
Resilient Random Modulo Cache Memories
for Probabilistically-Analyzable Real-Time Systems

David Trilla†,‡, Carles Hernandez†, Jaume Abella†, Francisco J. Cazorla⋆,†
† Barcelona Supercomputing Center (BSC). Barcelona, Spain

‡ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
⋆ Spanish National Research Council (IIIA-CSIC). Barcelona, Spain.

Abstract—Fault tolerance has often been assessed separately
in safety-related real-time systems, which may lead to inefficient
solutions. Recently, Measurement-Based Probabilistic Timing
Analysis (MBPTA) has been proposed to estimate Worst-Case
Execution Time (WCET) on high performance hardware. The
intrinsic probabilistic nature of MBPTA-commpliant hardware
matches perfectly with the random nature of hardware faults.
Joint WCET analysis and reliability assessment has been done
so far for some MBPTA-compliant designs, but not for the
most promising cache design: random modulo. In this paper we
perform, for the first time, an assessment of the aging-robustness
of random modulo and propose new implementations preserving
the key properties of random modulo, a.k.a. low critical path
impact, low miss rates and MBPTA compliance, while enhancing
reliability in front of aging by achieving a better – yet random
– activity distribution across cache sets.

I. INTRODUCTION

Functional and timing correctness are major concerns in the
context of safety-related real-time systems. Those systems in
the avionics, space, railway, medical and automotive domains,
among others, provide a number of functionalities that relate to
the preservation of human lives and the integrity of the system
itself. It is, therefore, needed to collect enough evidence
about their correct operation to certify them according to the
corresponding criticality level. This relates to proving that
those systems will perform their operation correctly and in
time, which is assessed against the appropriate safety standards
in the domain (i.e. ISO26262 in the automotive domain [19]
and DO-178B/C in the avionics domain [26]).

Both concerns, functional and timing correctness, have been
often faced as separated concerns. As in many other aspects,
dealing with each concern separately simplifies the work but
leads to inefficient solutions because the most robust design
may challenge timing verification and vice versa. For instance,
some recent work proposes solutions to deal with cache
memory faults in the context of deterministic timing analysis,
either static or measurement-based. Such timing analysis is a
popular approach to estimate the Worst-Case Execution Time
(WCET) of real-time tasks, needed to find a feasible schedule
where all critical tasks are proven to execute before their
respective deadlines [3], [4].

While deterministic timing analysis methods have been used
in a wide variety of contexts, they find some non-negligible
difficulties when analyzing complex programs running on top
of complex high-performance hardware (e.g., cache hierar-
chies, multicores) [6]. Recently, an alternative timing analysis
method, Measurement-Based Probabilistic Timing Analysis
(MBPTA) [10] has been proposed to derive reliable WCET
estimates on top of complex hardware. MBPTA relies on
hardware platforms providing some properties such as random
placement and replacement caches [21], [22].

Random placement and replacement caches provide a proba-
bilistic behavior that matches very well with the random nature
of hardware faults, thus facilitating the design of hardware
solutions amenable for both timing analysis and fault tolerance
– needed for functional correctness – simultaneously. In fact,
this has been already exploited to derive probabilistic WCET
(pWCET) estimates that hold valid in the presence of faults in
some random placement and replacement caches [28], [29].

Recently, it has been proven that random placement may
bring some performance limitations, in terms of both critical
path at circuit level and cache miss rates, especially when used
in first level caches. This has been addressed by proposing
a new hardware design, random modulo [17], that fulfils
MBPTA properties overcoming the performance issues of ran-
dom placement. Random modulo randomizes cache placement
within boundaries using Benes networks [8] so that high miss
rate scenarios are avoided by construction, and the impact
in the critical path is negligible. However, fault tolerance of
random modulo has not been assessed yet.

This paper assesses fault tolerance of random modulo in
terms of hot carrier injection (HCI) aging and proposes alter-
native random modulo implementations achieving lower HCI
aging – and so higher reliability – while still preserving those
properties required by MBPTA, which builds on top. The main
rationale behind our designs is balancing activity across cache
sets while preserving the random nature of cache placement,
needed to apply MBPTA. Our results show that reliability,
time analyzability and high performance can be accomodated
into a single cache design outperforming existing deterministic
modulo and random modulo designs.

The rest of the paper is organized as follows. Section II
provides background on MBPTA and random modulo. Sec-
tion III presents the reliability assessment of random modulo
and our new random modulo implementations. Those differ-
ent implementations are evaluated in Section IV. Section V
describes some related work. Finally, Section VI draws the
main conclusions of this work.

II. BACKGROUND ON MBPTA AND RANDOM MODULO

In this section we first introduce the fundamentals of
MBPTA and the requirements it imposes on hardware design.
Then we present random modulo cache design in detail since
it is the basis upon which we build our work.

A. MBPTA and Its Requirements
MBPTA is a timing analysis method that derives probabilis-

tic WCET (pWCET) estimates. Classic deterministic WCET
estimation delivers a single WCET value that cannot be
exceeded under any circumstance, which may lead to overly
pessimistic WCET estimates [6]. Conversely, by enforcing

montse aragues
Texto escrito a máquina
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/IOLTS.2016.7604666

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina



Fig. 1. Example of the application of MBPTA on 1,000 execution time
measurements.

some properties on the hardware design and the way execution
time measurements are collected, MBPTA [10], [9] can attach
a probability of occurrence to each execution time and thus,
deliver a curve that upper-bounds the execution time distribu-
tion of the program under analysis. As a result the execution
time value whose exceedance probability can be deemed as
irrelevant – in relation with the corresponding safety standard –
is taken as WCET estimate. Note that this probabilistic WCET
value is typically much lower than the actual (absolute) WCET,
but exploits the fact that extremely unlikely events do not need
to be upper-bounded since they fall far below the probabilities
of the residual risk of the verification process as dictated by
safety standards (e.g., whether all execution scenarios have
been considered, whether tools have been implemented and
validated properly).

In order to estimate the pWCET distribution, MBPTA relies
on the application of a number of steps. Among those, we
find collecting a number of execution time measurements of
the program (typically in the order of some hundreds). Then,
by means of Extreme Value Theory (EVT) [24], MBPTA
estimates the distribution of the high execution times. Figure 1
shows the example of applying EVT to R = 1, 000 execution
time measurement (red dotted line). The plot (in logarith-
mic scale) shows the Complementary Cumulative Distribution
Function (CCDF) also known as exceedance function. EVT
delivers a function that upper-bounds the distribution of the
measurements (continuous black line). For instance, for an
exceedance threshold of 10−12 per run, the pWCET is around
186,000 cycles (continuous and dashed black lines cross), thus
meaning that on average once every 1012 runs the execution
time might be higher than 186,000 cycles.

MBPTA cannot be applied on top of arbitrary hardware de-
signs. Instead, MBPTA needs a hardware design and a process
to collect execution time measurements so that all elements
introducing jitter in the execution time (e.g., cache memories)
are either upper-bounded or randomized [23]. For instance,
variable-latency floating point units can be made operate at
their highest latency regardless of their input values. This has
been done, for instance, for a FPGA-based implementation of
a 4-core LEON3 processor from the Space domain where FP
divisions take either 15 or 18 cycles depending on the values
operated [16]. Thus, hardware has been changed to enforce
always a 18-cycles latency. Other hardware resources, such as
cache memories, cannot be made work at their highest latency
since WCET estimates would be unaffordably high. Thus,
they are time-randomized by using random placement and
random replacement policies [21], which have been efficiently

Fig. 2. Example of a 4-bit Benes network.

implemented in the same design [16] providing slightly higher
average miss rates than conventional caches with modulo
placement and LRU replacement [21], [22]. However, as
shown recently, their impact in the critical path may be
high [17] and they may produce sporadically scenarios with
high miss rates even if data fits comfortably in cache [5].
These (few) problematic placements affect pWCET estimates
meaningfully. Thus, random modulo [17] has been proposed
recently to overcome the limitations of random placement.

B. Random Modulo Cache Design

Random placement maps each cache line randomly in a
cache set based on a random seed that is changed across
program runs. While this provides the properties needed by
MBPTA, it may produce bad placements in terms of miss rates:
even with programs accessing few cache lines, when those
lines are randomly placed in the same cache set. Conversely,
deterministic modulo placement maps consecutive memory
lines into consecutive sets, thus avoiding this type of conflicts.
However, conflicts across lines are not random and strictly
depend on memory location. Since memory location of objects
during operation is hard to be controlled and mimicked at anal-
ysis time, conflicts at analysis might not be representative of
those during operation, hence preventing the use of MBPTA.
Instead, random modulo randomizes cache placement within
cache way boundaries (also using a random seed) so that,
as long as cache ways do not exceed memory page size
(typical case for first level caches), consecutive cache lines
within cache way boundaries cannot conflict among them
by construction, as it is the case for deterministic modulo
placement. This is achieved by randomizing placement in the
form of a random permutation. Still, conflicts among lines
beyond cache way boundaries are random. Hence, average
performance is close to that of deterministic modulo placement
and worst-case placements deliver performance close to the
average performance [17].

Random modulo is implemented by means of a Benes
network where each node allows input signals to go through
or to commute based on control signals (see Figure 2). In
the case of random modulo, input bits (those coming from
the left in the figure) are those address bits used as index in
regular modulo placement, and control bits (one control bit
per box, not shown in the figure) are produced by XORing
conveniently the tag bits and a random seed that is changed
across program executions. In this way a given memory line
is randomly placed in cache, such placement holds constant
during the whole execution, and it changes randomly across
executions by changing the random seed (and flushing cache
contents). Since addresses within cache way boundaries have
distinct index bits, the Benes network delivers a bijective
function so that, given specific control signals (those produced
by addresses with the same tag with the same random seed)
each index is placed in one set and each set corresponds to
exactly one cache index. Therefore, a permutation is obtained
and conflicts cannot occur across lines with identical tag.



Fig. 3. Example address distribution for a 16-set cache with default random
modulo design.

Note, however, that the particular way to combine tag
bits and the random seed determines the particular index
bit permutation chosen. Also, the output of the network is
determined by the particular index bits of the address being
accessed. This is detailed in the next section, where the
reliability assessment is performed. In particular we show how
the particular address-to-set mapping influences the utilization
of each set and, therefore, their degradation in terms of HCI.

III. ENHANCED AGING-FRIENDLY RANDOM MODULO

In this section we first describe the functioning of the default
random modulo cache design, illustrating its limitations related
to aging, and then we present our new enhanced random
modulo implementation that makes a far more balanced use of
the cache sets, thus more friendly from an aging perspective.

A. Random Modulo Set Distribution
Random modulo is intended to randomly distribute ad-

dresses (indexes in particular) to cache sets. For that purpose
using a combination of address tags with random bits from the
random seed to set control signals in the Benes network leads
to a homogeneous and random permutation selection for index
bits. However, index bits themselves are not random since they
are completely program dependent.

Let us illustrate this with an example. Let us consider
a program accessing 4 addresses (once offset bits have
been removed): 0x00 (00000000b), 0x01 (00000001b), 0x02
(00000010b) and 0x03 (00000011b), and a cache memory
with 16 sets. We realize that, regardless of the particular
bit permutation selected, address 0x00 can only be placed
in set 0 (0000b). Addresses 0x01 and 0x02 can be mapped
instead in any set such that its set identifier contains exactly
one “one”, so this corresponds to sets 1 (0001b), 2 (0010b),
4 (0100b) and 8 (1000b). Any other set cannot be reached
with addresses 0x01 and 0x02 regardless of the permutation
selected since their lowermost 4 bits – those forming the cache
index – only contain a “one”. Finally, address 0x03 can only
be mapped to sets 3 (0011b), 5 (0101b), 6 (0110b), 9 (1001b),
10 (1010b) and 12 (1100b) since they are the only ones whose
set identifiers contain exactly 2 bits set to “one”. This is
graphically illustrated in Figure 3, where we can see that the
amount of times each set is used is highly heterogeneous.
For instance, set 0 is intensively used by address 0x00, some

Fig. 4. Schematic of the baseline implementation of a random modulo cache.

Fig. 5. Schematic of the enhanced implementation of a random modulo
cache. Red parts indicate the changes introduced.

other sets are used with different degrees of intensity by
addresses 0x01, 0x02 and 0x03, and some other sets (7, 11,
13, 14, 15) are never used since no address has enough “ones”
to be mapped to any of those sets under any permutation.
Further note that, if addresses are accessed heterogeneously,
the impairment in the use of the different cache sets can be
potentially much higher.

Having an heterogeneous cache set utilization is expected
to lead to higher degradation for the most used sets due to,
for instance, hot carrier injection (HCI) [31] among other
sources of transistor degradation, since HCI affects devices
proportionally to the activity produced, which in turn depends
on the access distribution across cache sets. Hence, we aim at
finding a better random modulo implementation that balances
utilization of the cache sets regardless of the particular access
pattern and indexes of the addresses accessed.

B. Randomizing Set Distribution
Our proposal to make index bits have a random distribution

is analogous to that used for making control bits in the Benes
network be random: hashing address bits with random bits. In
the particular case of the index bits, we XOR them with some
random bits of the random seed. For instance, let us recall
our previous example. If we XOR the index bits of 0x00 (so
0000b) with a random value, in essence we will obtain 16
different indexes – all binary values that can be encoded with
4 bits – with homogeneous probability. This also holds for any
other address regardless of their particular index bits. Thus,
all addresses are placed to all sets with identical probability
regardless of their particular index bits. Therefore, in the long
run all sets are expected to be used homogeneously regardless
of the particular access patterns of the programs being run.



The drawback of this approach is that a XOR gate is
introduced in the path of the index bits to the Benes network,
thus potentially affecting the critical path. Still, since a single
XOR gate is added, the impact is limited as proven later in
the evaluation section.

Figures 4 and 5 show the baseline random modulo design
and our enhanced design respectively. As shown, in our
enhanced version we add a level of XOR gates to combine
index bits (D bits) with D random bits taken from the random
seed. In the figure we show that the random bits used for the
index generation (those in the left side of the Benes network)
and control bits generation (those on the top part of the Benes
network) correspond to different random bits. In practice there
is no constraint on using the same bits or different ones since
they are used for different purposes.

In summary, as shown later, this conceptually minor – but
highly powerful – modification allows balancing the utilization
of the cache sets, thus mitigating maximum aging and so
increasing the lifetime of the cache memory. The impact in the
critical path is low (at most an extra XOR gate), address-to-set
mapping within cache way boundaries is a permutation (thus
keeping miss rates low by avoiding many potential conflicts),
and MBPTA compliance is preserved since cache set location
is random.

IV. EVALUATION

This section evaluates our enhanced random modulo place-
ment. First, we introduce the evaluation methodology. Then
we present the results in terms of access distribution across
sets, how this improves lifetime and we show the impact in
the critical path of the hardware modification.

A. Methodology
We model the first level instruction (IL1) and data (DL1)

caches of a NGMP 4-core processor designed for the Space
domain [7]. Those caches are 16KB 4-way 32B/line. Thus,
they have 128 sets each.

We evaluate the different cache placement designs (modulo,
baseline random modulo and our enhanced random modulo)
with the EEMBC autobench suite, a well-known benchmark
suite used in the real-time domain [25]. Each EEMBC bench-
mark is analyzed using the default input data for the bench-
mark. Considering multipath effects in the context of MBPTA
has been addressed elsewhere [35] and is orthogonal to the
work in this paper.

Benchmarks have been run once in an improved version of
SoCLib [30] to extract instruction and address traces. Then,
cache set distribution of each placement function has been
evaluated in a cache simulator processing those address traces.

For estimating the lifetime improvement we use the ex-
pressions provided in [20] showing that transistors lifetime
degradation due to HCI is inversely proportional to their
activity. In the present work we do not consider the impact
of BTI-related aging effects as they do not directly depend
on the switching activity. However, we believe our proposal
might also reduce the negative impact that biased cache access
distributions have on BTI-related degradation. In this line,
authors in [12] already pointed out that uniformly distributing
accesses to cache sets also helps mitigating NBTI effects on
rarely accessed sets were PMOS and NMOS devices will be
stressed for a long time with biased duty cycle ratio and low
switching frequency. We let as future work the quantification
of lifetime improvement of our proposal when considering BTI
degradation.

TABLE I
DISTRIBUTION OF ACCESSES ACROSS SETS FOR THE DIFFERENT

PLACEMENT FUNCTIONS AND CACHES.

Cache IL1 DL1
Placement M RM ERM M RM ERM
a2time 5.5 1.5 1.0 32.0 3.5 1.0
aifftr 3.2 2.2 1.0 17.3 2.1 1.0
aifirf 5.9 1.4 1.0 27.7 10.9 1.0
aiifft 2.4 1.5 1.0 17.2 2.1 1.0
basefp 7.4 1.8 1.0 36.6 4.1 1.0
bitmnp 2.1 1.4 1.0 26.8 2.6 1.0
cacheb 12.7 2.6 1.0 24.8 2.3 1.0
canrdr 11.1 2.0 1.0 36.4 5.7 1.0
idctrn 3.0 2.9 1.0 26.7 2.8 1.0
iirflt 7.7 1.3 1.0 20.6 4.2 1.0
pntrch 3.9 1.8 1.0 30.9 3.4 1.0
puwmod 19.1 2.7 1.0 63.3 3.2 1.0
rspeed 8.5 2.1 1.0 41.7 3.6 1.0
tblook 4.2 2.0 1.0 22.1 4.2 1.0
ttsprk 18.6 2.1 1.0 53.8 7.1 1.0
HARMEAN 4.9 1.8 1.0 27.9 3.4 1.0

To quantify delay overheads of the enhanced implementa-
tion of random modulo we have described both circuit im-
plementations, the original random modulo and the enhanced
one, with VHDL and synthesized them using Synopsys DC
[1] with a TSMC 45nm technology library [11]. Additionally,
both implementations have been integrated in a 4-core Leon3-
based processor resembling the NGMP and synthesized in a
Stratix IV Altera device at 100MHz.

B. Experimental Results
Set distribution. First we evaluate the access distribution

across sets for each cache (IL1 and DL1) and placement func-
tion: modulo (M ), random modulo (RM ) and our enhanced
random modulo (ERM ). For each one we show the ratio
between the maximum number of accesses per set and the
average number of accesses per set (MAX/AV G). In the
ideal case where accesses are perfectly balanced, MAX/AV G
should be exactly 1. In general we can expect MAX/AV G
to be higher than 1.

Table I summarizes the results for all benchmarks, with
100, 000 runs with different random seeds for RM and ERM .
Since M always delivers the same distribution, one run suf-
fices. As shown, M produces high imbalance across sets, par-
ticularly for the DL1 cache. The particular addresses accessed
determine the sets accessed, and so the set distribution. Thus,
M distribution is completely program-dependent. This is in
part mitigated for the IL1 since loops contain some significant
sequential code accessed many times, thus leading to quite
homogeneous distribution (at least for the sets accessed in
the loop). Conversely, access patterns for DL1 can be highly
irregular in many cases, thus leading to high imbalance in
the set access distribution. The harmonic mean for the set
distribution of M is 4.9 for the IL1 and 27.9 for the DL1,
thus far from the ideal value 1.0.

RM balances accesses much better due to the randomness
introduced in the generation of the set index. This is
particularly noticeable for the DL1. Still, since some
dependence exists between the actual addresses accessed and
the sets where they map, set distribution improves only to
some extent. The harmonic mean for the set distribution of
RM is 1.8 for the IL1 and 3.4 for the DL1. While these
results are far better than for M , they are still far from the
ideal value 1.0, especially for the DL1.



Fig. 6. IL1 per-set access distribution for pntrch.

Fig. 7. DL1 per-set access distribution for pntrch.

Finally, our ERM removes the dependence of the set index
on the particular address accessed, thus delivering much better
set access distributions. This effect is particularly relevant for
the DL1, where the imbalance for both M and RM is high.
The harmonic mean for the set distribution of ERM is 1.0
(Max:1.028) for the IL1 and 1.0 (Max:1.044) for the DL1,
very close to the ideal value 1.0.

For completeness, we show the per-set distribution for the
different placement policies for 2 specific examples: the IL1
and the DL1 for pntrch. The former (see Figure 6) is a
relatively good case for M , whereas the latter (see Figure 7)
is a relatively bad case for M . Figures show in the x-axis the
different cache sets and in the y-axis the utilization normalized
w.r.t. the highest utilization in the M case.

The example in Figure 6 shows that M uses some sets
quite often, whereas others are barely used. Still, the number
of sets used often is relatively large. RM achieves a much
better distribution across sets and only some sets have higher
utilization than the average. Those sets correspond to those
with most index bits being zero (or one), so that randomiza-
tion has limited effect. Finally, our ERM achieves almost
homogeneous cache set utilization. The example in Figure 7,
instead, shows that M uses very few sets of the DL1 cache for
pntrch. This leads to an extremely unbalanced distribution.
In the case of RM (note that the y-axis only reaches 0.2) the
distribution is far better as the most used set is used around 8
times less than for M . Still, unbalance is high. Finally, ERM
achieves almost homogeneous set utilization.

Lifetime. In order to quantify the impact of the improved
set distribution in lifetime, we have evaluated this effect in
terms of HCI lifetime. For that purpose we use the HCI
model reported in [20], as explained before, where it is shown

Fig. 8. HCI lifetime for RM and ERM normalized w.r.t. M for both IL1
and DL1. Scales are different in each plot.

that HCI is directly proportional to the switching activity.
Thus, we can directly translate set access distribution into
lifetime for HCI. We assume that a failure occurs when the
first permanent fault due to HCI occurs. Thus, the cache line
with highest utilization determines cache lifetime. While other
models could be used, our work is centered around safety-
related real-time systems where timing verification occurs
before operation and assuming that the processor is fault-
free. Thus, unless otherwise considered during the analysis
phase, one faulty cache line may impact the WCET and thus,
invalidates those timing guarantees on which the certification
process has been conducted.

Since the actual lifetime value depends not only on HCI, but
also on other sources of failure and hardware components, we
report how much the lifetime of the IL1 and DL1 is extended
due to HCI for RM and ERM normalizing the results w.r.t.
M placement. Results are shown in Figure 8. We observe
that lifetime grows by 3.9x and 8.8x on average for IL1 and
DL1 respectively for RM . Results for ERM are far better,
extending HCI lifetime by 7.6x and 30.9x on average for
IL1 and DL1 respectively. If we compare ERM w.r.t. RM ,
lifetime grows by a factor of 1.9x and 3.5x for IL1 and DL1
respectively.

Delay impact. After synthesis we have seen ERM has zero
impact w.r.t. the maximum operating frequency that the regular
RM implementation can achieve. The reason is that, despite
adding one level of XOR gates introduces a non-negligible
impact in delay – around 0.13ns for the 45nm technology we
have used – the actual critical path remains to be the one that
uses TAG bits and random seed bits XORing them to configure
the Benes network. Thus our modification does not impact the
critical path.

V. RELATED WORK

WCET estimation has been an important concern for both
academia and industry during many years [34], [6], and it
has been shown that each technique comes with its own set of
features and limitations. Thus, no single technique can claim to
be the best fit for all safety-related real-time systems. Recently,
MBPTA [10] has been devised to obtain trustworthy and tight
WCET estimates for complex software running on complex
hardware where end users can only afford using measurement-
based techniques. MBPTA has been successfully assessed with
some industrial case studies [32], [33].



Several approaches have been proposed in the literature
to address the impact of HCI and BTI in processors and
cache structures [2][27]. While the majority of works focus
on BTI effects, some recent works have also pointed out
the importance of considering the effects of HCI degradation
[18], [20], [12]. In fact, authors in [12] have already proposed
improving the uniformity of accessess to the cache to mitigate
HCI and NBTI degradation. Unlike in [12], where authors
rely on introducing dedicated hardware resources to achieve
uniform access distribution, we rely on the good properties of
Random Modulo [17] to achieve the same end at an almost
negligible extra cost.

Considering WCET estimation together with reliability is-
sues has been done from many fronts. Some authors propose
preserving WCET estimation methods by devising hardware
cache designs able to tolerate permanent faults with no effect
(or easy to account effect) on WCET estimates [3], [4].
Other authors propose accounting for the timing impact of
faults in a probabilistic manner in combination with static
deterministic timing analysis methods by studying the impact
and probabilities of different fault distributions [13], [14], [15].
However, those approaches inherit the limitations of static
timing analysis, and thus cannot be applied in the context of
measurement-based timing analysis.

Recently, some authors have done some preliminary work in
the context of WCET analysis of faulty hardware together with
MBPTA [28], [29]. Results are promising and prove that the
random nature of the timing of MBPTA-compliant hardware
matches very well with the random nature of faults, thus
leading to efficient solutions. However, that work considers
random placement caches as they are. In this paper, instead, we
assess the reliability of the most efficient random placement
design, called random modulo [17] in terms of aging, and
propose alternative random modulo implementations such that
reliability is enhanced while preserving the good properties of
random modulo.

VI. CONCLUSIONS

Fault tolerance and WCET estimation, needed both for
safety-related real-time systems verification, have often been
addressed as separate concerns. In this context, approaches
based on MBPTA have been shown to match very well the
needs of both concerns by relying on the same principle:
randomness. Therefore, efficient solutions can be built to
consider both concerns simultaneously.

In this paper we assess the reliability of random modulo
cache designs, proven convenient for MBPTA, in terms of
aging, and propose alternative random modulo implementa-
tions that improve aging while preserving the main features
of random modulo: low impact in critical path, low miss rates
and adherence to the requirements of MBPTA.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the PROXIMA Project
(www.proxima-project.eu), grant agreement no 611085. This
work has also been partially supported by the Spanish Ministry
of Science and Innovation under grant TIN2015-65316-P
and the HiPEAC Network of Excellence. Jaume Abella has
been partially supported by the Ministry of Economy and
Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717. Carles Hernández is jointly funded

by the Spanish Ministry of Economy and Competitiveness and
FEDER funds through grant TIN2014-60404-JIN.

REFERENCES

[1] Synopsys design compiler. Technical report.
[2] J. Abella et al. Penelope: The NBTI-aware processor. In MICRO, 2007.
[3] J. Abella et al. RVC: A mechanism for time-analyzable real-time

processors with faulty caches. In HiPEAC Conference, 2011.
[4] J. Abella et al. RVC-Based time-predictable faulty caches for safety-

critical systems. In IOLTS, 2011.
[5] J. Abella et al. Heart of Gold: Making the improbable happen to extend

coverage in probabilistic timing analysis. In ECRTS, 2014.
[6] J. Abella et al. WCET analysis methods: Pitfalls and challenges on their

trustworthiness. In SIES, 2015.
[7] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-

NGMP-DRAFT - Data Sheet and Users Manual, 2011.
[8] V. Benes. Permutation groups complexes and rearrangeable multistage

connecting networks. Bell System Technical Journal, 43:1619–1640,
1964.

[9] F.J. Cazorla et al. Upper-bounding program execution time with extreme
value theory. In WCET Workshop, 2013.

[10] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis
for multi-path programs. In ECRTS, 2012.

[11] TSMC foundry. TSMC 40 nm technology.
[12] E. Gunadi et al. Combating aging with the colt duty cycle equalizer. In

MICRO, 2010.
[13] D. Hardy and I. Puaut. Static probabilistic worst case execution time

estimation for architectures with faulty instruction caches. In RTNS,
2013.

[14] D. Hardy and I. Puaut. Static probabilistic worst case execution time
estimation for architectures with faulty instruction caches. Journal of
Real-Time Systems, 51(2):128–152, 2015.

[15] D. Hardy et al. Probabilistic WCET estimation in presence of hardware
for mitigating the impact of permanent faults. In DATE, 2016.

[16] C. Hernandez et al. Towards making a LEON3 multicore compatible
with probabilistic timing analysis. In DASIA, 2015.

[17] C. Hernandez et al. Random modulo: a new processor cache design for
real-time critical systems. In DAC, 2016.

[18] V. Huard et al. Managing sram reliability from bitcell to library level.
In IRPS, 2010.

[19] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[20] H. Kim et al. Use it or lose it: Proactive, deterministic longevity in
future chip multiprocessors. ACM Trans. Des. Autom. Electron. Syst.,
20(4):65:1–65:26, September 2015.

[21] L. Kosmidis et al. A cache design for probabilistically analysable real-
time systems. In DATE, 2013.

[22] L. Kosmidis et al. Multi-level unified caches for probabilistically time
analysable real-time systems. In RTSS, 2013.

[23] L. Kosmidis et al. Probabilistic timing analysis and its impact on
processor architecture. In DSD, 2014.

[24] S. Kotz et al. Extreme value distributions: theory and applications.
World Scientific, 2000.

[25] Jason Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[26] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations
in Airborne Systems and Equipment Certification, 1992.

[27] J. Shin et al. A proactive wearout recovery approach for exploiting
microarchitectural redundancy to extend cache SRAM lifetime. In ISCA,
2008.

[28] M. Slijepcevic et al. DTM: Degraded test mode for fault-aware
probabilistic timing analysis. In ECRTS, 2013.

[29] M. Slijepcevic et al. Timing verification of fault-tolerant chips for safety-
critical applications in harsh environments. IEEE Micro - Special Series
on Harsh Chips, 34(6), 2014.

[30] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.
[31] C.T. Wang. Hot Carrier Design Considerations for MOS Devices and

Circuits. Van Nostrand Reinhold, 1990.
[32] F. Wartel et al. Measurement-based probabilistic timing analysis:

Lessons from an integrated-modular avionics case study. In SIES, 2013.
[33] F. Wartel et al. Timing analysis of an avionics case study on complex

hardware/software platforms. In DATE, 2015.
[34] R. Wilhelm et al. The worst-case execution time problem: overview of

methods and survey of tools. ACM TECS, 7(3):1–53, 2008.
[35] M. Ziccardi et al. EPC: Extended path coverage for measurement-based

probabilistic timing analysis. In RTSS, 2015.




