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Recovered Paperboard Samples Identification
by Means of Mid-Infrared Sensors

Jordi-Roger Riba, Member, IEEE, Trini Canals, and Rosa Cantero

Abstract— Paperboard is widely and increasingly applied as a
packaging material and in many applications it is in direct
contact with foodstuff. The increasing use of recovered
paperboard has led to the production of paperboard containing
several types of contaminants. In the case of using recovered
paperboard some of these contaminants may migrate into the
food in concentrations considered harmful to human health. To
prevent this problem, a very fast and nondestructive method to
identify recovered paperboard samples from those produced
mainly from virgin fibers is developed in this paper. Therefore,
recovered samples may be identified, so a special consideration
may be given to these samples. To this end, Fourier transform
mid-infrared spectroscopy was applied to acquire the mid-
infrared spectra of the paperboard samples. Next, statistical
multivariate feature extraction and classification methods were
applied to identify incoming samples produced from recovered
fibers. Experimental results presented here prove that the
proposed scheme allows obtaining high classification accuracy
with a very fast response.

Index Terms— Infrared spectroscopy, multivariate methods,
paperboard, process control, classification.

1. INTRODUCTION

APER and board (P&B) are broadly used as food

packaging materials and are being increasingly applied
due to continuous advances in both material formulation and
package design and the tendency of using recyclable materials
[1]. Since materials and food packaging manufacturers are
responsible for the safety of their products [2], when selecting
materials intended for direct contact with foodstuffs
consumer’s safety becomes a key issue.

P&B are mainly composed of different types of vegetable
pulp and are often in direct contact with dry foodstuffs.
However, P&B packaging materials may contain a multitude
of other products in their composition, including fillers, starch,
biocides, and retention aids among others and they may also
be coated with waxes, polymers or polyethylene [3]. It is
recognized that different chemicals may pass to the food
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supply at different stages of the food chain, including
pesticides, environmental contaminants or food additives
among others [3]. The materials used in food packaging may
release small amounts of their chemical components, therefore
contaminating foodstuffs [3,4] and finally being ingested by
the consumer [3]. This has been officially recognized by the
Council of Europe [5] and the European Food Safety
Authority (EFSA) [6]. When these chemical components
migrate to foodstuffs in a concentration sufficient enough, it
could involve a hazard for consumer’s health, which is in
discordance with the European regulations [7]. According to
[8], the migration is a diffusion process, which is often
influenced by an interaction between the packaging material
and the food. This interaction may be significant, since in
some cases it is reported to be one-hundred times superior to
the contribution of pesticides or environmental pollutants [4].
While contamination of foodstuffs by environmental
pollutants has been deeply studied, the contribution of food
packaging as a supplementary contaminants’ source has
received much less attention, although food packaging is
considered to play an important role in human xenobiotic
exposure [9]. There are possible solutions to alleviate this
problem, such as the use of functional barriers. However, they
do not completely reduce the contamination risk [10].

The use of recovered P&B has expanded considerably in the
last decades, which has irremediably led to the production of
products containing several types of contaminants [11].
Recovered P&B may have different origins and compositions
and may contain different components including printing inks,
waxes, adhesives, mineral oils, biocides and surfactants
among others [1]. Some of these chemical agents may migrate
from the packaging materials to foodstuffs, thus causing a
potential risk to human health. Because of this fact the content
of materials based on recovered fiber must be limited below
certain limits when intended for contact with foodstuff [1]
since recovered fiber is a major migrants’ source [3].
Recovered P&B is not used for liquid food contact [6] but they
are mostly used in direct contact with solid dry foodstuffs like
rice, salt, cereals, sugar or pasta among others [1,12].
Therefore, the migration phenomenon is virtually restricted to
the volatile chemical components contained in the P&B
material. They are evaporated and transferred through the gas
phase [13] and finally they recondense in the food surface
[14].

Diverse types of chemical compounds which may promote
adverse health effects have been identified in P&B packaging,
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including phthalates [15,16] and mineral oil hydrocarbons
(MOH) [17] among others. It has been reported that recovered
P&B used in food packaging may contain mineral oil in such a
concentration as to contaminate the food in contact at levels
much higher than those considered safe for human health [18].
To minimize MOH exposure, EFSA proposes avoiding the use
of materials containing MOH in the production of food
packages [6]. To this end, recovered fiber sources should be
segregated to avoid their use in P&B food packages.

This paper is focused to identify paperboard samples
produced from recovered fibers from those produced mainly
from virgin fibers in a straightforward manner, thus avoiding
the need of a previous sample pretreatment, while providing
improved analysis speed and simplicity. For food packagers it
would be highly valuable to have a simple, fast and easy-to-
use system to identify paperboard samples composed mainly
of recovered paperboard in their incoming stock. In this work
the identification is carried out by analyzing the mid-infrared
spectra of the analyzed samples. This is because regulations
are becoming more restrictive in regard to the use of
paperboard produced from recovered fibers when applied in
direct contact with the foodstuffs. In addition, in the
certifications provided by paperboard suppliers, the issues
concerning the use of recovered paperboard are usually not
considered.

Mid-infrared (MIR) spectroscopy has been used for
analyzing paper structure and pulp chemistry [19] since it
allows noninvasive and close to real-time analysis [20]. MIR
radiation is emitted from a broadband light source and consists
of photons which are in resonance with fundamental rotational
and vibrational modes related to most organic and inorganic
molecules [20].

The nondestructive method proposed in this work is based
on the combined action of Fourier transform mid-infrared
(FTIR) spectroscopy, one of the most popular infrared
techniques since it provides high resolution spectra [21], and
multivariate feature extraction and classification algorithms.
The latter ones directly classify an unknown incoming
paperboard sample as produced from recovered or virgin
fibers by analyzing the spectral data provided by the FTIR
spectrometer. Additional advantages of the method developed
in this paper include no sample pretreatment, no consumption
of chemicals and reagents, no need of both a qualified
laboratory technician and laboratory grade facilities, and
particularly fast classification response. The incoming
paperboard samples often present extremely varied
compositions since they have different origins and
manufacturers. Because of the diverse origins and
formulations, this is a challenging problem since the analyzed
data sets are very heterogeneous.

II. PAPERBOARD SAMPLES ANALYZED

A total amount of 57 paperboard samples are analyzed,
which are split into two groups according to its origin, namely
FBB (folding boxboard produced from virgin fibers, 29
samples) and WLC (coated recovered cartonboard, 28
samples). Whereas the FBB samples are produced essentially

from virgin fibers, the WLC samples are produced mostly
from recovered fibers. All samples analyzed in this work
present only one coated side. The samples were supplied by
the firms Comart, Torraspapel, Union Papelera, Reno de
Medeci, Papirus and Attica Displayline. As the paperboard
samples have been collected from different manufacturers and
different catalogues, they constitute a highly heterogeneous
group with different compositions. This fact makes the
classification problem very difficult. This is especially true for
the WLC samples, since they are mainly composed of
recovered fibers.

To evaluate the classification models performance, the
whole body of samples is divided into two sets, namely
training and prediction sets. The training set is used to train or
calibrate the mathematical classification model, whereas the
prediction set is used to check the model accuracy when
identifying samples different than those used to calibrate the
model. Table I shows the paperboard samples dealt with, their
origin, and the group in which they are assigned. Fig. 1 shows
two of the 57 samples studied in this work.

Fig. 1. Left side: FBB sample 13t. Right side: WLC sample 27p.

III. DATA ACQUISITION BY MEANS OF FTIR SPECTROSCOPY

Infrared spectroscopy allows identifying different molecules
types, including polymeric, organic, inorganic, and biological
molecules. Infrared spectroscopy has been applied in the paper
industry to analyze pulp chemistry and paper structure [18],
for nonintrusive process control and for fast determination of
grammage and moisture content [22] among others. In the
infrared spectrum of a paperboard sample, the majority of
spectral bands are originated by the cellulose which tends to
mask the spectral information provided by other products
already present in its composition [23]. Therefore, to design an
efficient classification method it is mandatory to extract and
select the relevant information of the paperboard spectrum.

This paper deals with Fourier transform mid-infrared
(FTIR) spectroscopy because it is a nondestructive
instrumental method which presents very fast response,
requires small sample size, does not consumes chemicals or
reagents, may be applied in situ, does not require sample
preparation, provides improved spectral bands specificity and
offers a reasonable cost per sample in regular use among
others. It also allows avoiding the time-consuming analyses
which are often applied to determine the content of different
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analytes in the paperboard samples while providing a large
amount of digitalized spectral data which may be used for fast
identification of paperboard samples. However, due to the
large amount of information provided by FTIR spectroscopy
and the heterogeneous origin of the paperboard samples dealt
with, this is a difficult task that requires further data
processing by means of appropriate mathematical methods.

TABLE I
PAPERBOARD SAMPLES ANALYZED IN THIS WORK.
Grammage | Training | Prediction
Sample | Type Reference (gm) set set
It FBB | Comcote CM 235 X
2t FBB | Comcote CM 340 X
3t FBB | Comkraft RC 345 X
4t FBB Crescendo 200 X
5t FBB Crescendo 300 X
6t FBB Simcote 295 X
Tt FBB Simcote 350 X
8t FBB Comkraft 200 X
9t FBB Comkraft 295 X
10t FBB Comkraft 305 X
11t FBB Simcote 295 X
12t FBB Stompack 280 X
13t FBB Incada exel 300 X
14t FBB Trambritte 265 X
15t FBB Trambritte 340 X
16t | WLC TBC 420 X
17t | WLC Libra SBS 350 X
18t | WLC 115 210 X
19t | WLC 115 250 X
20t | WLC 512 320 X
21t | WLC 512 400 X
22t | WLC 512 500 X
23t | WLC 513 350 X
24t | WLC 513 450 X
25t | WLC DBC 280 X
26t WLC Display 2 295 X
27t WLC Gemini 350 X
28t WLC | Clubboard DK 250 X
29t WLC | Clubboard DK 400 X
Ip FBB | Comcote CM 305 X
2p FBB | Comkraft RC 295 X
3p FBB | Comkraft RC 390 X
4p FBB Crescendo 240 X
S5p FBB Simcote 255 X
6p FBB Simcote 320 X
Tp FBB Comcote 270 X
8p FBB Comcote 340 X
9p FBB Simcote 245 X
10p FBB Simcote 270 X
11p FBB Stompack 255 X
12p FBB Incada exel 250 X
13p FBB Trambritte 250 X
14p FBB Trambritte 315 X
15p | WLC TBC 330 X
16p | WLC Libra SBS 280 X
17p | WLC TBC 370 X
18p | WLC 115 230 X
19p | WLC 512 300 X
20p | WLC 512 350 X
21p | WLC 512 450 X
22p | WLC 513 320 X
23p | WLC 513 400 X
24p | WLC Gemini 250 X
25p | WLC Gemini 280 X
26p | WLC Gemini 450 X
27p | WLC | Clubboard DK 350 X
28p | WLC Ibiza 450 X

FTIR spectrometers are basically composed of a Michelson
interferometer and a movable mirror. The signal emerging

from the interferometer is processed via Fourier transform to
obtain the spectrum. An attenuated total reflectance (ATR)
module with a diamond crystal is used, which by applying a
slight pressure, permits recording the reflectance spectrum of
the analyzed paperboard sample. The ATR module measures
the changes in the attenuated radiation due to the total internal
reflection phenomenon produced when a mid-infrared beam
comes into contact with the analyzed sample.

In this paper the FTIR spectra of the 57 paperboard samples
are recorded at room temperature (25+1°C) by means of an
ATR cuvette over the wavenumber range 4000—-650cm '
without any treatment of the paperboard samples. Each record
is obtained by averaging four consecutive scans made on an
IR Spectrum One (S/N 57458) from PerkinElmer
(Beaconsfield, UK) equipped with an ATR internal reflectance
module (Universal Sampling Accessory, S/N
PODL01101418). The FTIR spectra of the 57 paperboard
samples provide a data matrix consisting of 57 rows
(paperboard samples) and 3351 columns (reflectance
spectrum). These data in the reflectance mode are sent to the
computer to process the information.

Fig. 2 shows the FTIR spectra of a cellulose sample, a FBB
and a WLC paperboard samples. According to Fig. 2 the
spectra of the paperboard and cellulose samples are similar but
the former ones are much more attenuated, as it can be
appreciated in the spectral stretching bands corresponding to
the O-H, C-H and C-O-C groups. In addition, the C=0O
spectral stretching band is almost totally attenuated in the case
aftha FRR and WT (" camnlac
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Fig. 2. FTIR reflectance spectra of different types of analyzed samples: pure
cellulose sample, FBB and WLC samples.

When comparing the spectra of a paperboard sample
obtained from virgin fibers (FBB) with that obtained from
recovered fibers (WLC), the 1600-1200 cm™ spectral interval
is that with a more accentuated difference. The shape of the
1600-1200 cm™ spectral interval for both the cellulose and
FBB samples is very similar, but more attenuated for the
latter. Contrarily, in the case of the WLC sample, the shape of
this interval differs from that of the two other samples
(cellulose and FBB).
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IV. FEATURE EXTRACTION AND CLASSIFICATION METHODS

As exposed, the spectra of each P&B sample provided by
the FTIR spectrometer consists of 3351 data points
(reflectances at each wave-number). Therefore it is essential to
apply efficient multivariate processing methods for
concentrating the analytically significant information in a
reduced set of latent variables [19,24]. The mathematical
methods designed to calculate the latent variables are often
called feature extraction methods, which also allow removing
most of the noise typically present in the raw signals.
Supervised feature extraction methods, unlike unsupervised
algorithms, use class labels to evaluate the performance of the
latent variables. A supervised algorithm is guided by an expert
user that establishes the class labels of the training samples.
To boost the discrimination between classes, supervised
algorithms are needed [25]. The latent variables are often
obtained by performing mathematical combinations of the
original variables. To this end three feature extraction
algorithms have been applied and their performance has been
evaluated: principal component analysis (PCA), PCA linked
with canonical variate analysis (CVA) and extended canonical
variate analysis (ECVA). Once the problem dimensionality
has been reduced it is necessary to apply a classification
method. For this purpose the k nearest neighbor algorithm
(KNN) has been applied in the classification stage.

PCA is probably one of the most widely applied feature
extraction techniques [24,26,27]. It is an unsupervised method
focused to reduce the dimensions of the original data set while
concentrating the relevant information contained in the
original variable set into a reduced set of latent variables [28].
The original variables (reflectances at different wave-
numbers) are transformed via PCA into orthogonal latent
variables called principal components (PCs). The original
variables are linearly combined to obtain the PCs, which
represent the orthogonal directions with higher variance. The
PCA algorithm provides as many PCs as original variables.
However, only a few PCs are usually retained, those
explaining a sufficient amount of the overall variance. To
prevent overfitting it is essential to carefully determine the
number of PCs to retain and to split the overall samples set
into a training and a prediction set [26]. However, there is no
general method to select the optimum number of PCs to be
retained.

The CVA algorithm is a supervised multi-class feature
extraction method specially intended for accentuating
differences between data classes [29]. CVA is a generalization
of the two-class Fisher linear discriminant analysis algorithm.
Unlike PCA, CVA searches the directions in space that
strengthens the differences between classes in the original data
[30] by applying a criterion based on maximizing separation
between classes while minimizing separation within classes.
The latent variables calculated by the CVA algorithm, which
are not necessarily orthogonal, are known as canonical
variates (CVs). The number of CVs calculated by the CVA
algorithm is equal to the number of classes in the problem
minus one. A major disadvantage of CVA is that it cannot
directly deal with data sets in which the number of samples is

less than the number of variables. This is the case of FTIR
spectrometry, which provides 3351 variables. To surpass this
drawback, the PCA algorithm is applied to reduce the number
of variables prior to CVA application.

The supervised ECVA algorithm was developed by
Norgaard et al. [29,31] to overcome the drawback of the CVA
algorithm related to the impossibility of dealing with data sets
containing a larger number of variables than samples. The
advantage of ECVA compared to CVA, is that ECVA allows
the direct calculation of the latent variables, called extended
canonical variates (ECVs). Consequently, ECVA avoids the
need of applying the PCA algorithm prior to ECVA. As in the
CVA algorithm, ECVA calculates as many ECVs as number
of classes in the problem minus one.

Once the problem dimensionality has been reduced by
means of a suitable feature extraction method, the
classification stage may be applied. For this purpose the
nonparametric K nearest neighbor (KNN) algorithm is applied
in this paper. It is one of the simplest and most effective
classification algorithms [11]. kNN classifies an input sample
in a determined class by taking into account a weighted vote
of the k nearest training set neighbors while applying the
majority voting rule. To this end, the K nearest training set
neighbors of an input sample are located. Then, KNN assigns a
score k to the nearest neighbor’s class, K - 1 to the class of the
second nearest neighbor and so on until reaching a score of 1.
The input sample is assigned to the class with the highest
score. Some authors have recommended using k values from 3
to 5 [32]. The KNN algorithm provides as many outputs as
number of classes defined in the problem, whose values are
comprised between 0 and 1. They denote the membership
degree of the input samples to each class

V. RESULTS AND DISCUSSION

In this section the classification of the analyzed paperboard
samples is carried out by means of the analysis of the FTIR
spectra and the combined action of feature extraction and
classification methods. The analyzed feature extraction
methods are PCA, CVA in combination with PCA and ECVA.
In all cases the KNN classifier is applied.

Since the 57 paperboard samples dealt with have different
origins, it is assumed that these differences are reflected in
their spectra. It is known that 29 of the total amount of 57
samples analyzed are produced from virgin fibers (FBB
samples), whereas the remaining 28 samples are produced
from recovered fibers (WLC). Once divided in these two
groups, the 57 samples are randomly split into a training set
and a prediction set. The training set contains 29 samples (15
FBB and 14 WLC samples) whereas the remaining 28 samples
(14 FBB and 14 WLC samples) are assigned to the prediction
set. Therefore, both the training and the prediction sets
contain approximately 50% of the paperboard samples each.

Whereas the training set matrix contains 29x3351 elements,
the prediction set matrix contains 28x3351 elements. The 3351
columns correspond to the spectral content of each sample and
each matrix contains as many rows as samples analyzed.

However, the spectral interval considered may have a
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notorious influence on the classification results. To study this
effect two spectral intervals are analyzed, i.e. the whole FTIR
spectrum (4000-650 cm™) and the spectral interval with more
accentuated differences (1600-1200 cm™).

A. Results considering the whole spectrum (4000-650 cm™)

In this section the feature extraction and classification
algorithms are applied to the whole FTIR spectrum of the
analyzed samples.

As explained, when applying the PCA algorithm, a reduced
number of PCs are usually retained. However, there is not
universal rule to select the appropriate number of PCs. To
improve separation, PCA was applied on a reduced number of
PCs, those explaining at least 99.5% of the overall variance.
As shown in Fig. 3, this condition was attained by selecting
the first six PCs. Therefore, PCA concentrates most of the
useful information provided by the 3351 spectral variables in
only six PCs, thus greatly reducing the problem
dimensionality. This makes it possible the posterior
application of the CVA algorithm.

100

99

98

97 1

96

Cumulative variance (%)

95

94 T T T T T
0 5 10 15 20 25 30

Number of PCs

Fig. 3. Cumulative variance as a function of the number of retained PCs in the
training data set when considering the overall 4000-650 cm™ spectral interval.

Additionally, leave-one-out cross-validation was applied to
predict the training samples class as an alternative method to
select an appropriate number of PCs. It also resulted in the
first six PCs.

Fig. 4 shows the results based on the PCA algorithm when
considering 29 training samples and 28 prediction samples.
After applying the KNN classifier, classification results
according to the PCA (6 PCs) + KNN scheme resulted in 23 (k
= 3), 25 (k = 4) and 26 (k = 5) correctly classified samples out
of 28 prediction samples (82.14%, 89.29% and 92.86%
classification rates, respectively). As shown in Fig. 4, the
WLC samples appear more dispersed than the FBB samples
since the WLC samples are produced from recovered fibers,
thus being a more inhomogeneous samples set.
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Fig. 4. Training and prediction samples plotted in the space defined by the
first three PCs arising from the PCA algorithm in the 4000-650 cm™ spectral
interval. This is a partial view since only three out of the six retained PCs are
plotted.

Next, the performance of the CVA algorithm was evaluated.
To this end the CVA was applied to the first six PCs arising
from the PCA, whose results are presented in Fig. 5. Note that
when dealing with a two-class problem, the CVA algorithm
only provides one CV. The performance of the PCA (6 PCs) +
CVA algorithms followed by the KNN classification method (k
= 3,4,5) was also examined. It resulted in 100% correctly
classified prediction samples in all cases. Fig. 5 shows again
that the WLC samples appear more dispersed than the FBB
samples.
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Fig. 5. Training and prediction samples plotted in the space defined by the
only CV arising from the PCA (6 PCs) + CVA algorithms in the 4000-650 cm®
! spectral interval.

The behavior of the ECVA algorithm was also tested,
whose results are presented in Fig. 6. The prior reduction of
the number of variables is not required when dealing with
ECVA, so this algorithm is directly applied to the raw spectral
data. Similarly to CVA, ECVA only returns one ECV when
dealing with a two-class problem. After applying the kNN
classifier, the classification results according to the ECVA +
KNN scheme resulted in 26 (k = 3) and 27 (k = 4, 5) correctly
classified samples out of 28 prediction samples (92.86% and
96.43% classification rate, respectively).
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Fig. 6. Training and prediction samples plotted in the space defined by the
only ECV arising from the ECVA algorithm in the 4000-650 cm™ spectral
interval.

B. Results considering the 1600-1200 cm™ interval

As explained, the overall 4000-650 cm™ spectral region is
maybe not the most suited interval to accentuate the
differences between paperboard samples produced from virgin
and recovered fibers. So, in this section, the behavior of the
proposed classification scheme is tested when considering the
1600-1200 cm™" spectral interval.

The PCA algorithm was applied to the 1600-1200 cm’
spectral interval. After analyzing the cumulative variance
explained by the first few PCs arising from the PCA
algorithm, it resulted that the first five PCs explained the
99.5% of the overall variance. The leave-one-out cross-
validation algorithm was also applied to the training samples
as an alternative method to select the most suitable number of
PCs. It also resulted in the first five PCs.

The results based on the PCA algorithm are presented in
Fig. 7. After applying the KNN classifier, the classification
results of the prediction samples according to the PCA (5 PCs)
+ KNN scheme resulted in 24 (k = 3) and 27 (k = 4, 5)
correctly classified prediction samples out of 28 (85.71% and
96.43% classification rates, respectively). These results are
slightly better than those presented in Fig. 4.
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Fig. 7. Training and prediction samples plotted in the space defined by the
first three PCs arising from the PCA algorithm in the 1600-1200 cm™ spectral
interval. This is a partial view since only three out of the five retained PCs are
plotted.

Next, the CVA was applied to the first five PCs, as shown

in Fig. 8. Next the KNN classifier was applied to the data
supplied by the PCA (5 PCs) + CVA algorithms, resulting in
100% classified prediction samples.
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Fig. 8. Training and prediction samples plotted in the space defined by the
only CV arising from the PCA (5 PCs) + CVA algorithms in the 1600-1200
cm’ spectral interval.

When comparing Figs. 5 and 8§, it is clearly seen that the
FBB and WLC samples appear more separated when
considering the 1600-1200 cm™ than the overall 4000-650 cm’
! spectral interval. This result corroborates the assumption that
the 1600-1200 cm™ spectral interval is the most useful for this
specific application.

Next, the performance of the ECVA algorithm was
analyzed, whose results are presented in Fig. 9. This scheme
lead to a classification rate of the prediction samples of
96.43% since 27 samples out of 28 were correctly classified in
all cases (k= 3, 4 and 5).
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Fig. 9. Training and prediction samples plotted in the space defined by the
only ECV arising from the ECVA algorithm in the 1600-1200 cm™ spectral
interval.

C. Results summary

A summary of the classification results attained by applying
the three analyzed mathematical methods and considering the
two studied spectral intervals is presented in Table II.

In this problem the KNN classifier generates two output
values (one per class; i.e. FBB and WLC classes) per sample
analyzed, which are normalized in the interval [0,1]. These
values express the membership degree of the analyzed sample
to each class. Values less than or equal to 0.5 indicate that the
sample does not belong to the considered class, whereas
output values greater than 0.5 indicate its membership to this
class. Whereas an output value of 1 clearly indicates that the
sample belongs to the considered class, an output value of 0.6
presents a high uncertainty degree. Therefore, to evaluate the
classification results accuracy, the predictive residual error
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sum of squares (PRESS) is used, which is calculated as in,

PRESS =i(yi—§u )2 1

yi € [0,1] being the output of the i-th prediction sample
provided by the KNN algorithm and y; € {0,1} being the real

value of y;. The y; values are known a priori since the
prediction samples class is known. Note that the classification
accuracy decreases with increasing values of the PRESS
index.

TABLE II
RESULTS SUMMARY
Statistical kNN Prediction PRESS
methods classifier success rate
Spectral interval: 4000-650 cm™
k=3 23/28 (82.14%) 4.72
PCA (6 PCs) k=4 25/28 (89.29%) 4.50
k=5 26/28 (92.86%) 4.84
k=3 28/28 (100.0%) 0.00
PCA (6 PCs) +CVA k=4 28/28 (100.0%) 0.00
k=35 28/28 (100.0%) 0.00
k=3 26/28 (92.86%) 2.17
ECVA k=4 27/28 (96.43%) 1.56
k=5 27/28 (96.43%) 1.41
Spectral interval: 1600-1200 cm™

k=3 24/28 (85.71%) 3.17
PCA (5 PCs) k=4 27/28 (96.43%) 2.62
k=5 27/28 (96.43%) 2.29
k=3 28/28 (100.0%) 0.00
PCA (5PCs) +CVA k=4 28/28 (100.0%) 0.00
k=5 28/28 (100.0%) 0.00
k=3 27/28 (96.43%) 1.39
ECVA k=4 27/28 (96.43%) 1.39
k=5 27/28 (96.43%) 1.39

According to the results presented in Table II, the best
results were attained when considering the 1600-1200 cm’
spectral interval. Additionally, in all analyzed cases, CVA was
the feature extraction method with better performance,
although ECVA also lead to very accurate classification
results.

VI. CONCLUSION

This paper has proposed a very fast, noninvasive, accurate
and easy-to-apply method to discriminate between paperboard
samples produced from recovered and virgin fibers. For this
purpose FTIR spectroscopy has been analyzed in combination
with feature extraction methods such as PCA, PCA + CVA
and ECVA and the kNN classifier. The most appropriate
spectral interval to be considered has also been analyzed, since
as it has been shown, it may have a notorious influence on the
results. The experimental results presented in this paper have
shown that high classification rates may be achieved by
applying the proposed methodology.

This application may be especially useful in packaging
applications which require paperboard to be in direct contact
with foodstuff, since these applications should avoid
paperboard formulations produced mainly from recovered
fibers, or at least special treatments must be applied to these
materials.
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