Secure and Efficient RNS Approach for Elliptic
Curve Cryptography

Apostolos P. Fournaris  Louiza Papachristodoulou, Lejla Batina Nicolas Sklavos
Electrical and Computer Digital Security Group, Computer Engineering
Engineering Dpt. Radboud University Nijmegen, & Informatics Dpt.
University of Patras, Greece The Netherlands University of Patras, Greece
Email: apofour@ieee.org Email: {louizap, lejla@cs.ru.nl} Email: nsklavos@ceid.upatras.gr

Abstract—Scalar multiplication, the main operation in elliptic  well as a fault injection attack countermeasure. Bajard et
curve cryptographic protocols, is vulnerable to side-channel al. in [2] proposes, originally for modular exponentiation, a
(SCA) and fault injection (FA) attacks. An efficient countermea- 5 nq6m permutation of the moduli bases. The periodic change

sure for scalar multiplication can be provided by using alternative . . - L
number systems like the Residue Number System (RNS). In RNS, USING base permutation during the modular exponentiation

a number is represented as a set of smaller numbers, where each(@nd consecutively scalar multiplication) CompUtatiQn flow can
one is the result of the modular reduction with a given moduli introduce enough randomness to thwart SCAs. This approach

basis. Under certain requirements, a number can be uniquely |eads to a leak resistant arithmetic (LRA) technique that can be
transformed from the integers to the RNS domain (and vice applied to modular exponentiation designs (used for RSA) in

versa) and all arithmetic operations can be performed in RNS. t ither by ch : b tation once at
This representation provides an inherent SCA and FA resistance WO ways, either by choosing a new base permutall

to many attacks and can be further enhanced by RNS arithmetic the beginning of each modular exponentiation or by changing
manipulation or more traditional algorithmic countermeasures. a permutation in each modular multiplication operation of the
potentals of KNS a6 an SCA.and FA countermeasrs and provide oo ation process [L0]
otentials o ; ials in ellinti
gn description of RNS based SCA and FA resistance megns. We In this paper, we explore the RNS potentials n elliptic curve
propose a secure and efficient Montgomery Power Ladder based §ca|ar multiplication, extending the Wf)rk done in [10],.tak|ng
scalar multiplication algorithm on RNS and discuss its SCA- into account both aspects of security (SCA/FA resistance)
FA resistance. The proposed algorithm is implemented on an and efficiency. The various ways of transformation from RNS
ARM Cortex A7 processor and its SCA-FA resistance is evaluated grithmetic to binary are explored as well as the way of
by collecting preliminary leakage trace results that validate our performing RNS modular multiplication. The RNS version of
initial assumptlons. . . . . .
the Montgomery modular multiplication algorithm is described

and its importance as the basis of both efficient and secure
RNS scalar multiplication implementation is described. We

RNS is an arithmetic representation of integer numbers tharesent the current approaches on designing RNS Montgomery
is advantageous when it comes to parallel arithmetic calculaultiplication and argue that the algorithm can be used as a
tions. The system can also be used to represent element®ayis for SCA/FA resistance in scalar multiplication. To justify
cyclic groups or finite fields. In RNS, a number is representeédle above argument, a variation of a scalar multiplication
by a given moduli base (RNS base) consisting of several baggorithm is described that offers SCA/FA resistance through
elements. The fact that each modulo of a number can ti& combination of RNS characteristics and traditional scalar
processed in parallel (for any type of operation) as well as thgultiplication algorithmic countermeasures like the Mont-
fact that a single bit fault in a moduli can lead to "difficult togomery Power Ladder. The RNS based resistance of our
trace” changes in an overall number, hints that there is ferté@proach adopts the random permutation of the RNS bases
ground for introducing RNS related Side Channel Attack each scalar multiplication algorithmic round, thus adapting
(SCA) and Fault injection Attack (FA) countermeasures ithe LRA technique for scalar multiplication and modifying
cryptosystems [2] [4] [14] [18] [9] [10]. it in order to achieve efficiency yet retain the disassociation

Scalar multiplication, the key operation behind Elliptiof secret information from physical leakage. Furthermore, in
Curve Cryptography (ECC), relies heavily on finite field t@ur approach we take advantage of the base extension oper-
perform all arithmetic operations. Thus, the introduction ddtion that is performed during an RNS Montgomery modular
RNS as the number system f6fF'(p) elements and their op- multiplication in order to enhance fault detection. To verify
erations can be a step towards increasing SCA/FA resistante correctness of our approach and to test its security and
However, this does not constitute enough protection agaimsficiency, we implemented the described scalar multiplication
SCAs/FAs nor does it guarantee efficient implementations. algorithm in the ARM Cortex A7 processor of a Raspberry Pi

Several researchers have made observations about the 2oosing GMP C library as a basis for all arithmetic operations.
tentials of RNS as a side-channel attack countermeasure aghe rest of the paper is organized as follows. In section Il

I. INTRODUCTION
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the RNS arithmetic for ECC is presented. Section Il presentsHowever, RNS modular multiplication ove&F(p) is a

the employed algorithm and argues over its SCA/FA resisemputationally difficult operation. It is usually realized
tance. Details of our implementation are included in sectidghrough the RNS Montgomery multiplication algorithm that
IV with some preliminary results of our SCA/FA analysisavoids modular inversions, but includes base extension opera-

Finally, section V concludes the paper. tions [3] [10].
Il. RNS FOREC POINT OPERATIONS A. RNS Base Extension
A number z can be represented in RNS as a setpof = ASSUMING that we introduce two RNS basds, =
RNS (m17 ma,. .. 7mn) and B, = (mn—i-h Mp+2, ... 7m2n) such

moduli z; (x "=~ X : (x1,9,..x,)) Of a given RNS
basis B : (my,ma,..m,) as long as0 < z < M where
M = []i_, m; is the RNS dynamic range and all; are pair-
wise relatively prime. Each; can be derived from: by calcu-
lating z; = <$>mi = x mod m;. Assuming that we have two
numberse andd represented in RNS a$: (ay, ao, ...a,,) and o _ S s
D : (dy,ds, ...d,) we can obtain addition, s(ubtraction a)md muMs = _Hi:nJrl m; and My' as the multlpllcatlvg Inverse
tiplication in RNS asA@D = ((a1 @ d1),,,, s - {an @ dn),, ) of My in _base B,. The RNS Montgomery multiplication
where® : (+, —, x). Exact division byD coprime withaz (RNSMM) is presented1 as Algorithm 1 and as an cl)utcome cal-
is equivalent to multiplying by the inverseD—1),,. Since culatesSp = A-B-Mpy" modp andSy = A-B-Mp" modp.
RNS is a non-positional representation, comparisons, divisidh@se extension from one base to the other in Algorithm 1 is
and modular reductions are complex operations, which d#geded sincel/;* does not exist in bas®, and therefore
performed either by converting the number from RNS tgomputations must be migrated to ti%, base to come up
binary representation or by using base extension aIgorithm‘é’.ith SB.

Binary reconstruction from RNS representation can be
done using the Chinese Remainder Theorem (CRT)Y: ; = (€1 + -+ mp_3 (@2 + (Mn—2 (21 + (Mp_120))))),,

n -1 _ M -1 . .
<Z,;=1 (i M), 'Mi>M where M; = & and M for il je{n+1,n+2,..20) of B,
is the multiplicative inverse of\/;. The requiredd/ modulo 3
reduction, due to the high bit length af , is not efficiently
realized and is usually performed by introducing a correctiongorithm 1. RNS Montgomery Modular Multiplication
factor w, wherez = >~ | <x1 . M[1>mv -M; —w- M. RNSMM (A, D, P, By, By,)
To avoid the above process's Mixed Radix System (MRS) Input: By = (mi,...,mn), By = (Mni1,...,man),
representationX : (uj,us,...u,) can be used for RNS to Ppup=PpU Py : (pl’p%;;'p”’p"“’"‘p2”)’
- . = . Mp =[[;2, mi, Mg = [[;Z, mi,
binary conversion. The MRS numbeX can be obtained 4~ "% 4. Ha . a azn}
_ _ . BUB B B - 1y 0n,Gn+41,...-A2n 7y
from X E (fﬂl,xg,xg,...xn) by executing the Mixed Radix D, ,=DpUDg:{di, ... dn,dns1,... don}, M, —P5"
Conversion (MRC) algorithm of (1). Output: Sp = Ag - Dg - Mz"' modPp and
_ _ -1 Ss=Ag Dy Mg modPy
Uy =1 Uy =(\T2 —Up)-M B B B B B
<( ) 1’2>m2 1.Gpup =Apus * Dpus ) )
i.e. (gi = {(a; x di>mi in baseB,, andg; = <a’i X di> _ in baseBy,)

O 2gp=csxrgh i.e.<<gi x(=p~1),,.) ) in By,
Uy = (((x —u1) - m1_711 —ug) - WLQ_}L — .. 3.Qp — Q Base extensioB, — Bp "
-1 4. Ry=Gz+Qp x Py
—Un—1) My p)m, 5.5y = iy x M0 ’
wherem; ; is the multiplicative inverse of; modulom; i.e. 6 Ss = Sp Base extensiod, — Bn
17 . Return S and Sy

m;-m; ; =1 mod m;. From the MRS number representation, B
an integerz can be recovered by performing= u; + gaus + Two main approaches to base extension are used in practice
gsus + ...+ gpu, Whereg; = ]_[;:1 m;j. for RNS arithmetic: the MRS system and the Cox-Rower

For ECC approved ECs defined ovétF(p) (EC on architecture introduced in [16]. The Cox-Rower architecture
GF(2%) are not discussed in this paper), @lF(p) op- consists of parallel arithmetic units, the Rowers, which per-
erations (addition, subtraction, multiplication) are moduldorm the independant computations for each base concurrently,
operations. Performing RN& F(p) addition or subtraction and the Cox unit dedicated to the computation of an approx-
can be easily realized by expressipgin RNS format i.e. imation of the factorw. Therefore, it can be efficiently im-

that ged(m;, m;) =1 for all i € {1,n} andj € {n+1,2n},
we express a GF(p) numberin baseB,, or B, as X and
X ; respectively while in both RNS bases &g, | ;. We define
My, as My, 5 12", m, also, Mp = [/, m; and Mz*
as the multiplicative inverse ol g in baseB, as well as

J

us = <((x3 —uy) mf§ — ug) m§§>m3

P : (p1,p2,ps,...pn) and calculating: plemented in hardware. An interesting work in protecting the
Cox-Rower architecture against multi-fault attacks is presented

(A @ D)mod P = (<<a1 (%] d1>m1 >p1 5 <<a2 @ d2>m2>p2 e in [1]
o (an @ dn),, >p ) where @:(+,—) The MRS system is often used for RNSMM base extension,

(2) despite the fact that it is sequential and therefore slower



compared to Cox-Rower. As a first step of MRS, the basad it is followed byRNSMM (A1, 1, P, B,'W,Bm)
B,, RNS number is converted into a bags, MRS number

following (1). In the second step, the basg MRS number Pool of 2n RNS Base moduli
is converted into a bas®,, RNS number according to (3). —
A similar two step procedure is followed for base extension | by | by | bs | ba | |b2n3|ban-a|bon-1| b2n
from B, to B,, respectively. | ~ ~ 7 S
It must be noted that each RNS number A used in Mor|  Random i (per ion) of n moduli as B, and the remaining n modulias 8', |

gomery multiplication must be represented in the Montgomery ¢ S o — A~ T~
format, meaning in the formAdp - Mp modPp or Ap - by | bs [-|bans| ban | [bona| by || ba |bana
My modPy. To transform a number in the Montgomery . me T T m

. 1 2 n-1 n n+l n+2 2n-1 2n
normalized form, an RNSMM must be performed between Base B, Base B,

A and My, modP using the bases3, and B, in re-
verse order (i.eRNSMM(A, M, 5 modP, P, B, By,)). To
leave the Montgomery domain we must perform an RNSMM Fig. 1. Leak Resistant Arithmetic approach on Base Randomization

of the Montgomery formatted RNS number A with 1 (i.e.

RNSMM(A,1,P, B, Bn)). Applying the LRA technique in scalar multiplication follows

Efficient base extension operation heavily relies on thesimilar approach to modular exponentiation. Some attempts
choice of B, and BE,,. To increase computation efficiencyto introduce LRA in scalar multiplication have been made
the bases’ moduli must be chosen so that their multiplicatiite [14] [13], however, they are applicable only to the CRT
inverses are small numbers. Most studies on optimal bdype of base extension using the Cow-Rower method when
moduli [7] [5] agree that moduli of the for@F +¢;, 2¥ -2t +1 pseudo-Mersenne numbers are used for base moduli. In scalar
or 2k, 2k — 1, 2k=1 _ 1 2k+1 _ 1 (Mersenne numbers) for multiplication, a permutation transition can be done only once
various: values provide good performance results. Each basé¥er scalar multiplication), in every round of the scalar mul-
moduli (n) number must also be optimally determined as wdlplication process or before evetyF'(p) RNSMM operation
as each moduli'sk value (defining all involved values bit of every point operation of every round. Taking into account
length). Usually, such numbers are specified according to tgt the transition from one permutation to another costs 2
GF(p) defining the EC. The RNS basBs and B,, dynamic RNSMM, the third approach is not affordable in terms of
range must be close tp (4p < M). Recent results from speed. The first approach, providing a single randomization
Bigou and Tisserand in [6] show how to perform RNS modulgrer scalar multiplication may be vulnerable to horizontal SCA
multiplication with a single base bit width instead of a doublettacks (depending on the employed implementation method-
one, which results in two times faster implementation for thelogy) so of special interest is the second approach were
same area. the RNS bases are permuted once per scalar multiplication

. . round. This approach offers a promising balance between
B. Using RNS for SCA and FA resistance performance and SCA resistance strength.

Several researchers have pointed out the potentials of RNRNS has a long history as fault tolerance and detection
as a side-channel and fault injection attack countermeasufg®i and thus can be used for identifying possible FAs. Fault
Bajard et al. in [2] proposes, originally for modular expodetection through RNS is achieved by introducing redundancy
nentiation, a random permutation of the baBg and B, during RNSMM as described in [4] [17]. In the existing two
moduli thus creating(%?) random permutations aB,, and RNS bases modulB, and B,, used in RNSMM, a redundant

modulim,. is added. Thus the RNSMM algorithm is executed
ing redundant basds,, U m,. and B, Um,. Key point in

Bases to be used in RNS MM (Base extension)

B,,. We denote each such RNS Bagegermutation asB,
and B,;ﬁ. The periodic change of a base permutation duri ) ! X
the modular exponentiation (and consecutively scalar mullf!¢ detection process is base extension of the RNS values
plication)computation flow , as presented in Figure 1, c4ff'N9 RNSMM from baseB,, to B, Um, instead of 5,
introduce enough randomness to thwart SCAs. This approalhSteP 3 of Algorithm 1) as well as base extension fréin

leads to a leak resistant arithmetic (LRA) technique that can B)eBU;”R (in stlep 6 of Algocrjithm 1). ThT r;jedundjnlt. R'\IISMdM
applied to modular exponentiation designs (used for RSA) fgorithm resultsSsuy, and Sg,,,, - include moduli relate

two ways, either by choosing a new base permutation once@base element, (i.e.(Szum ), and <SBUm >

If
the begm.nlng of each modular expongntlat|on or by changlr]%g fault is injected during an RNSMM then the 2 mOTERJ" must
permutation in each RNSMM operation of the exponentlath?n
n

process. The base transition of an RNS number A represe éad]the same. This approach Is capable .O.f detecting a single
in a base permutation to a new permutatiorf can be done ault during a RNSMM an_dllts main addltl_onal per_formange
by performing two consecutive RNSMMs. Initiallyl, — cost (compared to the original RNSMM) is associated with

‘ - N1 the RNS Base extension operations. A similar fault detection
RNSMM(A, My, mod P, P, Br.5, By 5) * is performed technique was proposed in [14] but is applicable only to Cox
INote that A has the form! - My, _ mod P (Montgomery form) since Rower RNSMM designs (that use the CRT base extension

~

it is an output of some previous RNSMM method) while the technique described here and proposed in



[4] [10] is generic and can be applied to any base extensitire Montgomery format, so that RNSMM can be performed
methodology. correctly. This conversion will require 6 RNSMMs. The RBP
function performs base transformation from base permutation
I1l. FA AND PA RESISTANT SCALAR MULTIPLICATION ~y to permutationﬁ/ and requires 6 RNSMMs. The RBP

Given the description of RNS PA and FA countermeasurd§nction is executed in each MPL round once for poRy
we adopt the inclusion of LRA as an add-on countermeasi@#@d once forR;. As it can be observed from Algorithm 2,
in an PA resistant SM algorithm in order to provide horizont&¥€ do not perform RBP for th&, point doubling since this
and vertical attacks resistance. In the described algorititeration already includes computations only of a random
(Algorithm 2), LRA is combined with the base point blindingP0int (it remains random during the whole scalar multipli-
technique (additive randomization of the EC base pbipin ~ cation without any interference). Note th&t computations
the Montgomery Power Ladder (MPL) algorithm expandingtaln the same base permutatipnin all MPL rounds since
the work of [11] [9] and [10]. MPL is considered securédt2 Point doubling involves only the random EC poiRt(no
against most vertical and horizontal attacks. need to re-randomize it through RBP). However, sifités

In Algorithm 2, we introduce LRA RNS base randomizatiofS€d in the fault detection mechanism aRgl is needed for
once in each SM round (steps 4c and 4d) and in that W_gpbllndlng the correct result, after_ th_e last MPL _round, there
manage to include a different randomization element in eveiy@ base transformation from the initial permutatigrio the
round. The input poin’ is initially blinded by adding to it a @St round’s permutatiory, for V' and there is also a base
random elemeng, thus preventing sophisticated, comparativEansformation from the last round's permutation to the
simple PAs [8]. MPL is a highly regular SM algorithm sincdnitial permutationy; that is done after passing successful fault

it always performs two point operations per round, regardleggteCtiO”-

of the scalar bit;. It also provides an intrinsic fault detection IV. | MPLEMENTATION
mechanism based on the mathematical coherendg,cadnd ] ' ] .
R,. As observed in [15] and by Giraud in [12], tH&, and D order to implement the above algorithms, a consistent

R, points in an MPL round always satisfy the equatiBp= "ealization process was followed, based on two steps. Taking
V + R;. Injecting a fault during computation in aR, or into account that a considerable number of parameters are

R, variable will ruin this coherence and by introducing a§°nstant for all scalar multiplication operations on a specific
MPL coherence detection mechanism in the end of the MAEC (they are related to the Bases’ modutli;, the moduli
algorithm, this fault will always be detected. This techniquBUmbern and thep value of the GF(p) field defining the

is adopted in step 6 of Algorithm 1 whet@, + V # Ry if EC), these values can be precomputed and stored in memory
a fault is injected. Note that the correct result is unblindggfits o as to be used repeatedly for all scalar multiplications.
only after the fault detection mechanism, in order to provideherefore, as a first step of realizing the proposed approach,

protection against possible bypassing (by injecting a seco®d @Ppropriate design methodology needs to be conceived in
fault) of the fault detection countermeasure. order to precompute and store the above mentioned values in

memory space with efficiency. This step needs to be executed
Algorithm 2. LRA PA-FA Blinded MPL algorithm only once for all EC computations, so it can be considered as
Input: EC base pointV, random pointk € EC(GF(p)). ¢ = apjnitialization step. The second step in the previous sections’

(et—1,et—2,...€0) . . ) . L . .
1. Choose random initial base permutatign Transform V, R to RNS format @lgorithm realization is the actual scalar multiplication design

usingy: permutation that needs to use the precomputation structure realized in the
2.Ro=R Ri=R+V, Ry =-R first step. To provide precomputations for all possible bases
3. CMF(Ro, R1, Rz, Br ~,, Bn,vi) duli binati lizing the b tati
4 Fori—t-11t00 moduli combinations (realizing the ase permu grp)n a
(a) Rz = 2R», always performed in initial permutatiop numeric index (denoted as permutation index) is assigned
(b) choose a random base permutation to each such combination and a structure is associated to

(©) RBP(Ro, Bn,~i 115 Bn,viy1, By Bovi) this index. This permutation structure includes the following

(d) RBP(R1, Bn,viy1sBnyvigr Broys Bn,~,;)

(€)ife; =1 information:
Ro = Ro + Ry and R; = 2R; in permutationry; e The permutation index/
else . .
Ry = Ro + Ry and Ry = 2R, in permutation; e Then modul! that const!tute basBm
end if » Then moduli that constitute basB,, .,
5. RBP(V, Bn,~;, Bn,vis Bn,vos Bnyyo) « The current Base3,, , dynamic rangel/p
6. If (< ande are not modified and?p + V = R;) ) om o )
then ) ) There exist{ n ) different permutation structures that are
ggg R?P(gO’BEWO’BWO’B”’%’B"m) stored in array form.
return + . .
elseretum eror As an outcome of the first step, an entry is created as a

memory structure for each moduli of the 2 RNS Bases (needed
All EC points in Algorithm 2 are represented in projectivé the RNSMM algorithm). Such information (for a single

coordinates. Conversion to Montgomery Format (CMF) opefhtry ¢) are the following:
ation is used for transforming all EC point coordinates into « the moduli valuem;



TABLE | 00
EDWARDS CURVE (p = 2192 — 264 _ 1) CASE STUDY EMPLOYEDS8 BASE
MODULI

mi 250722071 ms 250

mg | 2°0-222_1 || mg | 250—1
mg | 2°0—2T8_1 [ my | 2571
my | 2°0-210-1 [ mg [ 2791

0.005

o thep modm; value

o the (—p~')  value 0088
« A matrix of 2n elements calculatingm; ') for all
j€{0,1,2n—1} '
« A matrix of <2ﬁl> elements caIcuIating{Mgi) for
all v € {0,1, 22, — 1} " o l . s

As a proof-of-concept implementation of the above de-
scribed two step design process, appropriate software C(ﬂ%ﬂz
was written for ARM cortex A class processors (having a
Raspberry Pi 2 as a reference design) using the GMP library
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