relative values or ratios, we require the initial nodal values, T IJ
m−1, the particles’ values after

solving (5), T p
m∗ , and the linear/bilinear interpolation of initial nodal values into the particles’ new positions, T pin

m−1. For
each particle p and a neighboring node IJ, the expression for the ratio Xp

IJ reads,

Xp
IJ =

T p
m∗ − T IJ

m−1

T p
m∗ − T pin

m−1

where T IJ
m−1 is the value of the surrounding node, T p

m−1 is the particle value and T pin
m−1 is the linear/bilinear interpolation

of nodal values into the particle’s position at time tm−1. From the previous expression we can recover the particle’s
initial value as,

T p
m∗ =

T pin
m−1Xp

IJ − T IJ
m−1

Xp
IJ − 1

In analogy to the expression above and using the notation related with the new nodal values (subindex m), we
could preserve a specific ratio related to one node, Xp

IJ , and write a particle’s new value at tm as,

T p
m = T p

m∗ + ∆T p
IJ =

T pin
m Xp

IJ − T IJ
m

Xp
IJ − 1

where T pin
m is the linear/bilinear interpolation of new nodal values into the particle new position. After some algebra

we can obtain the incremental value needed to preserve a certain nodal ratio Xp
IJ , ∆T p

IJ ,

∆T p
IJ =

(
T pin

m − T pin
m−1

)
Xp

IJ −
(
T IJ

m − T IJ
m−1

)
XIJ − 1

This incremental value is, in general, different for each Xp
IJ . This means that a different ∆T p

IJ should be added
to a given particle p in order to preserve all the ratios Xp

IJ . Since this is impossible to do, we propose the following
weighted expression,
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(
∆T p

m

)
sp

=
∑
IJ

wp
IJ∆T p

IJ

where wp
IJ =

(
1 − ∆xp

IJ
∆x

) (
1 − ∆yp

IJ
∆y

)
, being ∆xp

IJ and ∆yp
IJ the cartesian distance of each particle to the surrounding nodes

(see figure 1).

Appendix B.2. Subgrid diffusion

The previous shape-preserving interpolation is a “rigid” transformation (see figure 2). The present subgrid dif-
fusion term,

(
∆T p

m

)
di f f

, mimics the effect of diffusion at the particles’ scale without having to solve the system of
equations (4). It is computed using the actual thermal diffusivity of the particles as follows,(

∆T p
m

)
di f f

= ∆T p
�

[
1 − exp

(
−d

∆t
∆tdi f f

)]
(B.1)

where ∆T p
� = T pin

m −

(
T p

m∗ +
(
∆T p

m

)
sp

)
is the difference between the temperatures predicted by the shape-preserving

interpolation (i.e. no diffusion) and by a linear interpolation (i.e. infinite diffusion), ∆tdi f f = min{∆x,∆y}2/ (2κ),
∆t = tm− tm−1, κ is the diffusivity and d is a dimensionless scalar (here d = 0.1). The nature of the previous expression
resides in the analytical heat flow solution for 1D semi-infinite domains for constant initial temperature ([41], page 59),
where −d ∆t

∆tdi f f
is a dimensionless parameter controlling how fast temperature diffuses. At this stage, for κ → ∞, we

get from (10) T p
m = T pin

m . This means that for very diffusive problems this step recovers the linear/bilinear interpolation
solution. On the contrary, for κ = 0 we obtain

(
∆T p

m

)
di f f

= 0, and no subgrid diffusion is introduced to the particles.
See section 4.5 for the case of mass diffusion.

Appendix B.3. Conservative node-particle correction

ADR processes that explicitly account for changes in thermal energy and/or mass should be conservative in these
quantities. This last correction term ensures a conservative node-to-particle balance in our particle-based LE scheme.
We first describe the correction for enthalpy and then extend it for the case of mass conservation.

The governing equations for diffusion + phase change are explicitly solved only in the Eulerian mesh. The total
enthalpy change after each time step is

∆H = m · cp · ∆T (B.2)

where m and cp are the total mass and the average heat capacity of the system, and ∆T is the temperature change
between two consecutive time steps. A thermodynamically-consistent node-to-particle interpolation scheme requires
that the ∆H computed in the Eulerian subproblem is consistently transferred to the particles. In other words, any
temperature field associated with the particles must satisfy the constraint of being consistent with the global ∆H
computed in the Eulerian subproblem. Since the previous two terms (

(
∆T p

m

)
sp

and
(
∆T p

m

)
di f f

) are independent of this
constrain, there would be a residual RH between the ∆H computed at the Eulerian mesh and that obtained from the
particles

RH =
∑

p

mp · cp
p ·

(
∆T p

m

)
corr

=
∑

I

mI · cI
p · ∆T I −

∑
p

mp · cp
p ·

((
∆T p

m

)
sp

+
(
∆T p

m

)
di f f

)
(B.3)

RH represents the enthalpy residual that needs to be distributed to the particles. This correction can be computed
in several ways. For instance, we could uniformly transfer this residual to the particles. However, this approach
would (incorrectly) change the temperature of particles located in regions where no real temperature change has been
computed (i.e. their neighbour nodal temperature has not been modified after the Eulerian approach). This leads to
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physically meaningless results at the particle scale, and the possible creation of new maxima/minima. Therefore, we
propose a local correction that is applied only if p ⊂ [

(
∆T p

m

)
sp
∪

(
∆T p

m

)
di f f
, 0].

For this purpose, let us subdivide the particles into two groups depending on whether their
(
∆T p

m

)
di f f

is positive

or negative. Then, if RH > 0 (i.e. temperature/enthalpy deficit), only those particles for which
(
∆T p

m

)
di f f

> 0
are corrected by adding more subgrid diffusion. Conversely, if RH > 0 (i.e. temperature/enthalpy excess), only
those particles with

(
∆T p

m

)
di f f

< 0 are corrected by subtracting subgrid diffusion. Besides being physically realistic,
this scheme guarantees that no artificial minimum/maxima will be created in the particles. The actual correction is
achieved with the aid of two proportionality constants Xadd and Xrem, defined as

Xadd =
RH∑

p⊂∗∗ mp · cp · ∆T p
�

if RH > 0

Xrem =
RH∑

p⊂?? mp · cp · ∆T p
�

if RH < 0
(B.4)

where (∗∗) refers to
(
∆T p

m

)
di f f

> 0 and (??) to
(
∆T p

m

)
di f f

< 0. ∆T p
� has been defined in B.2 and it represents a

maximum attainable diffusion for each particle. The correction
(
∆T p

m

)
corr

is thus defined as

(
∆T p

m

)
corr

=


Xadd · ∆T p

� if p ⊂
(
∆T p

m

)
di f f

> 0

Xrem · ∆T p
� if p ⊂

(
∆T p

m

)
di f f

< 0

0 else

(B.5)

Since each particle has a different value of ∆T p
� ,

(
∆T p

m

)
corr

will in general be different for every particle. Notice

that
(
∆T p

m

)
corr

enforces the desired consistency between the enthalpy change computed at the Eulerian nodes and that
transferred into the particles,

∑
p

mp · cp
p ·

(
∆T p

m

)
corr

=
∑

p

mp · cp
p · X · ∆T p

� =
∑

p

mp · cp
p · RH · ∆T p

�∑
p mp · cp

p · ∆T p
�

 = RH

The above procedure can be equally applied for a mass conservation problem (e.g. the ADR system involving
chemical reactions between different species in section 4.6). For instance, the residual in B.3 is rewritten as,

RH = −
∑

i

∑
p

∆Cp
im

(B.6)

where ∆Cp
im

= Cp
im
−Cp

im−1
refers to the change in mass of species i in a single time step (note that Cp

im
already includes

the shape preserving and diffusion corrections). RH then represents the mass residual that needs to be distributed to
the particles. Similarly to B.4 and B.5, we define a correction over ∆Cp

im
as

∆Cp
im

= Xtotal
i ∆Cp

im

Xtotal
i =

RH∑
p |∆Cp

im
|

(B.7)

Appendix C. Analytical Solution for melting and solidification in 1D semi-infinite domain

Solidification and melting are the most important cases in which a substance changes phase while emitting or ab-
sorbing heat. There is a moving surface of separation between the two phases and its evolution needs to be determined
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as heat is absorbed or released in there. There are few exact solutions for this problem [41]. The governing equations
to be satisfied for a one dimensional isothermal melting or solidification problems in linear flow are,

Tp1 = Tp2 = Tpc when x = χ(t) (C.1)

kp1
∂Tp1

∂x
− kp2

∂Tp2

∂x
= Lρ

dχ
dt

(C.2)

∂2Tp1

∂x2 −
1
κp1

∂Tp1

∂t
= 0 (C.3)

∂2Tp2

∂x2 −
1
κp2

∂Tp2

∂t
= 0 (C.4)

where c, k and κ are the thermal constants for heat capacity, thermal conductivity and diffusivity, and the subindexes
p1 and p2 refer to the solid and liquid phase respectively. Volume change due to the phase change is neglected in
C.1 (density, ρ, remains constant in both phases). χ(t) is the position of the interface between the solid and liquid
phases, where the region x < χ(t) contains solid at temperature Tp1 < Tpc and x > χ(t) contains liquid at temperature
Tp2 < Tpc. Tpc is the temperature where the phase change occurs.

Equation C.1 has an analytical solution for the following case: liquid at initial constant temperature T0, 0 surface
temperature in x = 0 for t > 0, and additional boundary conditions Tp2 → T0, as x → ∞ and Tp1(0, t) = 0. This
particular analytical solution reads,

Tp1 =
Tpc

erf [λ]
erf

 x

2
(
κp1t

) 1
2

 (C.5)

Tp2 = T0 −

(
T0 − Tpc

)
erfc

[
λ
(
κp1/κp2

) 1
2
]erfc

 x

2
(
κp2t

) 1
2

 (C.6)

where λ is a numerical constant determined by,

e−λ
2

erfλ
−

kp2

kp1

κp1
1
2

κp2
1
2

(
T0 − Tpc

)
e
−λ2 κp1

κp2

Tpcerfc
[
λ
(
κp1

κp2

) 1
2
] =

λLπ
1
2

cp1Tpc
(C.7)
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