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ABSTRACT

Urban drainage systems (UDSs) are complex large-scale systems that carry stormwater and

wastewater throughout urban areas. During heavy rain scenarios, UDSs are not able to handle

the amount of extra water that enters the network and flooding occurs. Usually, this might

happen because the network is not being used efficiently, i.e., some structures remain underused

while many others are overused. This thesis proposes a control methology based on mean

field game theory and model predictive control that aims to efficiently use the existing network

elements in order to minimize overflows and properly manage the water resource. The proposed

controller is tested on a UDS located in the city of Barcelona, Spain, and is compared with

a centralized MPC achieving similar results in terms of flooding minimization and wastewater

treatement plant usage, but only using local information on non-centralized controllers and using

less computation times.

Keywords: Urban Drainage Systems, Mean Field Games, Model Predictive Control, Hy-

brid Linear Delayed.
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RESUMEN

Los sistemas de drenaje urbano son sistemas complejos y de gran escala que transportan tanto

aguas negras como aguas de lluvia a través de las zonas urbanas. Durante eventos de precip-

itación muy fuertes, estos sistemas no son capaces de manejar la cantidad de agua adicional

que entra y ocurren inundaciones indeseadas. Normalmente, esto pasa porque la red no está

siendo utilizada eficientemente, i.e., algunas estructuras permanecen sub-utilizadas y otras se

encuentran sobre-utilizadas. Esta tesis propone un esquema de control basado en la teorı́a de

mean field games y de control predictivo que busca utilizar eficientemente la red para mini-

mizar las inundaciones en cualquier escenario, y garantizar una utilización adecuada del recurso

hı́drico. El esquema propuesto es probado en la red de drenaje de la Riera Blanca en la ciudad

de Barcelona y es comparado con una estrategia de control basada puramente en control pre-

dictivo, obteniendo resultados similares en terminos de inundación y utilización de plantas de

tratamiento, pero utlizando únicamente una fracción del costo computacional.

Palabras clave: Sistema de Drenaje Urbano, Juegos de Campo Medio, Control Predictivo,

Modelo Lineal Hı́brido con Retardos.
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RESUM

Sistemes de drenatge urbà (UDS) són sistemes complexos a gran escala que transporten aigües

pluvials i residuals en les zones urbanes. Durant escenaris de fortes pluges, UDSs no són

capaços de manejar la quantitat d’aigua addicional que entra a la xarxa i es produeix la in-

undació. En general, això pot succeir perquè la xarxa no està sent utilitzat de manera eficient,

és a dir, algunes estructures segueixen sent infrautilitzades mentre que molts altres són usats

en excés. En aquest treball es proposa una metodologia de control basat en la teoria de mean

field games i control predictiu que pretén utilitzar de forma eficient els elements de xarxa exis-

tents per tal de minimitzar els desbordaments i gestionar adequadament els recursos hı́drics. El

controlador proposat es prova en un UDS situada a la ciutat de Barcelona, Espanya, i es com-

para amb un MPC centralitzat aconsegint resultats similars en termes de minimització de les

inundacions i la utilització de la planta de tractament d’aigües residuals, però només utilitzant

informació local en els controladors no centralitzats i l’ús de menys temps de càlcul.

Paraules clau: Sistemes de Drenatge Urbà, Jocs de Camp Mitjà, Control Predictiu, Model

Hı́brid Lineal amb Retards.

ix



x



ACKNOWLEDGEMENT

Agradezco a Carlos y Nicanor por aguantarme, a Ye, Julián y Gerardo por escucharme y a

Bernat por ayudarme.

Andrés Ramı́rez

Barcelona, March 2016

xi



xii



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Resum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I State of the Art and Problem Statement 5

2 Background 7

2.1 Differential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Main Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Open-loop Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Closed-loop Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xiii



2.2 Mean Field Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Differential Game Approach 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Urban drainage system model . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Information graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Differential Game Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Receding horizon DG . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Conclusions and into MFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Controller Design Based on Dynamic Games for CSN 33

4.1 The Dynamic Game Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Elements of the Dynamic Game . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Model Extention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Differential Game Problem Statement . . . . . . . . . . . . . . . . . . 37

4.1.4 MFG Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.5 The Multi-population MFG definition . . . . . . . . . . . . . . . . . . 39

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Controller Implementation . . . . . . . . . . . . . . . . . . . . . . . . 41

xiv



4.2.2 Constraint Satisfaction Problem . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 State Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Case Study, Results and Concluding Remarks 47

5 Case Study and Results 49

5.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Concluding Remarks 57

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III Appendices 61

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 64

xv



xvi



LIST OF TABLES

3.1 Parameters of the simplified model . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Parameters of Riera Blanca network . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Total overflow for each scenario . . . . . . . . . . . . . . . . . . . . . . . . . 54

xvii



xviii



LIST OF FIGURES

2.1 A DG can be defined as the relationship that exist between game theory and

optimal control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Relationship between DG and mean field theory. . . . . . . . . . . . . . . . . 14

2.3 MFG system of PDEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Typical tree topology of a UDS after the simplification based on VTs is applied. 21

3.2 Case study. a) Proposed network for the testing of the control strategy; and b)

Equivalent model of the UDS after the VT simplification is used. . . . . . . . . 27

3.3 Information graph that determines the information available to each agent in the

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Proposed precipitation event for the case study. di corresponds to the total inflow

entering the i-th reservoir of the system. . . . . . . . . . . . . . . . . . . . . . 29

3.5 Open-loop response of the system during the proposed precipitation event. It

shows the evolution of the normalized volumes for a 10-hour window. . . . . . 30

3.6 Closed loop response of the system when 2 controllers are applied. a) Central-

ized MPC controller; and b) Distributed DG controller. The normalized volumes

of the tanks for a 10 hours window is shown. . . . . . . . . . . . . . . . . . . . 31

4.1 After the model extention is performed to the system, each sewer pipe has a

retention gate at its entrance. This causes all the inflows to sewer pipes to be

controllable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Non-centralized model of the MFG where agents have available the information

of the distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xix



4.3 Example of a possible configuration of multiple networks interconnected and

sharing information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Block diagram from the proposed scheme. It shows all the inputs and outputs

from all the important elements from the approach. . . . . . . . . . . . . . . . 46

5.1 Riera Blanca network, Barcelona, Spain. . . . . . . . . . . . . . . . . . . . . . 51

5.2 Proposed partitioning of the Riera Blanca network for the MP-MFG. . . . . . . 52

5.3 Rain-rain scenarios provided by CLABSA used for testing the proposed scheme

in the Riera Blanca network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Total overflow coming out of the network for all the proposed scenarios, and for

the different rain events. The open-loop (OL) overflows are in blue in all graphs,

MPC overflows are in red in all graphs, and MP-MFG overflows are in yellow

in all graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Total inflow entering the WWTP for all the proposed scenarios, and for the

different rain events. The open-loop (OL) inflows are in blue in all graphs,

MPC inflows are in red in all graphs, and MP-MFG inflows are in yellow in all

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xx



CHAPTER 1

INTRODUCTION

1.1 Motivation

Urban drainage systems (UDS) are complex networks of interconnected pipes and nodes that

carry stormwater and wasterwater to wastewater treatment plants, which treats it and sends it

to the enviroment [BD04]. In many cases, the design of these networks ends up being under-

dimensioned, because of rapid urbanization in cities and climate change scenarios, not being

taken into account in early stages of the design process [WANON12]. For that reason, heavy

flooding may appear in urban areas, and some serious sanitary problems may occur due to the

unproper management of wastewater that comes out of the network into street level [BD04].

Some of the adressed solutions to that problem seek to do a restructuration to the hydraulic de-

sign of the network by adding storage elements throughout the system, so that the overflows are

totally avoided [NADZ13]. Even though these solutions are quite effective, they are extremely

expensive in both time and money.

The problem above could be solved, without having many large modifications being per-

formed to the general design of the network, by using real-time control (RTC) techniques

[GBGE+15]. These techniques seek to find a way to properly manage the active elements of

the network, e.g., retention and redirection gates, in order to achieve an efficient management of

the wastewater, and thus, assuring a minimization of overflows that may appear. Optimization-

based control techniques have been the most widely used techniques in the literature to solve the

problem of minimization of overflows in UDS. For instance, model predictive control (MPC)

has been widely used to solve the problem [CQS+04, OM10], due to its flexibility in the selec-

tion of performance functions, constraints, and its multiple-inputs multiple-outputs capabilities

1



2 Chapter 1 : Introduction

[Mac02]. However, many of the proposed techniques are based upon centralized schemes for the

determination of control actions to be perfomed, which could derive into heavy computational

burden problems [MMDLPC11] and cyber-security-related problems [CAS08].

In order to deal with some of the computational burden problems, aggregated models of

the UDSs, e.g., the so-called virtual-tank (VT) model, are used to reduced the number of states

of the system and, in term, the size of the optimization problems. These approaches are quite

effective for many system, but deliver poor results when the network is heavly interconnected,

i.e., when there is a large amount of connections among the pipes and nodes [JD14]. For that

matter, there has been an increased interest in techniques that do not use aggregated models

of the system, such as the one proposed in [JD14], where each element of the system is taken

into consideration, without sacrificing computational time due to its linearity. Nonetheless, it is

possible to encounter quite complex networks that require partitioning and decentralization, in

order to guarantee suitable computation times for real-time applications.

For that reason, there has been an increased interest in studying distributed control tech-

niques [CSMndlPnL13]. For instance, [BGORB+15] propose a distributed control methodol-

ogy based on population dynamics, that achieves an efficient use of the network and guarantees

a minimization of flooding. However, on that methodology, local controllers are not able to con-

sider proper cost functions, which can be problematic if there are multiple control goals such

as, moving wastewater between a wastewater treatment plant (WWTP) and out of the network,

while efficiently using the network and minimizing flooding. Moreover, the technique requires

an aggregated model, which could derive into poor results, as stated before.

This thesis proposes a technique that aims to solve problems related to distributed infor-

mation on local controllers, as well as problems related to the aggregation of large portions of

the netwoks into single variables, by using a game-theoretic approach (i.e., dynamic games)

combined with a hybrid linear delayed (HLD)-based MPC. Differential game (DG) theory

[BO95] gives a natural extension of optimal control to scenarios with multiple controllers that

are optimizing its own performance criteria [MSA14], and thus its framework is well suited for

optimization-based non-centralized control applications. This type of games have been used in

the literature to solve problems related to the formation control of mobile robots [Gu08], prob-

lems related to demand response in power grids [FEMRH15], and the control of surge tanks

[FKV12]. This is due to the fact that DGs have the ability to consider multiple cost functions

as well as non-centralized information on distributed controllers. As for the UDS control prob-

lem, it has been reported that these networks can be seen as partitioned systems that are being

controlled by multiple local agents that interact with each other [BGORB+15]. Hence, it is
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a suitable idea to apply the DGs framework to the control of UDS, where multiple local con-

trollers act as players of a game where they interact with each other, in order to guarantee a

proper operation of the network in terms of wastewater management.

It is quite important to point out that, even though DGs are quite useful for many non-

centralized control application, they generally fail to succeed when the number of sub-systems,

i.e., the number of agents, is large, because in order to compute the solution to a DG, it is

required to solve a set coupuled partial differential equations (one per each agent in the game).

Nonetheless, a novel tool called the mean field games (MFGs) [LL07, HCM03] allows to solve

large scale DGs in which the number of agents tend to infinity. Hence, it still is suitable idea to

use DG to solve non-centralized control problems.

The main contribution of this thesis is the design of a non-centralized control methodology

based on large-scale DGs, i.e., a MFG, in the same spirit as in [NCMH13, BMA14], which seeks

to determine the optimal behavior of each active element of the UDS by using a consensus-like

algorithm, only using local information of the network. The proposed methodology has the

advantages of optimization-based techniques used for the control of UDS, e.g., MPC, as well

as the ability to have distributed information in the controllers. Moreover, since only local

information is used, less data is needed, and thus less computational resources are involved

in the computation of the control inputs. The proposed methodology is flexible enough that

it allows to combine game-theoretic approaches with more traditional approaches, such as the

MPC.

1.2 Thesis Objectives

• Study the mean field games and its applications to engineering problems.

• Study the relationship that exist between mean field games and predictive control.

• Design a control stretegy that combines mean field games and predictive control.

• Apply the proposed strategy to a real combined sewer system.
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1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter II presents a introductory back-

ground on dynamic game theory. It shows all the necesary tools to understand the ideas behind

this thesis. Chapter III presents some preliminary results that show the main limitations behind

differential games. Chapter IV presents the relationship that exists between the dynamic games

and the UDSs. Therein, the concepts behind the agents and the enviroment are presented, as well

as the different cost functions that the agents might minimize. Chapter IV also states the main

problem to be solve in this thesis, as well as the required tools for a real-time implementation

of the solution. Chapter V presentes the case study in which the approach is tested. It shows

a portion of the UDS found in the city of Barcelona, Spain, called the Riera Blanca network.

Chapter V also presents the main results obtained using the proposed approach, as well as a

comparison between the proposed scheme and a more traditional tool for solving the problem.

Finally, Chapter VI collects all the conclusions obtained after finishing the thesis.

Related Publications

Chapter III is entirely based on

A. RAMIREZ-JAIME, N. QUIJANO, C. OCAMPO-MARTINEZ. A Differential Game Approach

to Urban Drainage System Control. American Control Conference, 2016. (Accepted)
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CHAPTER 2

BACKGROUND

This chapter aims to present the main concepts behind dynamic games. Since this thesis is

concerned with this type of games, it is a suitable idea to introduce the reader to this notions.

Only the main topics are presented, for a more detailed presentation, the reader should refer to

a full text book regarding the area, e.g., [BO95].

2.1 Differential Games

Mean field games (MFGs) are a kind of differential games (DGs) in which a large number of

agents are involved. Hence, it is convenient to first describe the main concepts behind DGs

theory, in order to fully understand how the MFGs work.

Consider a traditional optimal control problem (OCP) of a dynamical system whose evolu-

tion is given by the following ordinary differential equation (ODE)

ẋ(t) = f(x(t), u(t), t), x(0) = x0, (2.1)

where x ∈ Rn is the state of the system, u ∈ Rm is the input (or control signal) of the system,

and t ∈ [0, T ] is the time. The objective of the OCP is to determine a control signal u that

optimizes the following performance criteria

J =

∫ T

0
g(x(t), u(t), t)dt+G(x(T ), T ), (2.2)

where g(·, ·, ·) is known as the running cost, and G(·, ·) is known as the terminal cost. The

7
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Game
Theory

Differential Games

Optimal
Control

Figure 2.1: A DG can be defined as the relationship that exist between
game theory and optimal control.

problem of optimizing (2.2) subject to (2.1) can be used to solve several known problems, e.g.,

moving a vehicle using the least amount of fuel, tracking a set-point in the least amount of time,

among others.

DGs extend the idea behind OCPs to scenarios in which there are several independent con-

trol inputs altering the evolution of the system, which in turn are trying to optimize their own

performance criteria. Therefore, a DG can be defined as the optimal control of a dynamical

system that has N ≥ 2 independent inputs; hence, each agent in the game manipulates a control

input ui of the system, which ultimately determines its evolution. Nonetheless, each agent is

optimizing a performance criteria similar to (2.2), which may depend on the actions of other, as

well as on the current state of the system (that is being alter by every agent), and this simluta-

neous optimization is known as a game. Figure 2.1 shows the relationship between game theory

and optimal control, i.e., the DGs.

2.1.1 Main Framework

Following the ideas from [Bre11], the main framework of the DGs is presented. Without loss

of generality, the model is presented for the two-players case, but it can be augmented to any

number of agents.
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Consider a dynamical system in x ∈ Rn, evolving in time according to

ẋ(t) = f(t, x, u1, u2), t ∈ [0, T ], x(0) = x0, (2.3)

where u1(·), u2(·) are the control signals or strategies implemented by the agents (also known

as players). These strategies must satifiy

u1(t) ∈ U1, u2(t) ∈ U2, (2.4)

for some given sets U1, U2 ⊆ Rn.

Each agent in the game is optimizing a performance criteria given by

Ji(u1, u2) = ψi(x(T )) +

∫ T

0
Li(t, x(t), u1(t), u2(t))dt, i ∈ {1, 2}, (2.5)

where Li are the running costs and ψi are the terminal costs. The functional (2.5) is a map that

returns a scalar value for any pair of strategies u1 and u2 chosen by the agents, and thus, they

must choose their actions so that their payoffs are optimized, taking into account the decisions

of others.

In order to describe the general framework of a DG, it is necessary to describe the type

of stretegy that a given agent is using. These stretegies depend on the information that each

agent has available regarding the current state of the game. If a player does not have available

the current state of the game, and only knows its initial condition, the strategies are open-loop

strategies. Similarly, if an agent has available the current state of the game, the strategies are

closed-loop or feedback strategies.

Finally, the following assumptions must be made in order to fully describe the game:

• Every agent in the game has knowledge of the evolution of the game, i.e., the function f .

• Every agent in the game has knowledge of the current time of the game, i.e., t ∈ [0, T ].

• Every agent in the game has available the initial state of the game, i.e., x(0) = x0 ∈ Rn.

In optimal control theory, the solution to an OCP refers to finding a control signal that op-

timizes a given performance criteria. However, notion of a solution in a DG might not be as

apparent, since any solution of a game is associated to an equilibrium of the game. Tradition-

ally in game theory, there can be several types of equilibria in a game, e.g., Nash, Pareto, or
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Stackelberg. Nonetheless, for this thesis, only the Nash equilibrium is considered and thus the

solution the of game is refered as the set of control signals that determine the Nash equilibrium.

According to [Nas50], the Nash equilibrium of a N -player game, where ui is the strategy that

the i-th player is using, is defined as:

“An equilibrium point is an N -tuple {u1, u2, ..., uN} such that each player’s strat-

egy optimizes his payoff if the strategies of others are held fixed. Thus each player’s

strategy is optimal againts those of the others.”

Nash’s definition can be written as follows (and assuming that each player is minimizing his

cost functional):

Ji(u
∗
1, u
∗
2, . . . , u

∗
i , . . . , u

∗
N ) ≤ Ji(u∗1, u∗2, . . . , ui, . . . , u∗N ), (2.6)

where Ji is the performance criteria that the i-th player is minimizing, {u1, u2, . . . , uN} are any

set of admisible strategies, and {u∗1, u∗2, . . . , u∗N} are the strategies that determined that Nash

equilibrium of the game. Hence, any set of strategies that simultaneously satisfy the above

inequalities, are a solution to the game, i.e., are Nash optimal. It is very important to point out

that a Nash equilibrium may not be unique.

2.1.2 Open-loop Strategies

As it has been stated before, there are several types of strategies that the players in a DG can

use. If the players have available the initial state of the game but do not have access to the

current state, the strategies used by the players are called open-loop strategies. This implies that

in order to solve the game, the agents must find two strategies u∗1 and u∗2 that simultaneously

minimize their performance criteria, only using the initial condition x(0) = x0.

Recalling the traditional OCP described by (2.1) and (2.2), it is possible to determine the

optimal control signal u∗(t) only using the initial state of the system, by solving the so-called

canonical equations of optimal control [Kir12]. This canonical equations state that in order to
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solve the OCP it is require to solve the following system

ẋ(t) = f(x(t), u∗(t), t),

ṗ(t) = −p(t)∂f
∂x

(x(t), u∗(t), t) +
∂g

∂x
(x(t), u∗(t), t),

u∗(t) = arg min
u∈U

{
g(x(t), u∗(t), t) + p · f(x(t), u(t), t)

}
,

x(0) = x0,

p(T ) = ∇G(x(T )),

(2.7)

where p ∈ Rn is the co-state of the system, u∗ ∈ Rm is the optimal control input, and

x(0), p(T ) ∈ Rn are the initial and terminal conditions for the state and co-state, respectively.

This set of equations come from formulation the Euler-Lagrange equation for the cost functional

(2.2) and setting the state equation (2.1) as the constraint.

In order to determine the open-loop solution to the DG, it is possible to use the same tools

as for the OCP. However, since the goal is not to determine a single function but two control

signals, the problem becomes more complex. For the DG scenario, in order to determine the

set of strategies that characterized the solution of the game described by (2.3) and (2.5), it is

required to solve the following set of canonical equations:

ẋ(t) = f(x(t), u∗1(t), u∗2(t), t),

ṗ1(t) = −p1(t)
∂f

∂x
(x(t), u∗1(t), u∗2(t), t)− ∂L1

∂x
(x(t), u∗1(t), u∗2(t), t),

u∗1(t) = arg min
u1∈U1

{
L1(x(t), u∗1(t), u∗2(t), t) + p1 · f(x(t), u∗1(t), u∗2(t), t)

}
,

ṗ2(t) = −p2(t)
∂f

∂x
(x(t), u∗1(t), u∗2(t), t)− ∂L2

∂x
(x(t), u∗1(t), u∗2(t), t),

u∗2(t) = arg min
u2∈U2

{
L2(x(t), u∗1(t), u∗2(t), t) + p2 · f(x(t), u∗1(t), u∗2(t), t)

}
,

x(0) = x0,

p1(T ) = ∇ψ1(x(T )),

p2(T ) = ∇ψ2(x(T )),

(2.8)

where a new co-state equation and control input appear to accomodate for the second cost func-

tional.
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2.1.3 Closed-loop Strategies

In many cases, the players of a DG have available the current state of the game, and use that

information for their advantage. When the agents are allowed to use the information of the

current state of the game, and react according to that information, their strategies are refered as

closed-loop or feedback strategies. Hence, for the two-player DG defined by (2.3) and (2.5), the

goal is to find a pair of control inputs u∗1 and u∗2 that simultaneously minimize both performance

criteria, by using the current state of the game.

As for the open-loop case, it is convenient to first analize the equivalent OCP, in order to

achieve a better understanding of the solution. Traditionally, if one wanted to solve a problem

of this nature using the current state as given information, the solution would imply having a

control law. It is well known that this control law can be obtained by means of a tool called

dynamic programming [Bre11]. Conceptually, dynamic programming is used to solve discrete

time problems; nonetheless, it can be used to solve continuous time problems, such as an OCP.

By extending Bellman’s principle of optimality [BD62] to continuous time, it is possible to

determine that the optimal cost associated to (2.1) and (2.2) can be determined by solving the

following partial differential equation:

∂J∗

∂t
(x(t), u(t), t) + min

u

{
g(x(t), u(t), t) +∇xJT f(x(t), u(t), t)

}
= 0,

J∗(x(T ), u(T ), T ) = G(x(T ), t),

(2.9)

known as the Hamilton-Jacobi-Bellman (HJB) equation, where J∗ ∈ R is the optimal cost.

From the second term in the HJB equation, it can be to notice that there is a relationship between

the optimal cost and the optimal control law, hence, by determining the optimal cost, the optimal

control law can be obtained.

As it has been shown before, in a DG problem there is not a single cost functional to be opti-

mized; there are two or more objectives that must be optimized simultaneously by the players in

the game, thinking about the actions of others. This implies that in a DG there are several partial

differential equations, one for each player, the determine the optimal cost for each functional.

Since all cost functionals depend on the state of the game, which in turn depends on the actions

of the agents, this partial differential equations are coupled. Thus, in order to solve the game
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described by (2.3) and (2.5), it is necessary to solve the following set of equations:

∂J∗1
∂t

(x(t), u1(t), u2(t), t) + min
u1

{
L1(x(t), u1(t), u2(t), t) +

∇xJT1 f(x(t), u1(t), u2(t), t)
}

= 0,

∂J∗2
∂t

(x(t), u1(t), u2(t), t) + min
u2

{
L2(x(t), u1(t), u2(t), t) +

∇xJT2 f(x(t), u1(t), u2(t), t)
}

= 0,

J∗1 (x(T ), u1(T ), T ) = ψ1(x(T ), T ),

J∗2 (x(T ), u2(T ), T ) = ψ2(x(T ), T ),

(2.10)

where the equations are coupled by the state of the game, as well as the Li functions referenced

in (2.5).

2.2 Mean Field Games

MFGs are a branch of game theory that models dynamic decision making in scenarios where the

number of players is large. The main idea behind MFG is to avoid modeling all the interactions

among the players on the game, and only model the interaction between the agents and the mass

of others. This mass is related with the distribution of the state of the players in the space, and

can be modeled using statistichal mechanics tools [LL07, HCM03].

As it has been stated before, in order to solve an N player DG in which the agents are using

feeback strategies, it is required to solve a set coupled HJB PDEs. Although this is possible

when N is not large, it becomes challenging as N grows, i.e., when the number of players in

the game grows. For that matter, a novel tool is required to solve this kind of games, so that the

optimal strategies for large numbers of agents can be determined. In order to study this large-

scale games, it is proposed to analyze the behavior of a single agent and the bulk properties of

others. In that sense, a single agent is not concerned about his single interaction with every other

player, but rather to the aggregated effect of many individuals. Thus, large populations can be

simplified into a single variable that collects all the information to describe the mass of agents.

In order to study a set of players as a single mass, it is convenient to study their statistical

properties. This simply means that in a MFG, agents are not concerned about the state xi of

every other player, but rather to how these states are distributed in the state space. However,
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Figure 2.2: Relationship between DG and mean field theory.

this only makes sense if the number of agents in the game is large enough so that the action of

a single individual does not affect the overall evolution of the system, i.e., a single agent is not

able to lead the game by itself. This behavior has been studied by physicists in the framework of

statistical mechanics, and thus, it is a suitable idea to borrow the mathematical tools from their

framework in order to model MFGs. Figure 2.2 shows the relationship that exists between DGs

and statistical mechanics (by using mean field theory).

Consider a set of N agents playing a DG in which N is sufficiently large so that the actions

of a single agent do not affect the overall state of the game. Also, consider that all agents

belong to the same population, i.e., all agents can be considered as subsystems with similar

state equations. By saying that the agents have similar state equation, it is understood that if one

look at the state equation of a representative agent of the population, i.e., a fictional agent that

shares the similar characteristics with others in the population, his state equation would be as

follows:

dx = f(x(t),u(t), t) dt+ σ dB(t), (2.11)

where f(·, ·, ·) is a function that generalizes the dynamics of all agents, and σ dB is a stochastic

component that indicates that agents are not exactly alike. Notice that σ dB can be considered

as a parameter that models the differences in the evolution of the states of the players. It is

important to point out that if all agents have the same state equation, (2.11) would be exactly

the function that determines the evolution of any agent.
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It has been stated that in a MFG agents are only concerned about the distribution of the

states of others. Given that the states of the players are evolving in time, the distribution of their

states also evolves. Hence, this distribution of the states can be written as a variablem(x, t) that

determines how the entries of the state vector of the game are distributed at each time instant.

Given that the representative agent of the population gives the best characterization of the agents

of the system, it is possible to say that its state variable is a random variable that is distributed

as m. In statistical mechanics, it is well-known that the evolution of the probability distribution

of a random process given by an controlled state equation is given by a PDE known as the

Fokker-Planck-Kolmogorov (FPK) equation. Hence, the evolution of the m(x, t) is given by

∂m

∂t
(x, t) +∇ · (m(x, t) f(x,u, t)) =

σ2

2
∆m(x, t), (2.12)

where ∆ =
∑n

i=1
∂2

∂x2i
is the Laplacian operator. Notice that in Equation (2.12) possesses the

function f that determines the evolution of the representative agent of the population. Equation

(2.12) gives the information about how the state vector is distributed at all time instants, and

thus, agents can use this information to make their optimal decisions. It is also important to

point out that 2.12 does not give information about the current state of each player of the game,

as this information is not required for the computation of optimal strategies (as will be seen

next).

The considered representative agent of the population behaves as every other agent in the

game. Hence, he is trying to optimize a given performance criteria, but now the information

about the mass of others is known, i.e., the function m(x, t). The representative agent of the

population is minimizing the following performance:

J(x,u,m, t) = E

[∫ T

0
g(x,u,m, t) dt+G(x,m, T )

]
, (2.13)

where g and G only depend on the current state of the representative agent and the distribution

of others. Notice that since the representative agent is only a mere generalization of every agent,

solving the OCP for this agent derives in the best control law for every agent.

The minimization of the cost functional (2.13) subject to the state equation (2.11) can be

written as a HJB as in the case of the DGs. The HJB equation associated with the representative

agent is as follows:
∂J

∂t
+H(x,u,∇xJ,m, t) +

σ2

2
∆J = 0. (2.14)
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Figure 2.3: MFG system of PDEs.

Since this HJB equation uses the information from the distribution of the system, it is coupuled

with the FPK presented previously. This means that in order to determine the best strategy

for the representative agent, and in term for every agent, it is required to solve a set of two

PDEs. This set of PDEs is know as the HJB-FPK system of PDEs, and is a canonical set for the

MFGs. The relationship that exists between the distribution of the players and their actions is

summarized in Figure 2.3.

The canonical system for the MFGs is sumarized next:

∂J

∂t
+H(x,u,∇xJ,m, t) +

σ2

2
∆J = 0,

∂m

∂t
(x, t) +∇ · (m(x, t) f(x,u∗, t)) =

σ2

2
∆m(x, t),

J(x,m, T ) = G(x,m, T ),

m(x, 0) = m0.

(2.15)

The system (2.15) characterizes the equilibrium of the game; if one is able to find a control

law u∗ and a distribution m∗ that simultaneously solve the system, the Nash equilibrium can

be found. This fact mean that, in order to find the best strategies for a large scale DG in which

the dynamics of the agents are similar, it is only required to solve two PDEs. Notice that this

problem can be seen as a traditional OCP with an extra constraint: the FPK equation.



2.3 : Summary 17

2.3 Summary

This chapter has presented the basics of game theory required to understant the content of this

thesis. The DGs and the MFGs have been briefly enunciated, as well as how they can be solved.

The notion behind the Nash equilibrium of a dynamic game has been stated. The main difference

between closed-loop strategies and open-loop strategies has been also stated. Likewise, the main

theoretical differences between MFGs and DGs have been enunciated.
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CHAPTER 3

DIFFERENTIAL GAME APPROACH

This chapter is entirely based on:

A. RAMIREZ-JAIME, N. QUIJANO, C. OCAMPO-MARTINEZ. A Differential Game Approach

to Urban Drainage System Control. American Control Conference, 2016. (Accepted)

3.1 Introduction

This chapter proposes an introductory scheme in which only a DG is considered. This allows

to understand the main concepts behind dynamic games and CSN in a real case study, but also,

allows to point out the main dissadvantages of a full DG approach. This leads to the necessity

of use of techniques such as the MFG.

3.2 Problem Statement

3.2.1 Urban drainage system model

Water running through the pipes of a UDS can be modeled by using the so-called Saint-Venant

equations (SVEs), which use mass and momentum conservation principles, in order to describe

the phenomena occurring inside the pipes [Cho59]. These equations describe in a quite high

level of detail how water flows. However, that level of detail is usually not required for control

design. For that reason, a control-oriented model based on the virtual-reservoirs model is used.

In this approach, the UDS is divided into a set of interconnected real and virtual tanks (VT).

19
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According to [OM10], a VT is a storage element that represents the total volume of wastewater

inside the pipes associated to a determined portion of the network. The volume is calculated via

a mass balance equation, so that the state equation of the i-th tank is given by

v̇i(t) = qini (t)− qouti (t), ∀i ∈ {1, . . . , N + 1}, (3.1)

where vi is the total volume of water of the reservoir, qini and qouti are the total inflow and

outflow coming in and out of the i-th reservoir, and N + 1 is the total number of reservoirs.

For this thesis, it is assumed that the reservoirs are linear, and therefore the outflow of every

tank is proportional to the volume stored in it, i.e., qouti (t) = kivi(t), where ki is a volume/flow

conversion (VFC) constant.

Finally, it is assumed that there is a retention gate located at the output of every VT. This

implies that the manipulated inputs of the system are the outflows of VTs, which can be adjusted

by opening or closing the gates. Since the outflow is proportional to the volume of the reservoir,

the following constraint must hold:

0 ≤ ui(t) ≤ kivi(t), ∀t ∈ R+, (3.2)

where ui is the manipulated outflow of the i-th reservoir.

The tree-shape topology of the UDS can be simplified by using the VT model by saying

that any portion of a given UDS can be seen as a collection of tanks, whose outflows converge

into a common reservoir, until the outlet reservoir is reached. For instance, Figure 3.1 shows

a typical tree topology with 21 VTs of a UDS after the simplification is used. Notice how the

whole network eventually converges to the drain reservoir vdrain, and every VT (least the drain

VT) has a retention gate located at the output that regulates the outflow. Hence, (3.1) can be

written as

v̇i(t) = −ui(t) +
∑
j∈Si

uj(t) + di(t), (3.3)

where Si is the set of tanks whose outflows go directly to the i-th tank, di is the total inflow

from rainfall entering the i-th reservoir, and knowing that constraint (3.2) must be satisfied at all

times. It is important to notice that di acts as a disturbance that alters the state of the i-th tank.

Since the last tank of the network does not have a retention gate at the output, its state equation

is written as
v̇N+1(t) = −kN+1vN+1(t) +

∑
j∈SN+1

uj(t) + dN+1(t), (3.4)
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Figure 3.1: Typical tree topology of a UDS after the simplification based on
VTs is applied.

where SN+1 is the set of tanks whose outflows go directly into the drain tank. Equation (3.4)

states that the drain tank cannot control its outflow.

3.2.2 Information graph

A directed graph can be used to represent the interactions among the tanks of a UDS

[JDJOM+14]. This representation gives useful insights on how water moves throughout the

pipes, but it is also useful in distributed control design because it can describe communication

structures among local controllers. On an usual representation, a vertex of the graph corre-

sponds to a reservoir of the network, and edges represent the flow of water among the reser-

voirs of the network. The edges of an usual UDS graph representation, e.g., [JDJOM+14],

are oriented in the direction of gravity, i.e., from an upstream tank to a downstream one. For

this thesis however, the directed graph G = (V, E), where V = {v1, v2, . . . , vN , vdrain} and

E = {(vi, vj) ∈ V × V | vj ∈ Si}, represents the UDS. Notice that the only difference with the

standard representation is the orientation of the edges. Define Ni = {vj ∈ V | (vj , vi) ∈ E}
as the neighborhood of the i-th reservoir, i.e., all the reservoirs to where the outflow of the i-th

tank is going to. This neighborhood describes the information that is available to each agent

located at each vertex of the graph, i.e., the local controller responsible for the manipulation of

the outflow of single reservoir. The reason for the selection of this graph architecture is that, in
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order to determine its best action, every local controller should know all the states that its local

actions are altering, i.e., all the tanks of its neighborhood.

3.3 Differential Game Controller

The proposed scheme uses a distributed consensus algorithm based on a DG, in the same spirit

as in [Gu08], which seeks agreement on the normalized volume of the tanks. This allows for the

retention of the proper amount of water upstream, and guarantees an even use of the reservoirs.

According to [BO95], the so-called dynamic game theory studies multi-player decision mak-

ing in situations where not only the actions that players (also known as agents) make are impor-

tant, but also the order in which they are made. This means that the game is going to evolve over

time following the actions that have been made by the agents. Analogously, DG theory stud-

ies multiplayer dynamic decision making in situations where the evolution of the game can be

described by a set of first-order differential equations. Then, it can be said that DG theory stud-

ies the optimal control of dynamical systems that have several independent manipulated inputs.

This framework allows for the design of distributed optimal control strategies for dynamical

systems with several inputs (both manipulated and non-manipulated) [BB08].

For the proposed DG, an agent is a local controller that is responsible for the control of

one retention gate. This agent can be seen as the dynamical system composed of the i-th tank

and the i-th retention gate. This agent has available the volume stored in the reservoirs of its

neighborhood, e.g., agent i-th has available the volumes of the tanks in Ni. The goal of this

agent is to change the outflow of a reservoir in order to achieve an even normalized volume on

the tanks of its neighborhood. Since the decisions that a single agent makes have an inpact on

the game, and thus on other agents, the standard optimal control tools cannot be applied directly,

and DG theory must be used instead.

According to [BO95], to properly define a DG, it is necessary to define a state equation that

describes the evolution of the game, and a set of cost functionals to be optimized by the players.

State equations (3.3) and (3.4) can be written in matrix form as

v̇(t) = Av(t) +

N∑
i=1

Biui, (3.5)

where v = [v1, v2, . . . , vN , vdrain]> ∈ RN+1 , and A and Bi are matrices of proper dimensions.
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Define v as the state of the game. On this formulation, each agent computes one ui and seeks

the minimization of

Ji =

T∫
0

{ ∑
j∈Ni

wij(v̄i(t)− v̄j(t))2 + riu
2
i (t)
}
dt, (3.6)

wherewij ≥ 0 and ri > 0 are weightening factors, and T is the duration of the game. Therefore,

(3.6) can be written in compact form as

Ji =

T∫
0

{
v̄>(t)Qiv̄(t) + riu

2
i (t)
}
dt, (3.7)

where Qi ≥ 0. Cost function (3.7) states that the i-th agent tries to seek an agreement on the

normalized states of its neighborhood, while using a minimum amount of energy in the process.

In this thesis, the following assumption is to be made in order to have a proper definition of a

DG.

The simultaneous minimization of the functionals (3.7) subject to the state equation (3.5)

describes a linear-quadratic (LQ) differential game (DG) [BO95].

3.3.1 Nash equilibrium

The solution to the previous DG requires the simultaneous minimization of cost functionals that

are, in general, not the same. Hence, the notion of optimality is not as clear as in a standard

optimal control theory, because there is no single criteria for what an optimum is. In traditional

game theory, the notion of optimality is augmented into the notion of equilibrium, and thus

allowing the search of a solution to the previous problem [BO95]. There are several different

types of equilibria that can be found in a DG. For instance, if one of the agents announces its

strategy before hand and every other agent reacts to that doing, the optimal behaviour of the

agents is known as a Stackelberg equilibrium [BO95]. For this work however, only the so-called

Nash equilibrium (NE) is studied. An NE is a set of strategies where no agent can improve its

payoff by changing its strategy while others keep theirs fixed [Nas50]. According to [Eng05], a

set of actions (u∗1, u
∗
2, . . . , u

∗
N ) is an NE for an N -player game, where each player is trying to
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minimize Ji, if for all (u1, u2, . . . , uN ) the following inequalities hold:

Ji(u
∗
1, u
∗
2, . . . , u

∗
i , . . . , u

∗
N )

≤ Ji(u∗1, u∗2, . . . , ui, . . . , u∗N ), ∀i ∈ {1, 2, . . . , N}.
(3.8)

Then, it can be said that an NE of the game is a set of strategies where u∗i is the best response

for the i-th agent, regardless of what any other agent is doing. Since the proposed controller

derives into an LQ DG, it makes sense to study the NE within that framework.

The study of DGs requires the knowledge of the information pattern associated to each

player. The information pattern is the information that a player is allowed to have throughout

the duration of the game. Two information patterns are usually analyzed on DG theory: open-

loop information patterns, and feedback information patterns [BO95]. The difference between

these patterns is whether or not an agent is allowed to have the current state of the game. It is

important to point out that, although on the open-loop information pattern agents are not able to

measure the state vector of the game, they do know what the initial condition is. In this thesis,

only open-loop information patterns and their associated NE are studied, due to the simplicity

of its analysis.

The following theorems have been adapted from [Eng05, Th. 7.1], [Eng05, Th. 7.2], and

[Eng05, Col 7.3.], for this particular application, and defining Si = Bir
−1
i B>i .

Theorem 3.1. The N -player DG described by (3.5) and (3.7) has an unique open-loop NE for

every intial state v(0) if and only if det(H(T )) 6= 0, where

H(T ) = [IN+1 0N+1 . . . 0N+1]e−MT


IN+1

0N+1

...

0N+1

 ,

and

M =



A S1 S2 . . . SN

−Q1 −A> 0N+1 . . . 0N+1

−Q2 0N+1 −A> . . . 0N+1

...
. . .

−QN 0N+1 . . . 0N+1 −A>


.
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Theorem 3.2. If H(T ) is invertible, then the set of coupled Riccati equations

Ṗi = −A>Pi −PiA−Qi +
N∑
j=1

PiSjPj , P(T ) = 0N+1,

has a unique solution in [0, T ] and the set of strategies

u∗i (t) = −r−1
i B>i Pi(t)Φ(t, 0)v(0),

characterizes the NE of the game, where

Φ̇(t, 0) = (A−
N∑
i=1

SiPi)Φ(t, 0), Φ(t, t) = IN+1,

is the state transition matrix of the closed-loop system.

Theorems 1 and 2 determine the existence and uniqueness of the solution to the simultaneous

minimization of the cost functionals (3.7) subject to the state equation (3.5) in terms of a NE, for

every initial state of the system. This means that, the solution of the game for the UDS problem

depends heavily on parameters that can be selected, e.g., T and ri. Thus, they can be chosen so

that the solution always exists for every v(0). This is particularly useful because the proposed

methodology uses an open-loop information pattern to compute the optimal strategies, and a

receding horizon approach is needed to give feedback to the solutions [Gu08]. Moreover, since

Theorem 3.2 presents a way to compute the open-loop strategies, they can be calculated easily

for recursive approaches, such as the receding horizon approach.

As noted by [Gu08], it might seem that, in order to compute the optimal strategies u∗i , every

agent requires the whole state vector v(0). However, since matrix Qi only has non-zero entries

at the positions of Ni and i itself, and given that the matrix A has a diagonal structure, the

solutions Pi of the coupled Riccati equations only have non-zero elements at the positions of

the i-th agent and its neighborhood. Therefore, u∗i is in fact a distributed control law.

3.3.2 Receding horizon DG

In general, open-loop control strategies are not able to react against those disturbances that may

alter the state of the system. Hence, the open-loop strategies developed previously are not able

to work sussesfully for the addressed problem, since the control of UDS depends heavly on the
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disturbances (rainfall) that alter the system. However, a receding horizon scheme [Gu08] can be

used to take care of that problem and add feedback to the overall law.

The set of strategies u∗i are determined at t = 0 for the time interval [0, T ], which means that

the system only knows how it should behave during that period. However, that set of strategies

can be recomputed at t = t1 for time interval [t1, T + t1], so that the system knows how it

should behave at a different time interval. To recompute the strategy, the system has to measure

the initial state (which is now v(t1)) at a new time, hence a feedback appears. This process

is repeated for {t2, t3, . . .} until any desired final time is reached. This scheme is known as

a receding horizon scheme and allows to have feedback on DG with open-loop information

patters.

The algorithm used in this thesis is shown in Algorithm 3.1, where tf denotes the final time

of the simulation scenario.

Algorithm 3.1 Algorithm used for the receding horizon DG.
While t 6= tf :
{Measure current state vector v(ti)
Solve the DG ∀t ∈ [ti, T + ti]
Compute the optimal stretegies u∗i for v(ti)
Apply u∗i during [ti, ti+1]
ti = ti+1 }

Algorithm 3.1 is based upon discrete time increments, while the analysis for the computation

of the optimal strategies is done on continuous time. This implies that during two discrete

time instants, the system is applying a continuous time function that evolves over time, and

thus, the system is using an open-loop law between two consecutive discrete times. This is

different from traditional receding horizon approaches [Mac02], because the control input is able

to change in between a given time interval. However, during the computational implementation

of the controller, it is required to have a time discretization on the system, and thus, on the

optimal strategies. If the selected sampling time for the implementation of the controller is short

enough, it can be assumed that the strategies do not change during a time interval. Hence, for

the implementation of the system, constant functions are applied during [ti, ti+1].
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3.4 Case Study

The proposed controller is tested with the network shown in Figure 3.2a. This UDS is composed

of 4 sub-catchments that drain into a tree-like network that, in turn, converges into a common

outlet node. This network gives a convenient representation of how a full-size UDS would look

like, because of its strong convergence topology. Moreover, this network allows to study one of

the most common problem associated with UDSs, which is the uneven use of the pipes of the

system, which leads into poor wastewater management, and in most cases, flooding. Hence, this

network is a suitable testbed for determining the performance of controllers of UDSs.
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(a) Tree-shape network. (b) Simplified network.

Figure 3.2: Case study. a) Proposed network for the testing of the control
strategy; and b) Equivalent model of the UDS after the VT
simplification is used.

The system is simplified into a set of 6 interconnected VTs using the virtual-reservoir model,

where a single tank corresponds to all the pipes in between retention gates, or a retention gate

and a inlet or outlet node. The simplified network is shown in Figure 3.2b, where the sub-

catchments drain directly into Tanks 1, 2, 4 and 5. Since an information graph is necessary to

describe the information available to each agent, and following the definition of Section 3.2.2,

Figure 3.3 shows the associated graph of the proposed case study.

This model requires the calibration of two parameters: the VFC and vmax for each reservoir.
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vdrain

v1 v2

v3v4 v5

Figure 3.3: Information graph that determines the information available to
each agent in the case study.

Table 3.1 presents the parameters asociated with the simplified network. They have been ob-

tained using simulated data gathered from MatSWMM [RBRJBG+15], which is a co-simulation

tool for UDS with Matlab and EPA-SWMM. Due to the fact that the sub-catchments have differ-

Table 3.1: Parameters of the simplified model

Reservoir VFC ×10−3 [s−1] vmaxi ×104 [m3]
v1 0.4 1.9543
v2 0.8 0.2933
v3 3.3 0.3578
v4 0.5 0.2762
v5 0.8 0.2976

vdrain 1.8 0.3032

ent geographical locations, they recieve different amounts of rainfall, and thus the total inflow

entering each reservoir is different. Figure 3.4 shows the rain scenario proposed for this appli-

cation where, di represents the total inflow entering the i-th reservoir.

The key idea is to test how the network reacts with the proposed rain scenario, which in fact

generates overflow downstream of the UDS. Then, it is going to be determined whether or not

the proposed methology is able to manage the tanks eficiently so that the flooding is minimized

and the water resourse evently distributed.
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Figure 3.4: Proposed precipitation event for the case study. di corresponds
to the total inflow entering the i-th reservoir of the system.

3.5 Results and Discussion

In order to determine the actual performance of the proposed scheme, the system is tested for

three different cases: i) the UDS with no controller on the loop; ii) the UDS being controlled

via a centralized model predictive control (MPC); and iii) the UDS being controlled via a dis-

tributed control strategy based on a DG. The performance of the controllers is analyzed upon

how effenciently the reservoirs are being used, and what the total flooding is.

The centralized MPC used for comparison has the following cost function:

JMPC =

Hp−1∑
k=0

w13(v̄1(k)− v̄3(k))2 + w23(v̄2(k)− v̄3(k))2

+w3d(v̄3(k)− v̄d(k))2 + w4d(v̄4(k)− v̄d(k))2

+w5d(v̄5(k)− v̄d(k))2 + r1u1(k)2 + r2u2(k)2

+r3u3(k)2 + r4u4(k)2 + r5u5(k)2,

which can be written in compact form as

JMPC =

Hp−1∑
k=0

||v̄(k)||2L + ||u(k)||2R, (3.9)
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Figure 3.5: Open-loop response of the system during the proposed
precipitation event. It shows the evolution of the normalized
volumes for a 10-hour window.

where u = [u1, u2, . . . , uN ]>, L is the Laplacian matrix of the graph with edge weights wij ,

R > 0 is a diagonal matrix with all ri on the diagonal, Hp is the prediction horizon, and

k ∈ Z+ denotes the discrete time. It is important to point out that Hp has been selected so

that the prediction window matches the duration a the DG, i.e., T . The reason for the selection

of this cost function is to have a consensus-like algorithm in the centralized MPC, so that both

controllers, i.e., MPC and DG-based, have the same overall goal.

As for case i), Figure 3.5 shows the open-loop response of the system, i.e., when there are

no controllers manipulating the retention gates, for a 10 hours window. It is shown that there

is not a proper management of the reservoirs, since they are not evently used. For instance,

some reservoirs, such as 1 and 3, remain underused, while the drain tank presents an overuse of

about 50% of its maximum capacity. This is due to the fact that upstream reservoirs only recieve

water from rainfall, whereas the downstream one recieves wastewater from many different tanks

which, in term, recieve from rainfall. Therefore, upstream tanks can retain water in order to

release some of the burden existing downstream, which leads to a better usage of the existing

network.

Cases ii) and iii) evaluate the performance of the system when two different controllers are
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(a) MPC controller on the loop. (b) DG-based controller on the loop.

Figure 3.6: Closed loop response of the system when 2 controllers are
applied. a) Centralized MPC controller; and b) Distributed DG
controller. The normalized volumes of the tanks for a 10 hours
window is shown.

used. Both controllers have the same objective: to seek and agreement on the normalized vol-

ume of the tanks. The main difference between both schemes is that the MPC uses centralized

information in order to calculate the optimal outflows, whereas the DG only uses local infor-

mation to achieve its goal. Figure 3.6 shows the evolution of the normalized volumes for a 10

hours window, when the two controllers, i.e., MPC and DG-based, are applied. Both controllers

are able to completely remove the overflow found in the open-loop scenario. As for the MPC

(Figure 3.6a), the normalized volumes become almost identical after a short time. This is a sign

of proper management of the reservoir, which proves that the control strategy fulfills its goal.

The controller based on the DG (Figure 3.6b) also completely removes the flooding from the

network, and is able to manage the VTs so that their normalized volumes move close together.

The proposed scheme achieves a similar performance compared to a centralized controller in

terms of flooding minimization and wastewater management. Nonetheless, the MPC requieres

a lot of extra computational resources, which is a major problem in a large-scale system. For

instance, the simulation of the system for a 10 hours time window takes 1 time unit to complete

for the DG-based controller within the loop, whereas it takes 27 time units to complete with
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the MPC controller on the loop. These data have been obtained by using normalized values

with respect to the fastest time, from the times collected using Matlab routines. The reason

for this normalization is to have a simpler comparison between the measured times. Hence, a

methodology such as the one proposed in this work thrives in large-scale problems where having

optimization-based controllers is convenient.

3.6 Conclusions and into MFGs

Although the previous approach is quite useful for some applications, i.e., when an aggregated

system is used, it can be challenging when the number of agents grow. This is due to the extra

Riccati equations that must be solved, that cause the explicit solution of the DG to become

untractable. For that matter, it is important to utilize tools that allow to solve DG that involve

large numbers of agents, i.e., the MFGs.



CHAPTER 4

CONTROLLER DESIGN BASED ON

DYNAMIC GAMES FOR CSN

This chapter collects the ideas that link the dynamic games shown in Chapter 2, with the real-

time control of a combined sewer system (CSN). It shows some key concepts such as the defini-

tion of agent and the idea of his rationality. Moreover, it shows how this type of game is directly

applied as a control strategy for CSN.

4.1 The Dynamic Game Definition

Typically, UDS have a strong convergence topology where many pipes end up into a common

outlet node, until the drain node is reached. This causes most of the burden to be suffered down-

stream and quite little burden to be taken upstream of the network. This means that, usually,

upstream pipes remain underused, so they could retain some water (by using retention gates) in

order to minimize overflows downstream. The proposed scheme aims to solve that problem, by

using a decentralized controller based on dynamic games, so that most of the pipes on the UDS

are used efficiently, and the total overflow is minimized. Moreover, the proposed scheme seeks

an integration with state-of-the-art techniques, e.g., MPC, to deliver more suitable results when

other objectives are required, e.g., the minimization of combined sewer overflow (CSO).

33
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4.1.1 Elements of the Dynamic Game

According to [BO95], in order to properly describe a dynamic game theory problem, it is re-

quired to state what an agent is and what his actuation mechanisms are for the selected appli-

cation, in order to properly described how the strategy can be applied. Moreover, it is required

to state how the different agents in the game are reasoning, i.e., what function they are trying to

optimize, as well as how the overall game is evolving, i.e., the system dynamics. It is important

to point out that these definitions are not unique and depend heavily on the proposed scheme.

The first required definition is the concept of an agent. Agents are local controllers that

are able to manipulate the physical actuation mechanisms of the UDS. For instance, an agent

might be a local controller capable of changing the inflow to a particular sewer pipe or storage

unit. This means that in general, the agents are responsible for the selection of the appropiate

control signals in order to guarantee a suitable operation of the system. This leads to the second

required definition: the reasoning of the agents. As it has been state before, the reasoning of

the agents are measuring functions that depend on the actions of the agents, and determine their

performance in the game. For this thesis, the main goal of the agents is to distribute evenly the

rainwater that enters into the network during a heavy rain event, so that no part of the system

is prone to overflow due to the overuse of the capacity of the pipes and storage units. This

reasoning can be captured by the minimization of the following cost function:

Ji =

∫ T

0
(xi(t)− φ(x(t)))2 + rui(t)

2dt, ∀i ∈ {1, 2, . . . , N}, (4.1)

where xi is the state of the system that the i-th agent is able to manipulate, φ(x) is a Lipschitz

function of all the states of the system, ui is the action that the i-th agent is taking, N is the

total number of agents, T is a time horizon, and r is a weight parameter. It is important to point

out that a single agent might be able to change multiple states of the system; if that is the case,

the cost function would have a quadratic form of the states, instead of a simple substraction.

The cost function (4.1) expresses the desire of each agent to change the states that his capable

to manipulate, so that they become as close as possible to some function of the states system.

Notice that having the function φ(x) is quite flexible in the sense that it allows to express the

desire of a particular agent to modify the volume of a cluster of sewer pipes that are under his

control, so that it becomes as equal as possible to the volume of some other cluster of pipes.

Finally, the third required definition is the dynamics of the game, which ultimately deter-

mine how the agents interact with each other and with the system. This definition is quite
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simple, given that the game dynamics derive from mass balance equations. This causes the state

equations of the different sewer pipes to be linear with respect to the inflows and outflows to

themself. The general evolution of the game is given by (this equation is going to be explined

in more detail in the forthcoming sections):

ẋ(t) = Ax(t) +
N∑
i=1

Biui(t), (4.2)

where A and B are matrices of proper dimensions. Notice that (4.2) is only able to give in-

formation about the mass balance of the UDS, since is not a hybrid state equation. It does not

capture other phenomena such as the switching flow in weirs. Nonetheless, for the proposed

control strategy, that is the only information that is going to be needed, because the strategies ui
are based on volumes exclusively, as it is going to be presented in the forthcoming sections.

(a) Simple network with no full controllability assumption. (b) Simple network with the full controllability assumption.

Figure 4.1: After the model extention is performed to the system, each
sewer pipe has a retention gate at its entrance. This causes all
the inflows to sewer pipes to be controllable.

4.1.2 Model Extention

Typically, a UDS has a small amount of active elements, i.e., retention gates and redirection

gates, which derives in a quite limited controllability of the flows that run through each sewer

pipe. This may cause problems if a control strategy requires full controllability of all the states,
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and may lead to poor performances. For that matter, it is first assumed that there is a retention

gate at the entrance of each sewer pipe in the network. This means that the inflow to each sewer

pipe is completely controllable, and thus, there is going to be an agent of the game associated

with that retention gate. This may seem like an unreasonable assumption, so it will be dropped

latter on, as is only required for design purposes. Figure 4.1 illustrates how a simple network

with six sewer pipes and two catchments is represented after the assumption has taken place.

Notice that it would now be possible to control all flows running through the system.

Given this assumption, it is now known that the evolution on the game can be expressed

in terms of the evolution of the volume of water inside each sewer pipe, because it is possible

to relate one agent with each sewer pipe. Moreover, it is known that each agent is not only

associated with a fictional retention gate, but with a volume of a pipe as well. Hence, it can be

said that the dynamics of each agent of the game are given by

v̇i(t) = ui − qouti , (4.3)

where vi is the state of the i-th agent, i.e., the volume stored in the i-th pipe, ui is the action

of the i-th agent, i.e., the controlled inflow to the i-th pipe, and qouti is the total outflow of the

i-th pipe. It should be noted that there are some constraints in ui, since the maximum inflow to

a particular pipe cannot be greater than the total outflow from pipes whose outputs are directly

connected to the i-th pipe, plus the rainwater entering to the network via i-th link. As it has been

stated by [JD14], the outflow of a given sewer pipe can be expressed as a function of its inflow

in a delayed time period, and thus, the state equation (4.3) can be simplified into an equation

that only depends on the action of the agent itself.

It is interesting to point out that this model extention is a direct opossite of a model aggre-

gation such as the virtual tank model [OM10], where many states of the system are associated

to a single control variable, instead of adding a control variable for each state in the system.

This relationship is useful, because it allows to use the proposed scheme for some aggregated

representations of a UDS.
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4.1.3 Differential Game Problem Statement

Consider a set of N agents playing a DG, where the evolution of each state of the system is

given by (4.3), and each agent is trying to minimize

Ji =

∫ T

0
(vi(t)− γ(

1

N

N∑
j=1

vj(t) + η))2 + rui(t)
2dt, ∀i ∈ {1, 2, . . . , N}, (4.4)

where γ and η are known parammeters. The main problem is to find a set of actions

{u∗1, u∗2, . . . , u∗i , . . . , u∗N}, i.e., inflows to sewer pipes, such that the inequalitites

Ji(u
∗
1, u
∗
2, . . . , u

∗
i , . . . , u

∗
N ) ≤ Ji(u∗1, u∗2, . . . , ui, . . . , u∗N ), (4.5)

are simultaneously satisfied ∀i ∈ {1, 2, . . . , N}. In other words, the problem is to find a Nash

equilibrium (NE) for the proposed DG [Nas50, BO95, Eng05].

4.1.4 MFG Problem Statement

A typical UDS may have hundreds or even thousands of interconnected sewer pipes [JD14,

BD04]. This causes the DG presented in the previous section to be large scale in nature, since

there is a large amount of both states and control actions. For that matter, the solution to the

game becomes untractable, and novel tools are required in order to find the NE. Thus, a MFG

is proposed as a relief to large-scale problem in the DG. Following the basic MFG descriptions

from [LL07] and [HCM03], it is assumed that the volume of water stored in the sewer pipes,

i.e., the states of the game, behave as a random variable with probability distribution m(v, t)

at time t. This simply means that all the different volumes are condensed in a single variable.

Finally, it is assumed that agents have available the probability distribution of the volumes, i.e.,

m(v, t). It can be said that a MFG has a non-centralized information pattern, in which all agents

interact indirectly using the distribution of all the system. This information pattern is illustrated

in Figure 4.2.

For the MFG, the actions of the agents are based upon the information of the probability

distribution of the volumes instead of the information from the actual volumes. This mean that

a particular agent is more interested in the proportion of volumes that are in a particular level,
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Figure 4.2: Non-centralized model of the MFG where agents have available
the information of the distribution.

rather than the real volumes. Hence, the agents in the MFG game are trying to minimize

JMFG
i =

∫ T

0
(vi(t)− γ(m̄(t) + η))2 + ru2

i dt, (4.6)

∀i ∈ {1, 2, . . . , N},

where m̄(t) =
∫
R vm(v, t)dv is the mean of the probability distribution of the volumes. Notice

that (4.1) and (4.6) are identical if N →∞ in the differential game [LL07].

Thus, the main problem is as follows: consider a MFG with N agents, where the dynamics

of a single agent are given by (4.3), and each agent is trying to minimize a cost functional such

as (4.6). Then, the the problem is to find a set of actions {u∗1, u∗2, . . . , u∗i , . . . , u∗N} such that the

following inequalitites

JMFG
i (u∗1, u

∗
2, . . . , u

∗
i , . . . , u

∗
N ) ≤ JMFG

i (u∗1, u
∗
2, . . . , ui, . . . , u

∗
N ) (4.7)

are simultaneously satisfied ∀i ∈ {1, 2, . . . , N}. In other words, the problem is to find a mean

field NE of the game [HCM03, NCMH13].

In general, the MFG problem formulation is more suitable for typical UDS because they are

large scale in nature. However, the DG problem formulation is useful when there is some kind

of model aggregation in the representation and the number of states is small.
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4.1.5 The Multi-population MFG definition

Up to now, the control problem has been focused around the minimization of overflows in the

UDS. Although that objective is arguably the most important one, the controller of an UDS

might have some other objectives, such as the transport of sewage to a WWTP. If it is desired

to consider multiple objectives in the cost functional (4.6), the solution would become harder

to compute, due to the extra complexity that the multiobjective optimization problem brings.

A more convenient idea is to solve the multiobjective MFG by means of a multipopulation

MFG (MP-MFG) [BMA14]. For this approach, each population in the game has a distinct goal,

e.g., one population might focus on the even water distribution, while other might focus on the

transport of the sewage to a WWTP. Even though it is possible to consider as many populations

(and in term, as many objectives) as needed, for this thesis only two goals are considered:

the minimization of overflows and the maximization of WWTP usage. Therefore, only two

populations are required.

In a MP-MFG, the decisions of an agent from a particular population are based upon the

shared information from its neighbor populations according to a known information graph. This

scheme is quite flexible since a given population is not interacting directly with any agent from

other populations, but rather with the populations as groups. This means that for this scheme, a

single population does not care whether or not a MFG is occuring in the neighbor populations,

because agents in the population only require specific information from the neighbors regardless

of how it was determined. Thus, it is not required to have a MFG system on each node on the

graph, which is convinient if one wants to use different control strategies combined. Figure

4.3 shows a possible configuration of 4 different MFG taking place simultaneously. In this

configuration, each game shares information with its neighbors in order to guarantee a certain

operation, as in the case of the UDS.

Consider a MFG as the one previously presented. In this approach, all agents are naturally

seeking an even volume within all the pipes of the network. This water is stored, and in order

to safetly evacuate it, it should be transported into a WWTP so that no recieving environment is

damaged. The task of transporting the water to a WWTP is performed by an MPC based on the

hyrbid linear delayed (HLD) model, whose objecive is the maximization of WWTP inflow and

minimization of combined sewer overflow (CSO) [JD14]. Given that the MP-MFG approach

does not require the interconnection of multiple MFG schemes, this MPC approach can be used

combined with the MFG to minimize the overflows, so that both control objectives are achieved.

Nonetheless, a coupuling term is required to guarantee a suitable interaction between the
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Figure 4.3: Example of a possible configuration of multiple networks
interconnected and sharing information.

two strategies. This coupuling interaction is described as follows:

• The agents in the MFG seek an agreement in the stored volume of water inside the sewer

pipes.

• Once the best possible agreement has been reached, all agents as a group follow a certain

storage element state of the MPC part, e.g., a collector volume or a tank volume.

• This will naturally decrease the volume stored in the pipes and increse the volume stored

in the MPC part.

• While the sewage is stored in the MPC portion, the MPC controller transports the water

safetly to the WWTP.

Notice that the second step in the interaction above sends water to the “MPC section” only when

it is able to process it.

These interactions can be captured by the following cost fuction:

JMP−MFG
i =

∫ T

0
(vi −

(w1m̄+ w2vMPC)

2
)2 + r(qiin)2 dt, (4.8)

where vMPC ∈ R is the storage variable from the MPC portion, and w1, w2 ∈ R are tuning

parameters. Notice that this function explicitly states that the agents from the MFG are tracking
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two variables, one asociated with local interactions, and one with global interactions. Notice

that since vMPC is a given value to the MFG, cost functions (4.6) and (4.8) have the same

structure.

4.2 Problem Statement

Consider a MP-MFG with two populations, where the agents of the first population evolves

according to (4.3) and each agent is minimizing the cost functional (4.8). The second population

is an MPC-based controller where the control-oriented model (COM) evolves according to a

HLD representation as

T∑
i=0

MiX(t− i) = m(t), (4.9)

T∑
i=0

NiX(t− i) ≤ n(t), (4.10)

where the definitions of all the parameters are given in [JD14], and the controller is trying to

maximize the usage of a WWTP (which is a state represented in the vector X) over a known

prediction horizon. The problem is to find a set of inflows to the pipes of the MFG population

{u∗1, u∗2, . . . , u∗N} such that the inequalities

JMP−MFG
i (u∗1, u

∗
2, . . . , u

∗
i , . . . , u

∗
N ) ≤ JMP−MFG

i (u∗1, u
∗
2, . . . , ui, . . . , u

∗
N ) (4.11)

are simultaneously satisfied, while at the same time, the flow through retention and redirection

gates in the MPC-based population are maximazing the usage of a WWTP.

4.2.1 Controller Implementation

The MP-MFG problem formulation presented previously is stated as a continuous time problem.

However, the HLD-based MPC use for the management of the WWTP usage (as presented in

[JD14]) is formulated in discrete time. This means that some modifications must be performed

to either of the approaches to have a succesful coupling between them. Since the MPC approach

requires an online optimization at each sampling time, a continuous-time approach is not con-

venient. Hence, a discrete-time approach to the MFG is proposed, so that a proper coupling

can be achieved. The discretization of the approach is based on the formulation presented in
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[NCMH13], where the MFG is presented as a set of coupled differential equations, instead of

the canonical coupled non-linear partial differential equations from [LL07], i.e., the Hamilton-

Jacobi-Bellman Fokker-Planck-Kolmogorov system. This simplification is possible due to the

linear-quadractic (LQ) nature of the game, where the state equation of the agents is linear and

the cost function is quadratic.

For the sake of simplicity, the explicit solution of the game is first enunciated. Following the

definitions from [NCMH13], it is possible to write an explicit solution to the MP-MFG using

traditional tools. These solutions require the implementation of a Riccati equation coupled with

an auxilary equation, to compensate for the mean field effect. Notice that this approach is

not different from a traditional LQ tracker [LS95]. It is convenient to rewrite the optimization

problem for each agent with some auxilary variables, i.e.,

min
qiin

∫∞
0 e−ρt

[
(vi − g(m̄))2 + r(qiin)2

]
dt, (4.12)

subject to

v̇i(t) = qiin − qiout, (4.13)

where g(m̄) = (w1m̄+w2vMPC)
2 , and the exponential is to accomodate for the infinite-time hori-

zon. As it has been stated in [NCMH13], the previous optimal control problem can be solved

by means of the following equations:

qiin = −1

r
(pvi + s), (4.14)

p2 + rρp− r = 0, (4.15)

ṡ(t) = (ρ+
p

r
)s(t) + g(m̄), (4.16)

˙̄m(t) = −1

r
(p m̄(t) + s), (4.17)

where (4.14) is the control law, (4.15) and (4.16) are the Riccati equation and the auxilary

equations, and (4.17) is the equation that determines the evolution of the mean field. Equation

(4.17) is determined by averaging the state equation of each agent, after applying the control

law (4.14). It is important to point out that this solution is consistent with the scheme presented

in [LL07], since (4.15) and (4.16) represent the HJB equation, and (4.17) represents the FPK

equation.
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Given that the previous system of equations is in fact a set of ordinary differential equa-

tions, it can be discretizied by means of any discretization tool. For this thesis, the system is

discretizied by means of an Euler forward approximation, using a ∆t equal to the sampling time

from the HLD-based MPC. Therefore, the implementation of the control scheme requires the

solution to the following set of equations

v+
i = vi + ∆t(qiin − qiout) (4.18)

s+ = s+ ∆t
[
(ρ+

p

r
)s+ g(m̄)

]
(4.19)

m̄+ = m̄+ ∆t
[
− 1

r
(p m̄+ s)

]
(4.20)

where now every variable is in discrete time, and v+
i = vi(k + 1), ∀k ∈ Z. Now, the MFG has

been discretized, and it is possible to implement it side-by-side with the MPC approach, where

vMPC is a simple constant to the MFG.

4.2.2 Constraint Satisfaction Problem

As it has been stated before in this chapter, it is assumed that the inflow to each sewer pipe

is controllable. Obviously, this is not a realistic case, since a typical CSN may only have a

few gates but hundreds of sewer pipes. For that matter, a map between the optimal inflows

computed by the MFG and the available gates must be consider, in order for the implementation

to be possible. The map between this two sets of variables is performed by means of a constraint

satisfaction problem (CSP), which uses the optimal inflows as a given set. The CSP finds a set of

variables such that the optimal inflows provided by the MFG satisfy a set of equations provided

by a HLD model.

In the HLD proposed in [JD14], the state vector collects all the important variables from the

network such as flows through weirs, overflows on nodes, gate inflows, and inflows to sewer

pipes. Hence, the CSP must find a set of every other variable, different from the inflows, such

that the model holds. Hence, by using the HLD model, the CSP can be written as follows:

mingates 0∑T
i=0MiX(t− i) = m(t),∑T
i=0NiX(t− i) ≤ n(t),

where the only known variables in the state vector X are the inflows to the pipes. Notice that,
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by finding a vector X that satisfies all the equalities and inequalities above, the inflows running

through the gates can be easily read from that vector.

4.2.3 State Estimation Problem

In order to determine their best strategies, agents use the current value of the distribution of

others. This means that, in order to compute the optimal strategies, it is required to have full

information about the volumes of the pipes. For a real life application, having a sensor at each

sewer pipe is quite expensive, and thus, is it possible to measure at a few number of pipes only.

For that matter, a way to determine the volume of water inside each pipe, only using the available

measured information, should be considered.

For this thesis, it is proposed to use a state observer based on the one proposed on [JD14],

which estimates the current state of the network by means of a optimization problem over a mov-

ing window, i.e., a moving horizon estimator (MHE). This scheme uses the same HLD model

that is used for the CSP that determines the setting for the gates in the controller implementation.

The MHE uses information from Ho past steps, and minimizes the diference between the mea-

sured outputs and the estimated outputs. This problem is equivalent to a predictive controller,

but backwards in nature. Using the HLD, the past information from the network can be written

as follows:

T∑
i=0

MiXo(t− i+ k) = m(t+ k), (4.21)

T∑
i=0

NiXo(t− i+ k) ≤ n(t+ k), (4.22)

k = −Ho + T + 1, . . . , 0,

where Ho is the number of past measured variables that will be used in the problem. Following

the propositions from [JD14], the measurments from the system can be written as projections

from the state vector as

Y (t) = πyX(t),

U(t) = πUX(t),
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and the optimization problem associated with the MHE can be written as follows [JD14]:

minXo,εy ,εU 1>y εy + 1>U εU

subject to

Mo
1 (t)Xo = Mo

2 (t),

No
1 (t)Xo ≤ No

2 (t),

−εy ≤ ΠyXo − Ŷ(t) ≤ εy,
−εU ≤ ΠUXo − Û(t) ≤ εU ,

AeqXo(t) = beq(t),

AineqXo(t) ≤ bineq(t),

where Xo is the state vector at all Ho +T + 1 time instant, Mo
1 , N

o
1 ,M

o
2 and No

2 are matrices to

accomodate for the estimations at all past time instants, Ŷ(t) and Û(t) are the measured values

of the input and output variables, 1y and 1U are vectors of ones of dimensions Ho · number −
of−outputs andHo ·number−of− inputs respectively, and εy and εU are auxilary variables

used to reformulate the minimization of the 1-norms ||ΠyXo − Ŷ||1 and ||ΠUXo − Û||1 as

a mixed integer linear problem (MILP). Additional equality and inequality constraint are just

regular bounds from the state vector and its hybrid nature.

The closed-loop scheme proposed for this thesis is shown in Figure 4.4. It shows all the

inputs and outputs from all the important elements from the framework.
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Figure 4.4: Block diagram from the proposed scheme. It shows all the
inputs and outputs from all the important elements from the
approach.
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CHAPTER 5

CASE STUDY AND RESULTS

The proposed controller is tested with the network shown in Figure 3.2a. This UDS is composed

of 4 sub-catchments that drain into a tree-like network that, in turn, converges into a common

outlet node. This network gives a convenient representation of how a full-size UDS would look

like, because of its strong convergence topology. Moreover, this network allows to study one of

the most common problem associated with UDSs, which is the uneven use of the pipes of the

system, which leads into poor wastewater management, and in most cases, flooding. Hence, this

network is a suitable testbed for determining the performance of controllers of UDSs. This net-

work is implemented as a virtual reality programed in DHI MOUSE, and thus all the presented

results use the real SVE as part of their core numerical implementation. Hence, the results show

how the controller would behave in a real-life implementation.

5.1 Case Study

The proposed scheme is applied into the Riera Blanca network in the city of Barcelona, Spain.

The network is shown in Figure 5.1. This is a typical UDS that drains into the Mediterranean sea

and a WWTP located downstream of the network. As many UDSs, this network is a collection

of several elements such as pipes, tanks, and weirs, that carry the sewage throughout the city.

Table 5.1 shows a summary of all the major elements found in this system. As with most UDSs,

this system has a quite strong convergence topology, in which the whole system ultimately

converges to a single big sewer pipe. This sewer pipes is a large controllable collector that spans

over 1.5km and has a quite little slope, causing it to be a suitable storage element. Following the

controllable collector downstream, there are the two outlets of the network: the WWTP and the
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Mediterranean sea. This WWTP has a maximum capacity of 2 m3/s, causing any inflow greater

than this value to become CSO automatically.

Table 5.1: Parameters of Riera Blanca network

Element Quantity
Tank 2
Pipe 145
Weir 3
Gate 10

Overflow 11
Collector 1

Rain Inflow 68

The proposed approach utilizes a partition of the system in which one portion is performing

the flooding minimization task and the other one is managing the WWTP uses. Given that the

outlets of the network are located after the collector and it is able to act as a storage element, it

is a suitable idea to divide the network at that point, having both outlets and the collector in the

same partition. The selected partitioning allows to decentralize both objectives, as it has been

proposed before in this thesis. Figure 5.2 shows the two partitions where the MFG portion is

performing the flooding minimization task, while the MPC portion is performing the WWTP

usage task. Notice that for this approach, the selected vMPC from (4.8) is the volume from the

big sewer pipe. This means that the MFG portion only sends water as long as there is available

space inside the big sewer pipe. As for the controller implementation, the system has a sampling

time ∆t = 1min, which is use for both the MP-MFG approach as well as for the MPC approach.

All the information regarding the network is provided by CLABSA (Clavegueram de

Barcelona S.A), which includes three-dimensional coordinates of sewer pipes and junctions,

crosssectional geometries and materials of sewer pipes, tank geometries and gate characteris-

tics. In order order to test the controllers, a virtual reality of the network is programmed using a

DHI’s MOUSE callibrated with real data provided by CLABSA, as proposed in [JD14]. This is

a quite accurate model that is useful for simulation purposes, since it is capable to model each

element of the system, as well as all the switching phenomena from hybrid elements such as

weirs and flooding-runoff.

This network has 10 gates that operate as active elements for the system. However, the

proposed scheme requires 1 gate for each sewer pipe in the system, thus it would require 145
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Figure 5.1: Riera Blanca network, Barcelona, Spain.

gates to propertly function. Having that amount of gates is not possible and an additional tool

is required to deal with that problem. The main outputs of the MFG portion of the approach are

all the inflows to each sewer pipe, knowing that there is a constraint on the maximum inflow.

Hence, the MFG portion returns a target value for the flows of the network, which can then be

pursued by a local controller at the gates. This task is performed by a quite simple constraint

satisfaction problem (CSP) as proposed in [JD14]. This CSP is a follow

mingates 0∑T
i=0MiX(t− i) = m(t),∑T
i=0NiX(t− i) ≤ n(t),

where all the flows in vectorX are already given. Notice that solving this CSP also regulates the
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MFG

MPC

Figure 5.2: Proposed partitioning of the Riera Blanca network for the
MP-MFG.

gates that run into the tanks of the network, which ultimately regulates their volumes. Notice

that the only desired information from the CSP are the gate flows, which are then pluged into

the programmed virtual reality of the network.

5.2 Results and Discussion

The network is tested using three different scenarios: no controller within the loop, full HLD-

based MPC, and the proposed MP-MFG approach. These scenarios allow to show the main

problems found in the network, as well as the performance and effectiveness of the proposed

scheme compared to a more traditional technique. Each scenario is tested using four differ-

ent real-rainfall events provided by CLABSA from years 2002, 2006, and 2011. Figure 5.3

shows the total inflow entering the network during the four rain events. Notice that each rainfall

event has a very distinctive charactistic, which makes them suitable as an impartial benchmarks

for simulation. Also, it is important to point out that all the cases are implemented in DHI’s

MOUSE, and thus they represent the reality as close as possible (as it solves the SVEs).

As it has been stated before, the two main potential problems from this network are the

heavy flooding and the poor WWTP usage. Thus, all the plots and results are based upon that

data, and no other information is shown unless required.

Figure 5.4 shows the total overflows coming out of the network into street level for all the
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Figure 5.3: Rain-rain scenarios provided by CLABSA used for testing the
proposed scheme in the Riera Blanca network.

different control scenarios, and for all the different rain events. When no controller is used in

the system, the system presents a serious flooding problem due to the poor management in the

active elements. It can be seen that both control strategies, i.e., the MPC and the MP-MFG,

are able to reduce the total overflow that the network originally had. It is interesting to see that

for the 09-10-2002 scenario, the MP-MFG is not able to do such a good job (compared to the

MPC). This is due to the fact that this rain event in not uniform as the others (see Figure 5.3),

which causes the mean of the volumes to change quite rapidly, which ultimately misleads the

controller. The values of the total volume of overflow are presented in Table 5.2.

Figure 5.5 shows the total inflow entering the WWTP for all the different control scenarios,

and for all the different rain events. When no controller is used in the system, the total inflow

to the WWTP completely surpasses the maximum capacity of the plant, and thus it instantly

becomes CSO. However, when any of the controller schemes are applied, the total flow running
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Table 5.2: Total overflow for each scenario

Rain Event OL [m3] MPC [m3] MP-MFG [m3]
17-09-2002 3.7094× 103 11.5870 2.7496
09-10-2002 2.5752× 104 176.5420 8.8559× 103

15-08-2006 6.9475× 103 22.3741 14.4736
30-07-2011 1.8442× 104 166.3861 748.9536
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Figure 5.4: Total overflow coming out of the network for all the proposed
scenarios, and for the different rain events. The open-loop (OL)
overflows are in blue in all graphs, MPC overflows are in red in
all graphs, and MP-MFG overflows are in yellow in all graphs.

into the plant stays within its maximum capacity and no sewage is directly sent into the mediter-

ranean sea. It is interesting to notice that for all cases, the MP-MFG takes longer to reach the
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Figure 5.5: Total inflow entering the WWTP for all the proposed scenarios,
and for the different rain events. The open-loop (OL) inflows
are in blue in all graphs, MPC inflows are in red in all graphs,
and MP-MFG inflows are in yellow in all graphs.

maximum capacity of the WWTP. This is due to retention property from the microscopic inter-

action inside the MFG portion of the scheme. Since pipes seek an agreement on their volumes,

it is less important to send water downstream.

Both approaches are able to fullfil the requirements of the system, and guaranteeing a suit-

able operation. Nonetheless, the MPC approach performes slightly better than the MP-MFG

approach. However, this improvement in performance causes the MPC approach to take longer

computation times, compared to the MP-MFG approach. From all the rain events presented, the

most complex, computationalwise is the 15-08-2006, due to the double peak found in the rain

gauge. For this rain event, the MPC approach takes an average of 2.1 time units to compute the

solution, while the MP-MFG approach takes 1 time unit, making it faster. This is particulary

useful in real-time appliacations where the computational times are an important decision factor.
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CHAPTER 6

CONCLUDING REMARKS

In conclusion, this thesis has proposed a control scheme that uses a combination between MFGs

and MPC, which allows to successfully control a CSN. The proposed scheme has the advantages

from game theoretic approaches, e.g., the ability to have distributed information patterns for

some cases and the reduced computational burdens, as well as the advantages from predictive

control approaches, e.g., the ability to consider constraints on the states and inputs, and its multi-

input multi-output capabilities. It has been shown that the proposed scheme is able to perform

within an acceptable performance margin for a virtual reality that uses the SVEs as its numerical

core. Also, a simpler scheme based on pure DGs, that can be used for system that do not have

a large number of system variables, has been enunciated. The most important aspects from the

proposed scheme, as well as the pure DG scheme are listed below.

• The proposed scheme uses a partition of the system that allows to combine multiple con-

trol strategies, such as a MFG and a MPC.

• The MFG partition uses non-centralized information patterns, in which the optimal inflow

to each sewer pipe is computed by means of an optimal control problem, that uses the

average value of the volume on water inside every other sewer pipe.

• The MPC partition uses a HLD COM that is able to represent the network in a quite high

level of detail, without considering complex non-linear equations.

• The HLD model used in the MPC partition allows to optimize over any variable inside the

network. This means that it is possible to consider objectives such as the maximization of

WWTP usage or mantaining some variables below some safety levels.
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• The combination between a MFG approch with a HLD based MPC uses less computa-

tional resources compare to a full HLD-based MPC, which in term, derives in less com-

putation times.

• The pure DG proposed approach is able to consider completely distributed information

patterns on local controllers of a CSN.

• Since only a DG is consider in the pure DG approach, it runs significally faster compared

to a linear MPC approach.

• The main proposed scheme in this thesis has been tested in DHI MOUSE, which shows

how the scheme would perform on a real-life implementation for the selected network,

i.e., the Riera Blanca network.

6.1 Contributions

The main contributions from this thesis are outlined as follows:

• Improving the computation times for a real-time implementation of controllers for CSN,

without sacrificing performance.

• Determining completely distributed schemes, based on consensus-like algorithms, for the

control of CSNs.

• Combining two distinct control strategies, which have completely different advantages,

deriveng in a versatile framework.

• Implementing the proposed scheme on a real network using a virtual reality and not only

a linear model.

6.2 Directions for Future Research

Since this thesis has three distinct topics underlying the main constributions, i.e., DGs, MFGs,

and MFGs combined with other approaches, the future directions are quite broad. Here, a few

of this directions are listed.
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• As for the real implementation of the schemes, in this thesis it was asumed that it is

possible to have measures of inflows to sewer pipes. Although this is possible, it is quite

expensive. It is a more suitable idea to consider level measures in the pipes, which are

gotten from much cheaper sensors.

• As for the MFG approach in the proposed scheme, the game is not able to explicitly

consider constraints that the system may have. All constraints were satisfied by using

saturations on the input and states variables. This causes a degradation in the performance

of the global approach. For that matter, it is recomended to consider a mechanism that

allows to consider constraints in a OCP such as a dual MPC approach.

• As for the pure DG approach, it is quite relevant to consider delayed models for the

strategies of the agents. This is due to the fact that there are delays on every sewer pipe in

the system that the agents should consider.

• Finally, it should be pointed out that the proposed scheme allows to consider any com-

bination of a control strategy with a MFG. Hence, it is possible to study the interaction

between a MFG and other strategies, such as a pure DG.
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APPENDIX A

ACRONYMS

MPC Model Predictive Control

MFG Mean Field Game

MPMFG Multi Population Mean Field Game

DG Differential Game

CSN Combined Sewer Network

UDS Urban Drainage System

OCP Optimal Control Problem

MHE Moving Horizon Estimator

HLD Hybrid Linear Deleyad

COM Control Oriented Model

WWTP Wastewater Treatment Plant

CSP Constraint Satisfaction Problem

NE Nash Equilibrium

VT Virtual Tank

VFC Volume to Flow Conversion

MILP Mixed Integer Linear Problem

HJB Hamilton Jacobi Bellman

FPK Fokker Planck Kolmogorov

CSO Combined Sewer Overflows

SVE Saint Venant Equation
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