
Astronomy & Astrophysics manuscript no. sn2014J c©ESO 2016
February 8, 2016

Gamma-Ray emission from SN2014J near maximum optical
light?
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ABSTRACT

Context. The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by
the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white
dwarf.
Aims. Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion.
In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve,
could provide information about the distribution of the radioactive elements in the debris.
Methods. In this paper, the gamma data obtained from SN2014J in M82 by the instruments on board of INTEGRAL
are analyzed taking special care of the impact that the detailed spectral response has on the measurements of the
intensity of the lines.
Results. The 158 keV emission of 56Ni has been detected in SN2014J at ∼ 5σ at low energy with both ISGRI and SPI
around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the
lines suggest that, in addition to the bulk of radioactive elements buried in the central layers of the debris, there is a
plume of 56Ni, with a significance of ∼ 3σ, moving at high velocity and receding from the observer. The mass of the
plume is in the range of ∼ 0.03 − 0.08 M� .
Conclusions. No SNIa explosion model had predicted the mass and geometrical distribution of 56Ni suggested here.
According to its optical properties, SN2014J looks as a normal SNIa. So it is extremely important to discern if it is also
representative in the gamma-ray band.
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1. Introduction

Type Ia supernovae (SNIa) are the outcome of the ther-
monuclear explosion of a carbon/oxygen white dwarf in
a close binary system. During this explosion significant
amounts of radioactive isotopes are produced, the most
abundant being 56Ni which decays to 56Co ( T1/2 = 6.08

days) and further to 56Fe (T1/2 = 77.24 days). These ra-
dioactive nuclei produce gamma-rays that thermalize in
the ejecta and are thus ultimately responsible for the
power of the luminous supernova. The most important line-
producing nuclear transitions are due to 56Ni (158, 480,
750 and 812 keV) and 56Co (847 and 1238 keV). To these
photons one must add those produced by the annihilation
of positrons either directly or through the formation of
positronium. As ejecta expansion proceeds, matter becomes
more and more transparent and an increasing fraction of
gamma rays escapes, thus avoiding thermalization. There-
fore, gamma-rays escaping the ejecta can be used as a diag-
nostic tool for studying the structure of the exploding star
and the characteristics of the explosion (Clayton et al. 1969;
Gómez-Gomar et al. 1998; Höflich et al. 1998; The & Bur-
rows 2014). In particular, the comparison between early and
late spectra is especially illustrative since it is sensitive to
the distribution of 56Ni in the debris (Gómez-Gomar et al.
1998), and can thus advance our understanding of this cru-
cial cosmological tool (Isern et al. 2011; Hillebrandt et al.
2013). The attempt to detect with INTEGRAL gamma-
ray emission from SN2011fe in M101 failed because of its
distance (∼ 6.4 Mpc) yielded a too faint flux (Isern et al.
2013). So far, the signatures of 56Ni and 56Co decay were
observed in hard X-rays and gamma-rays only from the
Type II SN1987A in The Large Magellanic Cloud (Sunyaev
et al. 1987; Matz et al. 1988; Teegarden et al. 1989).

SN2014J was discovered by Fossey et al. (2014) on Jan-
uary 21st in M82 (d = 3.5 ± 0.3 Mpc). The moment of the
explosion of SN2014J was estimated to be on January 14.72
UT 2014 (Zheng et al. 2014) or JD 2456672.22. INTEGRAL
began on observing this source on January 31st, 16.5 days
after the explosion and ended 18th February, 35.2 days after
the explosion. Late time observations, 50 – 100 days after
explosion, were also programmed allowing the detection of
the 56Co emission lines for the first time (Churazov et al.
2014a,b). The firm detection in SN2014J of the gamma-ray
emission when the 56Ni emission is still important (Isern
et al. 2014) offers the opportunity to gain insight on the
abundances and distribution of these radioactive isotopes.

2. INTEGRAL observations

INTEGRAL is an ESA scientific mission able to operate in
gamma-rays, X-rays and visible light (Winkler et al. 2003).
It was launched in October 17th 2002 into a highly eccen-
tric orbit with a period of 3 days, spending most of this
time outside the radiation belts. The results presented here
were obtained during orbits 1380-1386 as described in Ta-
ble 1 (proposal number 1170001, public; proposal number
1140011, PI: Isern). Orbit 1387 was devoted to calibration
and orbit 1388 was affected by a giant solar flare.

? Based on observations with INTEGRAL, an ESA project
with instruments and the science data center funded by ESA
member states (especially the PI countries: Denmark, France,
Germany, Italy, Switzerland, and Spain), the Czech Republic,
and Poland and with the participation of Russia and USA.

Table 1. INTEGRAL observations schedule (IJD: INTEGRAL
Julian Day). The moment of the explosion of SN2014J, January
14.72 UT 2014, corresponds to JD 2456672.22 or IJD 5127.75.

Orbit IJD start IJD Stop Days after explosion
1380 5144.298 5146.956 16.5-19.2
1381 5147.289 5149.941 19.6-22.2
1382 5150.280 5152.699 22.6-25.0
1383 5153.925 5155.922 26.2-28.2
1384 5156.262 5158.486 28.6-30.8
1385 5159.254 5161.899 31.6-34.2
1386 5162.248 5162.858 34.4-35.2

The instruments on board are: i) The OMC camera, able
to operate in the visible band up to a magnitude 18 (Mas-
Hesse et al. 2003), it was used to obtain the light curve
in the V-band allowing an early estimate of the amount
of 56Ni necessary to account for the shape of the optical
light curve, as well as to predict the intensity of the 56Co
line at late times, ii) the X-ray monitors JEM-X, that work
in the range of 3 to 35 keV (Lund et al. 2003) that were
used to constrain the continuum emission of SN2014J in
this band, and iii) the two main gamma-instruments, SPI,
a cryogenic germanium spectrometer able to operate in the
energy range of 18 keV - 10 MeV (Vedrenne et al. 2003), and
IBIS/ISGRI, an imager able to operate in the energy range
of 15keV to 1 MeV (Lebrun et al. 2003; Ubertini et al. 2003).
Below 300 keV IBIS/ISGRI is more sensitive than SPI, a
factor ∼ 3 in the region of ∼ 150 keV (Lebrun et al. 2003;
Roques et al. 2003), but the sensitivity of both instruments
is good enough to allow the comparison of the results in the
region of 40 to 200 keV.

2.1. The OMC data

Fig.1 displays the light curve obtained with the OMC as
well as those provided by several models obtained assum-
ing different parameters and boundary conditions in order
to illustrate the sensitivity of the light curve to different hy-
pothesis about the origin of the supernova. The reduction
of the photometric data followed the same procedures as in
the case of SN2011fe (Isern et al. 2013). For SN2014J the
main difficulty is the contamination by unresolved stars in
M82 as a consequence of the large pixel size of the OMC
(17.5"). This problem was overcome by subtracting images
of the same region of M82 obtained in 2012.

The peak magnitude of V=10.6 occurred at JD =
2456691.9 ± 1, 19.7 days after the explosion and, 15 days
after maximum, the light curve had dropped by 0.6 mag,
in agreement with observations obtained at the Las Cum-
bres Observatory Global Telescope Network (Marion et al.
2015). Fig. 1 displays the resulting V-band light curve with-
out correcting for extinction. This light curve can be com-
pared to several theoretical models and, in principle, a
matching solution can be obtained. Nevertheless, this so-
lution is not unique since similar light curves can be ob-
tained conveniently tuning the different parameters that
characterize each model family. Furthermore, environment
circumstances, like the presence of circum-stellar material
can modify the shape of the light curve as it can be seen in
the figure. Just as an example, the model represented by a
continuous line in the figure has synthesized ∼ 0.65 M� of
56Ni.
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Fig. 1. Optical light curve in the V-band versus the time after
the explosion. Filled dots represent the data obtained with the
OMC camera on board of INTEGRAL without correcting from
extinction, empty dots the data provided by Las Cumbres Ob-
servatory Global Telescope Network (Marion et al. 2015). The
solid line is a delayed detonation (DDT) that gives a good fit
to the SN2014J OMC light-curve. It produces 0.65 M� of 56Ni,
and ejects a total mass of 1.37 M� with a kinetic energy of
1.3 × 1051 ergs. The dashed line represents a similar DDT ex-
plosion in which a 1.2 M� white dwarf is embedded in a 0.2 M�
halo made of carbon and oxygen, and is intended to be represen-
tative of merging models (double degenerates, or DD models).
The dotted line is for a model fitting the light-curve properties
of SN2011fe (Isern et al. 2013).

Since the optical and infrared observations of SN2014J
(Marion et al. 2015) strongly support the idea of no-mixing
in the outer layers, and delayed detonation (DDT) models1
predict such a behaviour, a model of this class reasonably
fitting the light curve and satisfying the constraints im-
posed by the late observations of INTEGRAL (Churazov
et al. 2014b) has been selected as a reference. This model,
the DDT1P4 model, produces 0.65 M� of 56Ni and ejects
1.37 M� of material with a kinetic energy of 1.32 × 1051

erg. During the epoch corresponding to ∼ 50 − 100 days
after the explosion, the 847 and 1238 keV 56Co lines ob-
tained with this model exhibit a mean flux of 3.1 × 10−4

and 2.2 × 10−4 cm−2s−1, are centred at 851 and 1244 keV
and have a FWHM of 29 and 42 keV respectively, to be
compared with the observed values (2.34± 0.7)× 10−4 and
(2.78 ± 0.7) × 10−4 cm−2s−1, 852 ± 4.5 and 1255 ± 7 keV,
and 24 ± 8 and 45 ± 14 keV respectively (Churazov et al.
2014b). This amount of 56Ni is also in agreement with the
value, ∼ 0.6 M� obtained with the mid-infrared observa-
tions (Telesco et al. 2015).

2.2. JEM-X data

They were analyzed with the same methods that are de-
scribed in Isern et al. (2013). The flux during revolutions
1380-1386 at the position of the supernova was 1.5× 10−3

cm−2 s−1 in the 3-10 keV band while there was no detec-
tion in the 10-25 keV range, with a 3σ flux upper limit of
1 Models in which the flame starts at the centre and propagates
subsonically making a transition to a supersonic regime when
the density is small enough (Höflich et al. 2002).

6 × 10−4 cm−2 s−1. These fluxes are consistent with the
values found in the same position before the explosion and
can be attributed to the combined contribution of compact
sources in M82, in particular M82X-1 and X-2 (Bachetti
et al. 2014; Sazonov et al. 2014).

2.3. SPI data

The SPI data were cleaned and calibrated with the standard
procedure described in section 2.2 of Isern et al. (2013).
During this period of observations, science windows show-
ing high rates in the anticoincidence system of SPI when
INTEGRAL was exiting the radiation belts were removed
(∼ 2− 3 first science windows per revolution) to avoid sys-
tematic errors induced by strong background fluctuations.
e.g. see Fig. 5 of Jean et al. (2003).

The behaviour of the instrumental background, pro-
duced by the interactions of cosmic-rays and solar protons
with the instrument, is very complex, see Jean et al. (2003)
and Weidenspointner et al. (2003) for a detailed discussion.
Unfortunately, the two main decay lines of 56Ni, the 158
keV and 812 keV lines, may be affected by two instrumen-
tal lines due to decays of 47Sc and 58Co that produce lines
at 159 keV and 811 keV, respectively, depending on the shift
of the 56Ni lines with respect to their canonical energy.

The spatial and temporal modulations produced by the
coded mask and dithering allow to reject the background
lines as long as their positions and widths are well aligned
among the detectors, and the detector pattern (the relative
count rate between detectors) is well known. The procedure
adopted here consists in adjusting the flux from SN2014J
for each energy bin in two steps. In the first step, a back-
ground count rate was obtained per orbit, detector and en-
ergy bin to fix the detector pattern. In the second step, a
global background rate factor was fitted per pointing, keep-
ing the detector pattern (i.e. the relative count rate between
detectors) fixed to the values determined in the first step.
Despite such precautions some residual instrumental lines
could remain and since these lines are intrinsically narrow,
any narrow feature of the observed spectrum risks to be
confused with them if the background is not correctly mod-
elled.

Indeed, one of the main problems in the interpretation
of the data is that the flux extracted in an energy bin Ei

contains not only the source photons emitted at this energy
(later called diagonal terms) but also those emitted with an
energy E > Ei that do not deposit all their energy in the de-
tectors (e.g. Compton edge, backscattering photons - later
called off-diagonal terms). This last contribution is not neg-
ligible at low energies and can be obtained comparing the
extracted spectrum with the theoretical spectra duly con-
volved with the spectral response of the instrument. There-
fore, in order to make a meaningful comparison between the
spectra measured with SPI and theoretical models, these
ones have to be convolved with the instrumental response
to take into account the off-diagonal terms of the spectral
response.

In the case of SPI, the convolved spectrum is calcu-
lated for a given theoretical model taking into account the
SPI IRF (Imaging Response Files) and RMF (Redistribu-
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Fig. 2. SPI spectral response to the DDT1p4 model during
revolutions 1380-86. The dotted and dashed lines represent the
contribution of the diagonal and off-diagonal terms of the con-
volved spectrum respectively. The solid line is the sum of both
components. The diagonal component scales with the original
model while the non-diagonal component is produced by the en-
ergy redistribution of high energy photons and contributes to the
continuum with an amount comparable to that of the diagonal
component in the 100-200 keV range.

tion Matrix Functions)2, where the RMF were calculated
by Monte Carlo simulations (Sturner et al. 2003). This con-
volution method has been successfully tested using the data
obtained from the Crab Nebula observations during revo-
lution 1387 and the results obtained by Jourdain & Roques
(2009). The model convolutions were performed with IRF s
and RMF s version 7.0 and the theoretical models used in
this work are described in appendix A and table A.1. As an
example, Fig. 2 presents the DDT1p4 spectrum convolved
with the spectral responses of SPI during revolutions 1380-
1386 as well as the influence of the off-diagonal terms.

The analysis of the data obtained by SPI during this
first observation period has revealed an emission excess
in the 70-190 and 650-1300 keV bands at the position of
SN2014J that was not present in the observations per-
formed by INTEGRAL before the explosion. Figure 3 dis-
plays this emission excess in the energy band of 145-165
keV, where the 158 keV 56Ni gamma-ray line is expected
to lay. The significance of this excess, 5σ, is computed sub-
tracting the log of the maximum likelihood values obtained
by fitting both the background alone and the background
plus source. The figure also shows that the maximum of the
emission coincides with the position of SN2014J, l = 140.5o,
b = 42.5o, and it is clearly isolated from the neighbouring
sources as seen by SPI. This localization represents an im-
provement with respect to the offset of ∼ 2o present in the
previous values reported by Diehl et al. (2014).

In the low energy region, it has been found in the SPI
data a broad and completely unexpected redshifted fea-
ture associated to the 158 keV 56Ni gamma-ray line3. Fig-
ure 4 displays the spectrum obtained during orbits 1380-

2 For more details on the method, see Compact Source
Analysis document: http://www.isdc.unige.ch/integral/
download/osa/doc/10.1/spi_compact_source_analysis.pdf
3 See however Diehl et al. (2014) for a different analysis.
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Fig. 3. Gamma-ray signature of SN2014J in the SPI data. The
panel displays the statistics map for single detector events (SE)
obtained by SPI during the entire early period of observation
(days ∼ 16− 35 days after the explosion) over the energy band
145-165 keV. The maximum likelihood ratio of the contour lines
is 0, 2.5, 5, 10, 15 and 20. This statistics map has been obtained
by fitting a point source on top of the background and the back-
ground alone for each position using pixels of 0.5 degrees. The
excess in the SN2014J position is 5σ.

1386 (16.5-35.2 days after the explosion) by SPI in the
120-190 keV band using two independent procedures and
the spectrum predicted by different theoretical models (see
Appendix A) after being convolved with the SPI response.
Notice that all the classical, spherically symmetric models
predict a blueshifted line at this epoch and that the contin-
uum, which depends on the adopted model, is in the range
of 1.5×10−6 and 5×10−6 ph cm−2s−1keV−1. Figure 4 also
shows the concordance between the two independent anal-
ysis of data that have been performed in the region where
the 158 keV 56Ni line should be placed.

Figure 5 presents the spectrum from 20 keV to 1370 keV
with a binning of 50 keV, where a flux excess in the 720-870
keV energy band can also be seen. The significance of this
excess is ∼ 2.8 σ and can be attributed to the contribution
of the 56Ni and 56Co decays. Unfortunately, the blending
of the 812 keV 56Ni and 847 keV56Co lines, caused by the
Doppler broadening (Gómez-Gomar et al. 1998) together
with the relative weakness of the fluxes, prevents any spec-
troscopic analysis of these individual gamma-ray lines. It
is also interesting to notice the presence of a feature with
a 2.6 σ significance at ∼ 730 keV, the position that would
correspond to the 750 keV 56Ni line redshifted by the same
amount as the 158 keV line (see Figure 6). The gaussian fit
of this feature gives a flux of (1.5±0.7)×10−4 ph s−1cm−2
(2.1 σ), a centroid placed at 733.4± 3.8 keV and a FWHM
of 16.9± 9.0 keV.

If it is assumed that the redshifted feature associated
to the 158 keV line is due to 56Ni, the other gamma-ray
lines emitted by this isotope should also be redshifted and
their widths and fluxes should be in agreement with those
of the 158 keV line taking into account their branching ratio
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Fig. 4. Spectrum of SN2014J obtained by SPI during revolu-
tions 1380-1386 in bins of 5 keV in the 120-190 keV band. Filled
circles were obtained with the procedures described in Isern et al.
(2013) and empty squares as in Churazov et al. (2014b). The last
ones have been shifted 0.5 keV for a sake of clarity. The lines
represent the signal that is expected from a subset of theoretical
models listed in Table A.1 (SC*F means SC1F and SC3F) after
convolving with the SPI response. The shaded region is centred
at the nominal energy of the 56Ni line, 158.4 keV, and its width
is equal to the energy resolution of SPI at this energy.

Fig. 5. Gamma-ray spectrum during revolutions 1380-1386
(16.5-35.2 days after the explosion). Bins are 50 keV wide. The
continuous line represents the best fit obtained scaling the model
DDT1p4 by a factor 0.93 (0.605 M� of 56Ni) - long dashed line-
and adding a 56Ni plume of 0.077 M�-short dashed line.

(see below). Therefore, the inclusion of the measured bins
of the high energy lines in the spectral analysis provides an
additional constraint to the analysis of the 56Ni emission.
Consequently, the flux, the width and the redshift of the 158
keV line were fitted to the data by linking these three pa-
rameters to the respective fluxes, broadening and redshifts
of the 750 keV and 812 keV lines with their corresponding
branching ratio (0.50 and 0.86, respectively). Under these
conditions, the best fit with a gaussian that links this fea-
ture with the red-shifted 750 and 812 keV 56Ni lines gives
a flux of (1.6 ± 0.4) × 10−4 cm−2s−1, centred at 155.2+1.3

−1.1

Fig. 6. Gamma-ray spectrum during revolutions 1380-1386
(16.5-35.2 days after the explosion) but with bins of 25 keV size.
As in Figure 5, the continuous line represents the best fitting
model convolved with the SPI response.

keV with a FHWM 5.2+3.4
−2.2 keV. These values were obtained

from the analysis of the 2 keV bin spectrum (615 bins) be-
tween 120 keV to 1350 keV. Taking into account there are
three free parameters, energy shift, broadening and flux in
the 158 keV line, this gives χ2 = 564.76 and a reduced
χ2 = 0.923 for a dof 612. The null hypothesis yields to a
χ2 = 592.251 - i.e. the ∆χ2 ∼ 27.5.

These results contrast with those found by Diehl et al.
(2014), who observed two very narrow lines placed at the
nominal values of the 158 and 812 keV 56Ni features, very
near to the aforementioned instrumental lines. Fortunately,
the 158 keV feature found in this work is broad and is
shifted to ∼ 155 keV, where there are no such background
lines.

The evolution of the spectrum during this early phase of
observation could also provide some hints on the nature of
the explosion. With such a purpose, data in the 120-190 keV
band were grouped into bins corresponding to revolutions
1380-81, 1382-83 and 1384-85. These time intervals were
chosen as a compromise between an optimal signal to noise
ratio and the possibility to solve in time the light curve.
Figure 7 displays the gaussian fits obtained in this way.
The flux measured during revolutions 1380-1381 is (2.23±
0.80)× 10−4 ph cm−2 s−1, centered at 152.6± 2.8 keV and
with a significance of 2.8 σ. In the other two bins the signal
to noise ratio is too poor to perform any definite comparison
about the evolution of the lines and only upper limits ( 2 σ
level) can be provided: < 1.72×10−4, and < 1.53×10−4 ph
cm−2 s−1. In any case, these values are an overestimation of
the flux since the intrinsic continuum of SN2014J, detected
during the late observations (Churazov et al. 2015) and
the complete spectral response of SPI were not taken into
account.

If the intrinsic continuum of SN2014J is taken into ac-
count and the complete response of SPI is adopted, the
fluxes in the gaussian fits of the spectra presented in Fig. 7
become (1.59±0.57)×10−4, < 1.42×10−4 and < 1.56×10−4

photons cm−2s−1 after removing the continuum under-
neath the line produced by the off-diagonal terms of the
DDT1p4 model. In this case, the most significant gamma-
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Fig. 7. Spectral evolution of SN2014J obtained by SPI in the
120-190 keV band during revolutions 1380-81, 1382-83 and 1384-
85, or 16.5-22.2, 22.6-28.2, and 28.6-35.2 days after the explosion
(top to down) respectively, extracted in bins of 5 keV.

ray line signature from the 56Ni occurs during revolutions
1380-1381 with a centroid at 154.5± 0.64 keV and a width
of 3.7± 1.5 keV.

2.4. IBIS/ISGRI data

As in the case of SPI, the data obtained by IBIS/ISGRI
have been analyzed independently with the method de-
scribed in Isern et al. (2013), which takes into account the
response of the instrument, but using the OSA-10 instead
of OSA-9 since it noticeably improves the reconstruction
of the photon energy, and with the method described in
Churazov et al. (2014b), where the flux is obtained by nor-
malizing to the values of the Crab in the same energy band.
Usually, this normalization procedure is sufficient if the en-
ergy band being analyzed is broad enough, but this is only
strictly valid if both spectra, Crab and supernova, were sim-
ilar, which is not the case. For this reason, the procedure
adopted here is to compare the observations with the theo-
retical models convolved with the ISGRI spectral response.
The energy resolution at 155 keV was FWHM ∼ 14 keV,
but due to the detector degradation in orbit, the resolution
is now closer to 20% (Caballero et al. 2012). In order to
show how the evolution of the count rate depends on the
spectrum of the adopted models and how they evolve with
time, Figure 8 displays the count rate that is obtained from
three of the models used here (continuous lines after con-
volving with the response of the instrument, and the count
rate obtained just multiplying the theoretical fluxes by the
effective area in the energy band under consideration.

Taking into account the ISGRI spectral response, the
signal expected from most models is maximum over the
68-190 keV range, and the observations performed by
IBIS/ISGRI during the same period of time as SPI re-

Fig. 8. IBIS/ISGRI light curve in response to different spectral
models. Dashed lines represent the temporal evolution of the
144.5 - 168 keV band of the 3Dbball, DDT1p4 and W7 models
(from top to bottom) multiplied by the effective area in this
band (370 cm2). Continuous lines represent their convolution
with the ISGRI response.

veal an emission excess at the position of SN2014J in the
energy band 67.5-189 keV. Figure 9, upper panel, clearly
shows that this emission excess cannot be confused with the
neighbouring sources. However, if the analysis is restricted
to the 144.4 – 168 keV band, the significance of the signal
decreases to about 2 sigma, as expected from the ISGRI
spectral response (see Fig. 9, lower panel). In the 25 - 70
keV band nothing is visible at the position of SN2014J.

Figure 10 displays the response of ISGRI to an incoming
gamma-ray flux that has the same spectrum as one of the
models used in this work, the 3Dbball model. As it can
be seen, the photons belonging to the 158 keV 56Ni lines
are redistributed over a spectral band that is larger than
expected. As a consequence, the flux of the line weakens
when a narrow spectral window is taken.

Given the strong redistribution of photons, only the
broad band of 67.5 - 189 keV will be considered. Table 2 and
Figure 11 display the temporal evolution of the count rate
measured by IBIS/ISGRI in this band, which is dominated
by the 158 keV 56Ni emission. As in the case of SPI, bins
are roughly six days wide and correspond to revolutions
1380-81, 1382-83 and 1384-85. The behavior, similar to that
obtained by SPI but with a better significance, suggests a
decline in the count rate that is compatible with the non-
absorbed emission of 56Ni, followed by an upturn at the end
of the observation period that could be the consequence of
the exposure of new radioactive layers. Unfortunately, the
poor S/N ratio of the central bin (1.9 σ) prevents any solid
conclusion about this point, and an approximately constant
or gently decaying behavior cannot be excluded.

3. Results and discussion

There are several spherically symmetric SNIa models (see
Appendix A) with the bulk of radioactive elements buried
in the central layers of the expanding debris that are able
to reproduce, with the appropriate parameters, the 56Co
features observed at late times, 55-100 days after the ex-
plosion, in SN2014J (Churazov et al. 2014b, 2015). These
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Fig. 9. Gamma-ray signature in the IBIS/ISGRI data. The fig-
ure displays the IBIS/ISGRI significance contour map in the
67.5 – 189 keV band (upper panel) and in the 147 - 168 keV
band (lower panel) for the entire early period (days 16 - 35
after the explosion). The contours start at the 2 σ level and are
separated by 0.5 σ. The average flux in the upper panel at the
position of SN2014J represents a 5.4σ excess after normalization
on the standard deviation observed in this map.

models, after being convolved with the SPI response, as in
the case of DDT1p4 presented in Figure 5, can be compared
with the observed spectrum taken during revolutions 1380
to 1386, in the range 120-1350 keV. The degrees of freedom
are 246, and Table 3 presents the resulting χ2 values.

The DDT1p4 model explains the optical light curve (see
section 2) and the gamma-ray emission at late epoch (e.g.
Churazov et al. 2014). If, in order to make a crude compari-
son and using the same criteria as in Churazov et al. (2015),
we adopt this model as a reference we see that DETO and
DDTe differ by ∼ 6σ and ∼ 3σ level respectively, while the
remaining ones are nearly as good as the DDT1p4 model

Fig. 10. Response of IBIS/ISGRI to an incoming gamma sig-
nal that has a characteristic supernova spectrum like the one
provided by the 3Dbball model (black line). The blue line is
obtained multiplying this spectrum by the ARF (Auxiliary Re-
sponse Files) that represent the effective area, and finally the
red line represents the values obtained by convolving this last
result with the RMF (Redistribution Matrix Function).

Fig. 11. Evolution of the bf 67.5 - 189 keV band during revolu-
tions 1380-81, 1382-83 and 1384-86 as obtained by IBIS/ISGRI
using the method described in Isern et al. (2013). The dotted line
represents the flux that would be provided by the free disintegra-
tion of 56Ni. Dashed lines represent the light curves obtained by
convolving models DETO, SC3F, SC1F, W7 and DDTe (from
top to down) with the instrument response. Solid lines repre-
sent, from top to down, the 3Dbball with plumes of 0.08 and
0.04 M� of 56Ni, and the DDT1p4 models after convolution.
The properties of these models are displayed in Appendix A.1.

Table 2. Temporal evolution of the 158 keV 56Ni according to
IBIS/ISGRI.

Revolutions Days counts/s S/N
1380-1381 22.20-16.50 0.149 ± 0.039 3.8
1382-1383 28.20-22.60 0.078 ± 0.041 1.9
1384-1385 34.20-28.60 0.143 ± 0.037 3.8
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Table 3. Comparison between models and the spectra measured
by SPI (d.o.f.= 246). H0 represents the nulle hypothesis

Model χ2

H0 250.1
DETO 269.2
W7 229.5

DDTe 237.0
SC1F 226.4
SC3F 227.9

DDT1p4 227.2
3Dbball 220.8

(< 1.5σ). However, despite the reasonable agreement with
the observed values of these remaining models, they are
neither able to reproduce the intensity and the redshifted
position of the 158 keV 56Ni line observed by SPI (Fig.
4) nor the excess of emission in the bin corresponding to
the 1380-81 orbits found in the IBIS/ISGRI data (Fig. 11)
and, in a less compelling form, by SPI (Fig. 7). Only DETO
seems to fulfill such last requirements but it synthesizes a
total amount of 56Ni that is too large to account for the
late emission of 56Co. It also predicts the presence of im-
portant amounts of this isotope in the outer layers that is
in contradiction with the optical observations during the
maximum of the light curve. Therefore, it seems natural to
propose models with small amounts of radioactive material
in the outer layers of the supernova debris (Burrows & The
1990; Gómez-Gomar et al. 1998) that are undetectable at
the other wavelengths.

The average 3.2 keV redshift, ∼ 2% of the nominal 158
keV energy, indicates that the material is receding from the
observer with a mean velocity v ≈ 6, 000 km/s and is placed
in the far hemisphere, while the measured average width,
4.9 keV, implies a maximum deviation of the component of
the velocity along the line of sight of ∆v ≈ 10, 000 km/s.
Nothing can be said about the velocity in the plane normal
to the line of sight except that, in order to not be caught by
the outer layers of the supernova, it must have a velocity
of the order of ∼ 30, 000 km/s. This possibility could be
supported by the rapid rise of the optical light curve at
early times (Zheng et al. 2014; Goobar et al. 2014) and by
the microvariability found 15-18 days after the maximum
in the B-light curve (Bonanos & Boumis 2015) in SN2014J,
by the chemical inhomogeneities found in Kepler (Reynolds
et al. 2007) and Tycho (Vancura et al. 1995; Warren et al.
2005) remnants, and by the properties of the high velocity
features detected in the early optical spectra, ∼ 10 days
after the explosion, of many SNIa (Tanaka et al. 2006).

This radioactive material should be almost transparent
to gamma-rays at the time of the INTEGRAL observation,
near the maximum of the optical light curve, otherwise it
would have been detected in the optical. This condition is
also necessary to account for the dip suggested by IBIS and
SPI data about 25 days after the explosion (figures 11 and
7). Furthermore, the non detection of blue shifted Ni-Co
features in the optical and in the infrared at this epoch
indicates that it was not placed between the observer and
the supernova. An additional argument in favour of the
transparency hypothesis is that an opaque plume would
demand a larger 56Ni mass to obtain a similar flux and
this would introduce a redshifted component in the late

Fig. 12. Possible geometries of the outer radioactive layers. The
upper panel represents a blob with a mass M ∼ 0.05 M� that
detached form the main body during the explosion and moves
with a velocity compatible with the observed redshift. The lower
panel represents a plume with the shape of a truncated conical
ring that has a semiaperture angle θ and angular thickness ∆θ.

56Co emission that is not observed (Churazov et al. 2014b,
2015).

The first obvious geometry choice to be considered is a
spherical blob that broke away from the bulk of the super-
nova ejecta. Such a configuration, however, does not guar-
antee the transparency of the blob at the moment of the ob-
servation. For instance, Figure 12, upper panel, displays a
blob with a massM ∼ 0.05 M�, expelled by the main body
of SN2014J with a velocity of ∼ 30, 000 km/s and increasing
its radius with a velocity of the order of ∆v ∼ 10, 000 km/s,
the internal velocity dispersion. At day 18 after the explo-
sion, the radius of the ball should be ∆v×t = 1.5×1015 cm
and the optical depth τ = κΣ ≈ 3, where Σ ∼M/πR2 ≈ 14
g cm−2. Assuming constant density, and κ ≈ 0.2 cm2g−1 for
the 158 keV line, the blob would be opaque to the gamma-
ray radiation at the moment of the observation and should
be detectable in the optical.

A more favourable geometry is to distribute the radioac-
tive matter in a ring with a truncated conical shape as de-
picted in Figure 12, lower panel. We call this model 3Dbball.
This conical structure has the same mass as before and, in
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Fig. 13. High resolution gamma-ray spectrum 50-100 days after
the explosion around the 847 keV 56Co line. Bins are 2 keV wide.
The dashed line represents the DDT1p4 model. The solid line
represents the emission of the 3Dbball model (the DDT1p4 plus
a plume of 0.07 M� of 56Ni out the equatorial plane). The dotted
line represents the DDT1p4 model plus a plume of 0.06 M� of
56Ni confined within the equatorial plane. All of them have been
computed seventy five days after the explosion.

order to be compatible with the observations of SN2014J, a
semi-aperture angle θ ≈ 78o, an angular thickness ∆θ ≈ 12o

were adopted as an example, although other possibilities
do exist. Similarly, the expansion velocities were set to be
vi ∼ 25, 000 km/s and vs ∼ 35, 000 km/s in order to fulfill
the requirements. In this case, the column density would be
Σ = M/4π(Rs−Ri)

2 sin θ ∼ 2.4 g cm−2, where Rs,i = vs,it,
and the optical depth would be 0.48, which would make the
material of the plume optically thin to the 158 keV photons.

Assuming the complete transparency to gamma-rays,
the total mass of 56Ni can be estimated to be

m0 = 4πD2
(

56
NA

) [
〈F158〉(ti−t0)

Y158

]
× [exp (−t0/τNi)− exp (−ti/τNi)]

−1 (1)

where NA is the Avogadro’s number, D the distance, Y158
the branching ratio, t0, ti the beginning and the end time
of the observation, τNi the characteristic decay time and
〈F158〉 the average flux in this time interval. The flux mea-
sured by SPI during revolutions 1380-1381 indicates that
the mass in the plume should be ∼ 0.07 M� while the mass
necessary to account for the flux measured by ISGRI, when
the deconvolution method is used, is ∼ 0.08 M�. These
values seem to give support to the hypothesis that 56Ni is
present in the outer layers. There is also a hint, provided by
the increase of the intensity of the line flux during revolu-
tions 1384-1385, of the emergence of a new, deeper, plume
or of the exposure of the internal radioactive core, but the
lack of enough significance of the signal prevents any firm
conclusion.

The presence of a plume able to produce the broad red-
shifted 56Ni lines claimed here is compatible with the ob-
served properties of the 56Co lines (Churazov et al. 2014b,
2015) at late times. Figure 13 shows at high resolution (2
keV) the flux averaged over days 50 to 100 after the ex-
plosion. At this epoch the debris are almost transparent to

gamma rays and the presence of the plume has a negligi-
ble effect on the spectrum since its contribution is smeared
over a large energy interval as a consequence of its broad-
ness. On the contrary, if the plume had contained almost
all this amount of 56Ni in the equatorial plane and was seen
perpendicularly, it would have produced a prominent spike
similar to or narrower than the one represented in the fig-
ure. Such spike would not have introduced dramatic effects
at low resolution, but at the resolution provided by SPI it
should be detectable. Just as an example, adding a ring of
0.06 M� of 56Ni in the equatorial plane able to produce
a narrow (FWHM ≈ 2.23 keV) feature at 812 keV, when
56Ni was detected, should produce, 75 days after the explo-
sion, a flux at the nominal energy of the 847 keV 56Co line
∼ 4.4σ larger than the observed value, as it can be seen in
Figure 13, which can be interpreted as a rejection of such a
model with a probability larger than 99.9%. The maximum
mass of 56Ni that could be confined within the equatorial
plane is estimated to be ∼ 0.02 M� (2σ level).

The spectral model adopted to extract the line fluxes
and characteristics from these early observations is the best
fitting 3Dbball model. As stated in the Appendix, this
model is a combination of the DDT1p4 model, which repro-
duces the 56Co gamma-ray lines observed in Late Observa-
tions of SN2014J (Churazov et al. 2014b) and the optical
light curve, and a 56Ni plume that accounts for the observed
redshifted line. The best fit to the SPI data (120-1350 keV
band) is obtained with a mass of 56Ni of 0.077±0.040 M� in
the plume and 0.60±0.29 M� in the central body (Figure 5).
These best fit values were obtained with a χ2 = 210.72 for
a d.o.f. of 244 (246 spectral bins and 2 free parameters: the
mass of 56Ni in the plume and in the central body). Notice
that this last value for the central body is in agreement with
the mass derived from the optical light curve measurements
(Section 2) and with the mass obtained with the analysis of
the gamma-ray emission at the late epoch (Churazov et al.
2014b).

Finally, it is worth mentioning that if this 3Dbball model
is adopted as a reference, Table 3 shows that DETO and
DDTe models can be rejected at ∼ 7σ and ∼ 4σ level re-
spectively, but the remaining ones differ by < 3σ and can-
not be formally rejected. Also, Figure 6 shows that the flux
excess found at ∼ 730 keV that was attributed to the red-
shifted 750 keV 56Ni line in Section 2 with a significance of
2.1 σ), represents a flux of (1.2±0.7)×10−4 ph s−1cm−2 (∼
1.7 σ), when the continuum underneath the line is included
in the fit. Although the significance of the 730 keV line flux
is not enough to claim its detection, this excess reinforces
the plausibility the 56Ni plume hypothesis.

4. Conclusions

SN2014J has been observed with all the instruments on
board of INTEGRAL just around the maximum of the op-
tical light curve for a period of ∼ 106 seconds. The opti-
cal light curve measured with the OMC is in agreement
with the light curves obtained from the ground and can be
explained by a delayed detonation model that synthesizes
∼ 0.65 M� of 56Ni (see Fig. 1).

As it has previously been stressed (Churazov et al.
2015), despite its distance, SN2014J is a weak gamma-ray
source and the results are sensitive to various aspects of
the data analysis. The main improvement with respect to
previous analysis (Diehl et al. 2014) is the clear detection
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of the gamma-ray signal by both instruments, SPI and IS-
GRI, with significances of 5σ (see figures 3 and 9) during
this period of observation at the position of SN2014J, re-
moving the ∼ 2o offset present in the previous analysis,
and confirming the idea that the light curves of SNIa are
powered by the decay of 56Ni. Surprisingly, we found in
the SPI data evidences for a broad, redshifted feature that
corresponds to the 158 keV emission of this isotope. Given
this energy and broadness, this feature cannot be confused
with any residual instrumental line. Furthermore, we have
also found in the ISGRI data an emission excess during or-
bits 1380-81 and 1384-85 at a 3.8 σ level (Table 2). These
emission excesses are well above the predictions of conven-
tional 1D models (Fig. 11) and are separated by a dip that
is compatible with the free decay of 56Ni, although the low
significance of this dip prevents any definite consideration
about the temporal variability. A similar behavior is sug-
gested by SPI data, an excess of emission followed by a
decline, but once more the poor significance prevents any
definite conclusion. A possible explanation of this behaviour
is that during the SN2014J event, an almost γ-ray trans-
parent plume made of ∼ 0.08 M� of 56Ni was ejected with
an expansion velocity of ∼ 30, 000 km/s and a dispersion
velocity of ∼ 10, 000 km/s that is globally receding from the
observer with a velocity of ∼ 6, 000 km/s. The significance
of this additional 56Ni, obtained by fitting the redshifted
and broadened 158 keV, 750 keV and 812 keV lines above
the DDT1p4 model with SPI data, is ∼ 3σ (see Figure 4).

Churazov et al. (2014b, 2015) reported that the fluxes
and spectra of the gamma-rays emitted by 56Co during the
maximum of the light-curve were in broad agreement with
the predictions of classical spherically-symmetric theoreti-
cal models of SNIa based on either the deflagration or the
delayed detonation paradigms. Figure 13 shows that the in-
troduction of an extra emission caused by the existence of
a radioactive plume with the characteristics proposed here
predicts a late-time spectrum that is still in accordance with
the spectrum obtained during the late epoch (55-100 days
after the explosion).

In any case, the significance of the signal prevents any
firm conclusion about the behavior of phenomena changing
with a time scale of the order of the 56Ni decay time. Tak-
ing into account Table 3 and adopting a conservative point
of view, the data are largely consistent with the standard
delayed detonation model (Churazov et al. 2015) without
excluding the presence of small amounts of 56Ni at the sur-
face if the lines are broad.

It is evident that if the significance of the redshift and
the width of 56Ni lines found in the observations of IN-
TEGRAL was enough, the gamma-ray behavior would in-
troduce strong constrains on the acceptable models for
SN2014J. If confirmed in other supernovae, it could be
concluded that conventional models starting with the ig-
nition of the central regions of a C/O white dwarf and
keeping the radioactive material confined in the innermost
layers would not be appropriate to account for the ob-
served properties at this early epoch and that, at least in
these cases, additional possibilities should be considered.
Sub-Chandrasekhar models, i.e. C/O white dwarfs with a
mass not necessarily near to the critical mass that explode
as a consequence of the ignition of a freshly accreted He-
envelope (Woosley & Weaver 1994), produce 56Ni at the
surface and could, in principle, account for the observa-
tions if the mass of these layers is small enough (Pakmor

et al. 2013; Guillochon et al. 2010; Fink et al. 2010; García-
Senz et al. 1999). Three dimensional models, like Pulsating
Reverse Detonations (PRD) (Bravo & García-Senz 2009;
Bravo et al. 2009), Gravitationally Confined Detonations
(GCD) (Plewa et al. 2004), and collisions of white dwarfs
in double-degenerate binaries or multiple systems (Kushnir
et al. 2013; Aznar-Siguán et al. 2013) could also provide
scenarios with 56Ni present in the outer layers, although
in the last case the collision would require the presence
of massive white dwarfs to achieve the observed amount
of 56Ni (García-Senz et al. 2013). Obtaining similarly ex-
tensive INTEGRAL data on additional SNIa would be of
the maximum interest not only to ascertain if SN2014J is
a representative event, but also to constrain the models
for SN2014J like events. Nevertheless, given the existence
of several SNIa subtypes, only a high sensitivity detector
would be able to provide a statistically representative sam-
ple of gamma observations. Finally, it is necessary to em-
phasize that the implications of the reported asymmetrical
features on cosmological applications of SNIa have still to
be determined.
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Appendix A: Theoretical models

The gamma-ray spectrum of SNIa depends on the total
amount of 56Ni and its distribution within the expanding
debris, which in turn depends on the burning regime of
the explosion. In the case of one dimension models, three
burning modes have been identified. Table A.1 displays the
main characteristics of the models used in the present study.

Pure detonations (DETO), in which carbon is ignited in
the centre of a carbon-oxygen white dwarf near the Chan-
drasekhar’s mass and the burning propagates supersoni-
cally in such a way that the star is completely incinerated to
the Fe-peak elements (Arnett 1996). This model is incom-
patible with all the existing observations, including those
obtained by INTEGRAL in the case of SN2011fe (Isern
et al. 2013) and SN 2014J (Churazov et al. 2014b). It is
also representative of the most massive models computed
by Fink et al. (2010).

Sub-Chandrasekhar detonations (SCH) assume white
dwarfs with arbitrary masses accreting helium from a com-
panion in such a way that when the mass of this freshly
accreted envelope reaches a critical value, He ignites at
the bottom and induces the explosion of the white dwarf
(Woosley & Weaver 1994). The main argument against
these models has so far been the non detection of signif-
icant amounts of 56Ni and 56Co moving at high velocities.
The SC1F and SC3F (E.Bravo, unpublished) are SCh mod-
els equivalent to models 1 and 3 of Fink et al. (2010).

Deflagration (DEF) models assume that the star is ig-
nited in the central regions and the burning front propa-
gates subsonically through all the star in such a way that
the outer layers can expand and avoid complete incinera-
tion. The prototype is the W7 model (Nomoto et al. 1984).

Delayed detonations (DDT) start as a deflagration in
the centre and, when the flame reaches a density of few
times 107 g cm−3 it turns into a detonation. Because of
the low densities, characteristic burning times are too long
and matter in these layers is not completely incinerated
to 56Ni and only intermediate mass elements are profusely
produced during this regime, in agreement with the obser-
vations (Khokhlov 1991). The DDTe (Badenes et al. 2005)
model is an example. Pulsating delayed detonations (PDD),
a subtype of DDT model, assume that the burning front
starts at the centre, but the flame moves so slowly that
it is quenched by the expansion of the white dwarf. After
reaching the maximum expansion, the star contracts and
triggers the explosion (Khokhlov 1991).

The models used here are the same as in Isern et al.
(2013) plus the models DDT1p4 and 3Dbball. The first
one was tailored to broadly reproduce the optical light
curve of SN2014J. This model is centrally ignited at a den-
sity of 2 × 109 g cm−3 and makes the transition deflagra-
tion/detonation at 1.4×107 g cm−3. The total mass of 56Ni
produced is 0.65 M�, the mass ejected is 1.37 M�, and the
kinetic energy is 1.32 × 1051 ergs. The 3Dbball model is
essentially the DDT1p4 model plus a plume of radioactive
material as depicted in Fig. 12. Figure A.1 shows the differ-
ent parameters that characterize the model. Although a full
set of values was explored, a reasonable choice of parame-
ters is: mass of 56Ni in the conically shaped structure 0.04
- 0.08 M�, expansion velocities vi = 25, 000, vs = 35, 000
km/s, while θ, δθ and ω have to be in agreement with ob-
served recession, ∼ 6, 000 km/s, and dispersion, ∼ 10, 000
km/s velocities as suggested by the redshifted Ni-lines.

Article number, page 12 of 13page.13



J. Isern et al.: Gamma-Ray emission from SN2014J near maximum optical light

Fig. A.1. Meridional cut of a phenomenological scenario to ac-
count for the early gamma-ray emission. Two components are
assumed, a central spherically symmetric remnant that contains
the bulk of mass and radioactive material resulting from the
explosion of the white dwarf plus a conically shaped structure
made of almost pure 56Ni expanding with velocities large enough
to avoid being caught by the inner material.

Table A.1. Kinetic energy (K) and mass of 56Ni produced by
different models of explosion (1 foe = 1051 erg).

Model K (foe) MNi (M�)
DETO 1.44 1.16
SC3F 1.17 0.69
W7 1.24 0.59

DDTe 1.09 0.51
SC1F 1.04 0.43

DDT1p4 1.32 0.65

The gamma-ray spectrum has been obtained from a
recently updated three dimensional generalization of the
code described in Gómez-Gomar et al. (1998); Milne et al.
(2004); Isern et al. (2008). The initial model was obtained
adding to the output of the DDT1p4 model a conical ring
as described before and allowing a homologous expansion.
Given the expansion velocity that has been assumed to ac-
count for the redshift and the broadness of the line, the
plume has to be clearly above the equator, θ ≈ 78◦, and
the angular thickness ∆θ ≈ 12◦. The line of sight has to be
close to the axis of symmetry (ω <∼ 12o) since for larger val-
ues the 158 keV line would evolve towards a double peaked
shape that does not seem consistent with the SPI spectrum.
Furthermore, the lack of substantial polarization in the op-
tical at the early epoch also favours small values of ω (Patat
et al. 2014).
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