IBC c-Si(n) solar cells based on laser doping processing for selective emitter and base contacts formation

G. Masmitja, P. Ortega, I. Martín, G. López, C. Voz, R. Alcubilla
Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya
C/ Jordi Girona 1-3, Mòdul C4, 08034 Barcelona, Spain. e-mail: gerard.masmitja@upc.edu

This work report on the use of laser doping technique to create both selective emitter and base contacts using appropriate dielectric layers as dopant sources as passive layer, i.e. Al\textsubscript{2}O\textsubscript{3} and a-SiC\textsubscript{x}(n) stacks for the p+ and n+ regions respectively. A simplified fabrication process for IBC n-type c-Si solar cells is shown, combining laser doping and a conventional boron emitter passivated by Al\textsubscript{2}O\textsubscript{3} films. Very low emitter recombination currents in the ~10-50 fA/cm2 range before laser processing are reported. In addition, selective emitter contacts can be created by laser doping with recombination current densities at each contact point around 4.4 pA/cm2 in relatively low and shallow doped boron doped profiles (sheet resistance ~400\,Ω/sq). Finally, IBC solar cells, 3 cm x 3 cm device area, were fabricated combining selective laser-doped emitter and base contacts reaching efficiencies up to 20.8%.

Abstract

IBC solar cell baseline process
- Boron diffusion (\(T_d = 925\, ^\circ\text{C}\))
- n-type c-Si
- Emitter definition by isotropic wet etching
- Thermal Oxidation
- n-type c-Si
- Front side SiO\textsubscript{2} etching and random pyramid texturing
- Al\textsubscript{2}O\textsubscript{3}/a-SiC\textsubscript{x} both sides deposition
- Base regions defined by dry CF\textsubscript{4} etching
- Annealing 400 °C 10 min in H\textsubscript{2}/N\textsubscript{2} atmosphere
- Rear side a-SiC\textsubscript{x}(i)/a-Si(n)/a-SiC\textsubscript{x} stack deposition
- Laser processing of selective emitter and base contacts
- e-beam Ti/Al evaporation (rear side)
- Metal patterning
- Annealing 275 °C 10 min in H\textsubscript{2}/N\textsubscript{2} atmosphere

ALD Al\textsubscript{2}O\textsubscript{3} boron emitter passivation

<table>
<thead>
<tr>
<th>(T_d (, ^\circ\text{C}))</th>
<th>(R_{th} (, \Omega/\text{sq}))</th>
<th>(\tau_{em} (, \mu\text{s}))</th>
<th>(V_{oc} (, \text{mV}))</th>
<th>(J_{0e} (, \text{fA/cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>62</td>
<td>225</td>
<td>641</td>
<td>49</td>
</tr>
<tr>
<td>950</td>
<td>119</td>
<td>408</td>
<td>666</td>
<td>21</td>
</tr>
<tr>
<td>900</td>
<td>177</td>
<td>379</td>
<td>663</td>
<td>17</td>
</tr>
<tr>
<td>850</td>
<td>411</td>
<td>1200</td>
<td>702</td>
<td>9</td>
</tr>
</tbody>
</table>

Test Devices (Selective emitter contact characterization)

c-Si(n) IBC solar cell results

<table>
<thead>
<tr>
<th>#</th>
<th>(j_e (, %)</th>
<th>(j_c (, %)</th>
<th>(J_{sc} (, \text{mA/cm}^2)</th>
<th>(V_{oc} (, \text{mV}))</th>
<th>(FF (, %))</th>
<th>Efficiency (, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>67</td>
<td>2.3</td>
<td>40.4</td>
<td>675.1</td>
<td>76.6</td>
<td>20.8</td>
</tr>
<tr>
<td>#1</td>
<td>80</td>
<td>1.4</td>
<td>40.1</td>
<td>673.5</td>
<td>72.2</td>
<td>19.5</td>
</tr>
<tr>
<td>#2</td>
<td>86</td>
<td>1.0</td>
<td>40.3</td>
<td>673.4</td>
<td>69.6</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Conclusions

- Excellent ALD Al\textsubscript{2}O\textsubscript{3} passivated boron emitters with \(J_{0e}\)'s values in the range of 10-50 fA/cm2.
- Al\textsubscript{2}O\textsubscript{3} films and a-SiC\textsubscript{x}(n) stacks are used as dopant sources to perform both selective emitter and base contacts by means of laser-doping technique.
- High efficiency IBC solar cell (up to ~20.8 %) has obtained by only one thermal step (boron diffusion) paving the way for obtaining a full cold process to fabricate high efficiency IBC solar cells.

Acknowledgements

This work has been supported in part by the Spanish Government under FPU grant (FPU13/04381) and through projects ENE2013-48629-C4-1-R and TEC2014-59736-R. It has also received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under project HERCULES (Grant agreement: 608498).

Legend
- Boron Diffusion
- Al\textsubscript{2}O\textsubscript{3}
- a-SiC\textsubscript{x}
- a-SiC\textsubscript{x}(i)/a-Si(n)
- Ti/Al
- \(\varphi\text{~74 nm}\)
- \(\text{Front surface with random pyramids}\)
- \(\text{Laser spot (~1 W)}\)