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 
Abstract— Paperboard is widely and increasingly applied as a 

packaging material and in many applications it is in direct 
contact with foodstuff. The increasing use of recovered 
paperboard has led to the production of paperboard containing 
several types of contaminants. In the case of using recovered 
paperboard some of these contaminants may migrate into the 
food in concentrations considered harmful to human health. To 
prevent this problem, a very fast and nondestructive method to 
identify recovered paperboard samples from those produced 
mainly from virgin fibers is developed in this paper. Therefore, 
recovered samples may be identified, so a special consideration 
may be given to these samples. To this end, Fourier transform 
mid-infrared spectroscopy was applied to acquire the mid-
infrared spectra of the paperboard samples. Next, statistical 
multivariate feature extraction and classification methods were 
applied to identify incoming samples produced from recovered 
fibers. Experimental results presented here prove that the 
proposed scheme allows obtaining high classification accuracy 
with a very fast response. 
 

Index Terms— Infrared spectroscopy, multivariate methods, 
paperboard, process control, classification. 
 

I. INTRODUCTION 

APER and board (P&B) are broadly used as food 
packaging materials and are being increasingly applied 

due to continuous advances in both material formulation and 
package design and the tendency of using recyclable materials 
[1]. Since materials and food packaging manufacturers are 
responsible for the safety of their products [2], when selecting 
materials intended for direct contact with foodstuffs 
consumer’s safety becomes a key issue.  

P&B are mainly composed of different types of vegetable 
pulp and are often in direct contact with dry foodstuffs. 
However, P&B packaging materials may contain a multitude 
of other products in their composition, including fillers, starch, 
biocides, and retention aids among others and they may also 
be coated with waxes, polymers or polyethylene [3]. It is 
recognized that different chemicals may pass to the food 
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supply at different stages of the food chain, including 
pesticides, environmental contaminants or food additives 
among others [3]. The materials used in food packaging may 
release small amounts of their chemical components, therefore 
contaminating foodstuffs [3,4] and finally being ingested by 
the consumer [3]. This has been officially recognized by the 
Council of Europe [5] and the European Food Safety 
Authority (EFSA) [6]. When these chemical components 
migrate to foodstuffs in a concentration sufficient enough, it 
could involve a hazard for consumer’s health, which is in 
discordance with the European regulations [7]. According to 
[8], the migration is a diffusion process, which is often 
influenced by an interaction between the packaging material 
and the food. This interaction may be significant, since in 
some cases it is reported to be one-hundred times superior to 
the contribution of pesticides or environmental pollutants [4]. 
While contamination of foodstuffs by environmental 
pollutants has been deeply studied, the contribution of food 
packaging as a supplementary contaminants’ source has 
received much less attention, although food packaging is 
considered to play an important role in human xenobiotic 
exposure [9]. There are possible solutions to alleviate this 
problem, such as the use of functional barriers. However, they 
do not completely reduce the contamination risk [10]. 

The use of recovered P&B has expanded considerably in the 
last decades, which has irremediably led to the production of 
products containing several types of contaminants [11]. 
Recovered P&B may have different origins and compositions 
and may contain different components including printing inks, 
waxes, adhesives, mineral oils, biocides and surfactants 
among others [1]. Some of these chemical agents may migrate 
from the packaging materials to foodstuffs, thus causing a 
potential risk to human health. Because of this fact the content 
of materials based on recovered fiber must be limited below 
certain limits when intended for contact with foodstuff [1] 
since recovered fiber is a major migrants’ source [3]. 
Recovered P&B is not used for liquid food contact [6] but they 
are mostly used in direct contact with solid dry foodstuffs like 
rice, salt, cereals, sugar or pasta among others [1,12]. 
Therefore, the migration phenomenon is virtually restricted to 
the volatile chemical components contained in the P&B 
material. They are evaporated and transferred through the gas 
phase [13] and finally they recondense in the food surface 
[14]. 

Diverse types of chemical compounds which may promote 
adverse health effects have been identified in P&B packaging, 
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IV. FEATURE EXTRACTION AND CLASSIFICATION METHODS  

As exposed, the spectra of each P&B sample provided by 
the FTIR spectrometer consists of 3351 data points 
(reflectances at each wave-number). Therefore it is essential to 
apply efficient multivariate processing methods for 
concentrating the analytically significant information in a 
reduced set of latent variables [19,24]. The mathematical 
methods designed to calculate the latent variables are often 
called feature extraction methods, which also allow removing 
most of the noise typically present in the raw signals. 
Supervised feature extraction methods, unlike unsupervised 
algorithms, use class labels to evaluate the performance of the 
latent variables. A supervised algorithm is guided by an expert 
user that establishes the class labels of the training samples. 
To boost the discrimination between classes, supervised 
algorithms are needed [25]. The latent variables are often 
obtained by performing mathematical combinations of the 
original variables. To this end three feature extraction 
algorithms have been applied and their performance has been 
evaluated: principal component analysis (PCA), PCA linked 
with canonical variate analysis (CVA) and extended canonical 
variate analysis (ECVA). Once the problem dimensionality 
has been reduced it is necessary to apply a classification 
method. For this purpose the k nearest neighbor algorithm 
(kNN) has been applied in the classification stage.  

PCA is probably one of the most widely applied feature 
extraction techniques [24,26,27]. It is an unsupervised method 
focused to reduce the dimensions of the original data set while 
concentrating the relevant information contained in the 
original variable set into a reduced set of latent variables [28]. 
The original variables (reflectances at different wave-
numbers) are transformed via PCA into orthogonal latent 
variables called principal components (PCs). The original 
variables are linearly combined to obtain the PCs, which 
represent the orthogonal directions with higher variance. The 
PCA algorithm provides as many PCs as original variables. 
However, only a few PCs are usually retained, those 
explaining a sufficient amount of the overall variance. To 
prevent overfitting it is essential to carefully determine the 
number of PCs to retain and to split the overall samples set 
into a training and a prediction set [26]. However, there is no 
general method to select the optimum number of PCs to be 
retained. 

The CVA algorithm is a supervised multi-class feature 
extraction method specially intended for accentuating 
differences between data classes [29]. CVA is a generalization 
of the two-class Fisher linear discriminant analysis algorithm. 
Unlike PCA, CVA searches the directions in space that 
strengthens the differences between classes in the original data 
[30] by applying a criterion based on maximizing separation 
between classes while minimizing separation within classes. 
The latent variables calculated by the CVA algorithm, which 
are not necessarily orthogonal, are known as canonical 
variates (CVs). The number of CVs calculated by the CVA 
algorithm is equal to the number of classes in the problem 
minus one. A major disadvantage of CVA is that it cannot 
directly deal with data sets in which the number of samples is 

less than the number of variables. This is the case of FTIR 
spectrometry, which provides 3351 variables. To surpass this 
drawback, the PCA algorithm is applied to reduce the number 
of variables prior to CVA application.  

The supervised ECVA algorithm was developed by 
Norgaard et al. [29,31] to overcome the drawback of the CVA 
algorithm related to the impossibility of dealing with data sets 
containing a larger number of variables than samples. The 
advantage of ECVA compared to CVA, is that ECVA allows 
the direct calculation of the latent variables, called extended 
canonical variates (ECVs). Consequently, ECVA avoids the 
need of applying the PCA algorithm prior to ECVA. As in the 
CVA algorithm, ECVA calculates as many ECVs as number 
of classes in the problem minus one.  

Once the problem dimensionality has been reduced by 
means of a suitable feature extraction method, the 
classification stage may be applied. For this purpose the 
nonparametric k nearest neighbor (kNN) algorithm is applied 
in this paper. It is one of the simplest and most effective 
classification algorithms [11].  kNN classifies an input sample 
in a determined class by taking into account a weighted vote 
of the k nearest training set neighbors while applying the 
majority voting rule. To this end, the k nearest training set 
neighbors of an input sample are located. Then, kNN assigns a 
score k to the nearest neighbor’s class, k - 1 to the class of the 
second nearest neighbor and so on until reaching a score of 1. 
The input sample is assigned to the class with the highest 
score. Some authors have recommended using k values from 3 
to 5 [32]. The kNN algorithm provides as many outputs as 
number of classes defined in the problem, whose values are 
comprised between 0 and 1. They denote the membership 
degree of the input samples to each class 

V. RESULTS AND DISCUSSION  

In this section the classification of the analyzed paperboard 
samples is carried out by means of the analysis of the FTIR 
spectra and the combined action of feature extraction and 
classification methods. The analyzed feature extraction 
methods are PCA, CVA in combination with PCA and ECVA. 
In all cases the kNN classifier is applied.  

Since the 57 paperboard samples dealt with have different 
origins, it is assumed that these differences are reflected in 
their spectra. It is known that 29 of the total amount of 57 
samples analyzed are produced from virgin fibers (FBB 
samples), whereas the remaining 28 samples are produced 
from recovered fibers (WLC). Once divided in these two 
groups, the 57 samples are randomly split into a training set 
and a prediction set. The training set contains 29 samples (15 
FBB and 14 WLC samples) whereas the remaining 28 samples 
(14 FBB and 14 WLC samples) are assigned to the prediction 
set.  Therefore, both the training and the prediction sets 
contain approximately 50% of the paperboard samples each.  

Whereas the training set matrix contains 29x3351 elements, 
the prediction set matrix contains 28x3351 elements. The 3351 
columns correspond to the spectral content of each sample and 
each matrix contains as many rows as samples analyzed.  

However, the spectral interval considered may have a 
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notorious influence on the classification results. To study this 
effect two spectral intervals are analyzed, i.e. the whole FTIR 
spectrum (4000-650 cm-1) and the spectral interval with more 
accentuated differences (1600-1200 cm-1). 

A. Results considering the whole spectrum (4000-650 cm-1) 

 In this section the feature extraction and classification 
algorithms are applied to the whole FTIR spectrum of the 
analyzed samples. 

As explained, when applying the PCA algorithm, a reduced 
number of PCs are usually retained. However, there is not 
universal rule to select the appropriate number of PCs. To 
improve separation, PCA was applied on a reduced number of 
PCs, those explaining at least 99.5% of the overall variance. 
As shown in Fig. 3, this condition was attained by selecting 
the first six PCs. Therefore, PCA concentrates most of the 
useful information provided by the 3351 spectral variables in 
only six PCs, thus greatly reducing the problem 
dimensionality. This makes it possible the posterior 
application of the CVA algorithm. 
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Fig. 3. Cumulative variance as a function of the number of retained PCs in the 
training data set when considering the overall 4000-650 cm-1 spectral interval.  

Additionally, leave-one-out cross-validation was applied to 
predict the training samples class as an alternative method to 
select an appropriate number of PCs. It also resulted in the 
first six PCs.  

Fig. 4 shows the results based on the PCA algorithm when 
considering 29 training samples and 28 prediction samples. 
After applying the kNN classifier, classification results 
according to the PCA (6 PCs) + kNN scheme resulted in 23 (k 
= 3), 25 (k = 4) and 26 (k = 5) correctly classified samples out 
of 28 prediction samples (82.14%, 89.29% and 92.86% 
classification rates, respectively). As shown in Fig. 4, the 
WLC samples appear more dispersed than the FBB samples 
since the WLC samples are produced from recovered fibers, 
thus being a more inhomogeneous samples set. 
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Fig. 4. Training and prediction samples plotted in the space defined by the 
first three PCs arising from the PCA algorithm in the 4000-650 cm-1 spectral 
interval. This is a partial view since only three out of the six retained PCs are 
plotted.  

Next, the performance of the CVA algorithm was evaluated. 
To this end the CVA was applied to the first six PCs arising 
from the PCA, whose results are presented in Fig. 5. Note that 
when dealing with a two-class problem, the CVA algorithm 
only provides one CV. The performance of the PCA (6 PCs) + 
CVA algorithms followed by the kNN classification method (k 
= 3,4,5) was also examined. It resulted in 100% correctly 
classified prediction samples in all cases. Fig. 5 shows again 
that the WLC samples appear more dispersed than the FBB 
samples. 
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FBB (training)
WLC (training)
FBB (prediction)
WLC (prediction)

 
Fig. 5. Training and prediction samples plotted in the space defined by the 
only CV arising from the PCA (6 PCs) + CVA algorithms in the 4000-650 cm-

1 spectral interval.  

The behavior of the ECVA algorithm was also tested, 
whose results are presented in Fig. 6. The prior reduction of 
the number of variables is not required when dealing with 
ECVA, so this algorithm is directly applied to the raw spectral 
data. Similarly to CVA, ECVA only returns one ECV when 
dealing with a two-class problem. After applying the kNN 
classifier, the classification results according to the ECVA + 
kNN scheme resulted in 26 (k = 3) and 27 (k = 4, 5) correctly 
classified samples out of 28 prediction samples (92.86% and 
96.43% classification rate, respectively). 
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ECV1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

FBB (training)
WLC (training)
FBB (prediction)
WLC (prediction)

 
Fig. 6. Training and prediction samples plotted in the space defined by the 
only ECV arising from the ECVA algorithm in the 4000-650 cm-1 spectral 
interval.  

B. Results considering the 1600-1200 cm-1 interval 

As explained, the overall 4000-650 cm-1 spectral region is 
maybe not the most suited interval to accentuate the 
differences between paperboard samples produced from virgin 
and recovered fibers. So, in this section, the behavior of the 
proposed classification scheme is tested when considering the 
1600-1200 cm-1 spectral interval. 

The PCA algorithm was applied to the 1600-1200 cm-1 
spectral interval. After analyzing the cumulative variance 
explained by the first few PCs arising from the PCA 
algorithm, it resulted that the first five PCs explained the 
99.5% of the overall variance. The leave-one-out cross-
validation algorithm was also applied to the training samples 
as an alternative method to select the most suitable number of 
PCs. It also resulted in the first five PCs.  

The results based on the PCA algorithm are presented in 
Fig. 7. After applying the kNN classifier, the classification 
results of the prediction samples according to the PCA (5 PCs) 
+ kNN scheme resulted in 24 (k = 3) and 27 (k = 4, 5) 
correctly classified prediction samples out of 28 (85.71% and 
96.43% classification rates, respectively). These results are 
slightly better than those presented in Fig. 4. 
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Fig. 7. Training and prediction samples plotted in the space defined by the 
first three PCs arising from the PCA algorithm in the 1600-1200 cm-1 spectral 
interval. This is a partial view since only three out of the five retained PCs are 
plotted.  

Next, the CVA was applied to the first five PCs, as shown 

in Fig. 8. Next the kNN classifier was applied to the data 
supplied by the PCA (5 PCs) + CVA algorithms, resulting in 
100% classified prediction samples. 

CV1
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WLC (training)
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Fig. 8. Training and prediction samples plotted in the space defined by the 
only CV arising from the PCA (5 PCs) + CVA algorithms in the 1600-1200 
cm-1 spectral interval.  

When comparing Figs. 5 and 8, it is clearly seen that the 
FBB and WLC samples appear more separated when 
considering the 1600-1200 cm-1 than the overall 4000-650 cm-

1 spectral interval. This result corroborates the assumption that 
the 1600-1200 cm-1 spectral interval is the most useful for this 
specific application. 

Next, the performance of the ECVA algorithm was 
analyzed, whose results are presented in Fig. 9. This scheme 
lead to a classification rate of the prediction samples of 
96.43% since 27 samples out of 28 were correctly classified in 
all cases (k = 3, 4 and 5). 

ECV1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

FBB (training)
WLC (training)
FBB (prediction)
WLC (prediction)

 
Fig. 9. Training and prediction samples plotted in the space defined by the 
only ECV arising from the ECVA algorithm in the 1600-1200 cm-1 spectral 
interval.  

C. Results summary 

A summary of the classification results attained by applying 
the three analyzed mathematical methods and considering the 
two studied spectral intervals is presented in Table II. 

In this problem the kNN classifier generates two output 
values (one per class; i.e. FBB and WLC classes) per sample 
analyzed, which are normalized in the interval [0,1]. These 
values express the membership degree of the analyzed sample 
to each class. Values less than or equal to 0.5 indicate that the 
sample does not belong to the considered class, whereas 
output values greater than 0.5 indicate its membership to this 
class. Whereas an output value of 1 clearly indicates that the 
sample belongs to the considered class, an output value of 0.6 
presents a high uncertainty degree. Therefore, to evaluate the 
classification results accuracy, the predictive residual error 
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sum of squares (PRESS) is used, which is calculated as in, 

                                     



n

i
ii )ŷy(

1

2 PRESS  (1) 

yi  [0,1] being the output of the i-th prediction sample 
provided by the kNN algorithm and iŷ   {0,1} being the real 

value of yi. The yi values are known a priori since the 
prediction samples class is known. Note that the classification 
accuracy decreases with increasing values of the PRESS 
index. 

TABLE II 
RESULTS SUMMARY 

Statistical  
methods 

kNN  
classifier 

Prediction  
success rate   

PRESS

Spectral interval: 4000-650 cm-1  
 k = 3 23/28 (82.14%) 4.72 

PCA (6 PCs) k = 4 25/28 (89.29%) 4.50 
 k = 5 26/28 (92.86%) 4.84 
 k = 3 28/28 (100.0%) 0.00 

PCA (6 PCs) + CVA k = 4 28/28 (100.0%) 0.00 
 k = 5 28/28 (100.0%) 0.00 
 k = 3 26/28 (92.86%) 2.17 

ECVA k = 4 27/28 (96.43%) 1.56 
 k = 5 27/28 (96.43%) 1.41 

Spectral interval: 1600-1200 cm-1  
 k = 3 24/28 (85.71%) 3.17 

PCA (5 PCs) k = 4 27/28 (96.43%) 2.62 
 k = 5 27/28 (96.43%) 2.29 
 k = 3 28/28 (100.0%) 0.00 

PCA (5 PCs) + CVA k = 4 28/28 (100.0%) 0.00 
 k = 5 28/28 (100.0%) 0.00 
 k = 3 27/28 (96.43%) 1.39 

ECVA k = 4 27/28 (96.43%) 1.39 
 k = 5 27/28 (96.43%) 1.39 

According to the results presented in Table II, the best 
results were attained when considering the 1600-1200 cm-1 
spectral interval. Additionally, in all analyzed cases, CVA was 
the feature extraction method with better performance, 
although ECVA also lead to very accurate classification 
results. 

VI. CONCLUSION 

This paper has proposed a very fast, noninvasive, accurate 
and easy-to-apply method to discriminate between paperboard 
samples produced from recovered and virgin fibers. For this 
purpose FTIR spectroscopy has been analyzed in combination 
with feature extraction methods such as PCA, PCA + CVA 
and ECVA and the kNN classifier. The most appropriate 
spectral interval to be considered has also been analyzed, since 
as it has been shown, it may have a notorious influence on the 
results. The experimental results presented in this paper have 
shown that high classification rates may be achieved by 
applying the proposed methodology. 

This application may be especially useful in packaging 
applications which require paperboard to be in direct contact 
with foodstuff, since these applications should avoid 
paperboard formulations produced mainly from recovered 
fibers, or at least special treatments must be applied to these 
materials. 
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