

SMARTPHONE RELATIVE DISTANCE

BASED ON RF SIGNAL LEVEL

RADIUS

Guillermo Ortas Delgado

Escola Tècnica Superior d'Enginyeria

de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

Advisor:

ILKER SEYFETTIN DEMIRKOL

In partial fulfilment of the requirements for the degree in

TELECOMMUNICATION SYSTEMS ENGINEERING

Barcelona, June 2016

 1

Abstract

"Show me the location of another phone relative to mine". This is a collaborative

degree thesis project between my colleague Nèstor Bonjorn and myself that aims to

locate a peer relative to the user. The point of this work is to do so without drawing

upon an Internet connection or a GPS signal. With this original idea in mind the

challenge was set: to compute the distance and direction of a peer through an Android

application using every useful embedded sensor of the users’ smartphones

(magnetometer, accelerometer, gyroscope, light sensor, barometer…) to this goal,

their radio chips and some signal processing.

The result of the project is an Android application that is able to accurately track, draw

and record the path taken by a user by means of sensor fusion, compute the distance

and direction between peers using RSSI-based approximations with limited resolution,

provide a chat-like service to exchange messages and calculate very precise distances

using audio signals’ time of flight.

 2

Resum

“Mostra’m la ubicació d’un altre telèfon respecte al meu”. Aquest és un projecte de fi

de grau col·laboratiu entre el meu company Nèstor Bonjorn i jo que tracta de trobar la

posició d’un altre relatiu a l’usuari. La gràcia d’aquest treball és aconseguir-ho sense

recórrer a una connexió a internet o a un senyal GPS. Amb aquesta idea interioritzada

el repte estava sobre la taula: calcular la posició i direcció d’un usuari distant a través

d’una aplicació per Android que faci servir qualsevol sensor integrat al telèfon

(magnetòmetre, acceleròmetre, giroscopi, sensor de llum, baròmetre...) que ajudi a

aconseguir-ho, els seus chips de ràdio i una mica de processament de senyal.

El resultat del projecte és una aplicació per Android que és capaç de seguir i dibuixar

la trajectòria d’un usuari de forma precisa i enregistrar-la per mitjà de fusió de sensors,

calcular la distància i direcció entre parells d’usuaris fent servir aproximacions

basades en RSSI amb precisió limitada, proporcionar un servei d’intercanvi de

missatges i calcular distàncies mitjançant temps de vol de senyals d’àudio amb gran

resolució.

 3

Resumen

“Muéstrame la ubicación de otro teléfono respecto al mío”. Este es un proyecto de fin

de carrera colaborativo entre mi compañero Nèstor Bonjorn y yo que trata sobre

encontrar la posición de otro respecto al usuario. La gracia de este trabajo es lograrlo

sin recurrir a una conexión a internet o una señal GPS. Con esta idea original en mente,

el reto estaba sobre la mesa: calcular la distancia y dirección de un usuario distante a

través de una aplicación para Android que use cualquier sensor integrado en el

teléfono (magnetómetro, acelerómetro, giroscopio, sensor de luz, barómetro…) que

ayude a conseguirlo, sus chips de radio y un poco de procesado de señal.

El resultado del proyecto es una aplicación para Android que es capaz de rastrear,

dibujar y registrar la ruta del usuario de forma precisa por fusión de sensores, calcular

la distancia y dirección entre dos usuarios utilizando aproximaciones basadas en RSSI

con precisión limitada, proporcionar un servicio de intercambio de mensajes y

calcular distancias con gran resolución midiendo el tiempo de vuelo de señales de

audio.

 4

Acknowledgements and dedication

First and foremost I want to thank my friend Nèstor, whom of course this project

wouldn’t had been possible without. We worked closely and continually helped and

supplemented each other with the other part of this joint work. It’s always been a

pleasure to work with him.

I also want to thank my advisor Ilker Demirkol for giving us the opportunity to work

in this amazing topic, for his advice and support and for the workplace he gave us

during the semester to develop the idea.

Last but not least I also have to thank my family and friends that gave me support

during the way and helped me explore, develop and widen the original idea, with

special mention to Marta, who was tremendously supportive all along and who drew

the logo of the project for me.

 5

Revision history and approval record

Revision Date Purpose

0 27/05/2016 Document creation

1 06/06/2016 Document revision

2 17/06/2016 Document revision

3 25/06/2016 Document revision

DOCUMENT DISTRIBUTION LIST

Name E-mail

Guillermo Ortas guilleortas@gmail.com

Nèstor Bonjorn nestorbonjorn@gmail.com

Ilker Demirkol ilker.demirkol@entel.upc.edu

Written by: Reviewed and approved by:

Date 27/05/2016 Date 25/06/2016

Name Guillermo Ortas Name Ilker Demirkol

Position Project Author Position Project Supervisor

 6

Table of contents

ABSTRACT ... 1

RESUM ... 2

RESUMEN ... 3

ACKNOWLEDGEMENTS AND DEDICATION .. 4

REVISION HISTORY AND APPROVAL RECORD ... 5

TABLE OF CONTENTS .. 6

LIST OF FIGURES ... 8

1. INTRODUCTION .. 9

1.1. STATEMENT OF PURPOSE AND GOALS .. 9
1.2. REQUIREMENTS AND SPECIFICATIONS .. 10
1.3. METHODS AND PROCEDURES .. 10

1.3.1. Input sources and use ... 11
1.4. WORK PLAN AND ASSIGNMENT OF TASKS ... 12

1.4.1. Work packages ... 12
1.4.2. Milestones ... 15
1.4.3. Work breakdown structure .. 16
1.4.4. Gantt diagram .. 17

1.5. DEVIATIONS AND INCIDENCES .. 18

2. STATE OF THE ART .. 19

2.1. SIMILAR APPLICATIONS AND PROJECTS ... 19
2.2. CURRENT RESEARCH .. 19

3. METHODOLOGY .. 21

3.1. WI-FI DIRECT COMMUNICATIONS PROTOCOL DESCRIPTION ... 21
3.1.1. Parts involved ... 21
3.1.2. Connection establishment ... 21
3.1.3. String and command passing .. 22

3.2. RSSI-BASED COMPUTATION ... 22
3.2.1. Bluetooth vs Wi-Fi Direct: speed and range comparison ... 22
3.2.2. Value acquisition procedure .. 23
3.2.3. Distance conversion ... 26

3.3. TOF-BASED COMPUTATION ... 26
3.3.1. Previous study .. 26
3.3.2. Audio ToF protocol description .. 31

4. RESULTS .. 33

4.1. PERFORMANCE BENCHMARKING OF DISTANCE ESTIMATIONS .. 33

5. BUDGET ... 36

6. CONCLUSIONS .. 37

6.1. POSSIBLE UPGRADES AND FUTURE DEVELOPMENT... 37

 7

7. APPENDICES ... 39

7.1. RADIUS APPLICATION SCREENSHOTS .. 39
7.2. COMMUNICATIONS PROTOCOL CODE ... 41

7.2.1. Discover button callback ... 41
7.2.2. Connect button callback .. 42
7.2.3. Connection established callback .. 43
7.2.4. MessageAsyncTask ... 44
7.2.5. Send message callback ... 45

7.3. PYTHON DELAY TIME CONTROL SIMULATION CODE .. 46
7.4. JAVA DELAY TIME CONTROL SIMULATION CODE .. 47

BIBLIOGRAPHY .. 49

GLOSSARY AND SPECIFIC TERMS .. 51

 8

List of Figures

FIGURE 1: MAP OF THE TOTAL EARTH’S MAGNETIC FIELD INTENSITY IN 2015 .. 11
FIGURE 2: WORK BREAKDOWN STRUCTURE (OPENS IN A WEB EXPLORER) .. 16
FIGURE 3: GANTT DIAGRAM ... 17
FIGURE 4: CONNECTION ESTABLISHMENT DIAGRAM ... 22
FIGURE 5: WI-FI DIRECT SCAN PERFORMED USING WPA_SUPPLICANT ... 25
FIGURE 6: TIMESTAMP-READING TOF USING SYNCHRONIZED DEVICES ... 27
FIGURE 7: MESSAGE REPLY TOF USING UNSYNCHRONIZED DEVICES.. 27
FIGURE 8: MESSAGE REPLY TOF DELAY CONTROL ... 28
FIGURE 9: HISTOGRAM OF DELAY TIME ERROR USING PYHTON (N=10000 SAMPLES) 29
FIGURE 10: HISTOGRAM OF DELAY TIME ERROR USING JAVA (N=10000 SAMPLES) 30
FIGURE 11: AUDIO TOF PROTOCOL .. 31
FIGURE 12: LOG-DISTANCE MODEL ASSESSMENT .. 34
FIGURE 13: DISTANCE ESTIMATION ERROR .. 35
FIGURE 14: RADIUS APP SCREENSHOTS .. 39
FIGURE 15: RADIUS APP SCREENSHOTS .. 40
FIGURE 16: RADUIS APP SCREENSHOTS .. 41

 9

1. Introduction

The mobile era takes connectivity to the next level, society and especially young people

live in a connected and always-on state that leads them to think that a mobile device

is rendered useless without cell service or access to the Internet. But would you really

be completely isolated from the rest of the world in that case?

The original idea was proposed by the thesis advisor, Ilker Demirkol, and it consisted

on locating users relative to each other via their smartphones. When the thesis was

being planned, it was proposed to do so without the need of a GPS signal, cell service

or Internet access, endowing it with a new dimension of possible applications.

This is a new and independent project, so it is not based upon the foundation of any

other and it is not part of a department or company research, so it was developed from

the ground up. The project has been given the name RADIUS.

1.1. Statement of purpose and goals

The distinguishing point of this work is exactly that, the positioning is done using only

the embedded sensors of the users’ smartphones and any other vastly available

components in consumer smartphones that are useful to this objective. The main

drawback of this approach is that the range is limited to local vicinity, this issue will

be analysed and quantified later on.

This idea would be great for applications of short range but with low visibility, with no

GPS signal available (tall buildings or indoor scenarios) or in a situation where it is

simply not preferred due to battery consumption or other reasons. Trying to find

someone in a mall or in a social event where there is a large density of people or in a

scenario in which the cellular networks become saturated are some cases of use.

Another possible application could aim to locate victims or missing people in a natural

catastrophe or in other emergency situations with no cellular service. A more different

approach would be to help blind people navigate the city, help them identify objects

or get in touch with volunteers or other unseeing pedestrians around.

These are the thesis main goals, they will be expanded and described in detail in the

work plan:

i. Establish a communication between users using Wi-Fi Direct or Bluetooth.

ii. Acquire RSSI values from the communication link.

iii. Compute the distance to the remote user and estimate its direction based on

said computations.

iv. Create a messaging functionality to help the users meet each other.

v. Achieve all previous objectives in the conditions described above, as if the

smartphones were located in an anechoic chamber and do everything in the

context of an Android application that is easy to use on the go.

 10

1.2. Requirements and specifications

The final product should be in the form of an Android app that is able to track the user’s

movement and trajectory and to give a relative distance and direction estimations of

a distant user in an understandable and user friendly interface.

The application should not require more than an initial interaction to be set up and the

user should not need be required to input any more information after that in order to

use it. The application has to be installed in all the involved phones but it should not

need to be running necessarily in the foreground at the same time, it should even work

if the smartphone locked.

These requirements also enable other functionalities not directly related to finding a

peer, like measuring the length of an object or tracing the route taken in a museum or

a shop. This last application is a marketing strategy currently being implemented in

clothing companies amongst others1, it will be expanded in the review of literature.

The performance specifications include a maximum orientation resolution of 15º, a

maximum distance resolution of 3 m and, for logistical reasons, the application should

not exceed 10 MB in size. These values were chosen because it was determined that

they were enough so that the task of finding a peer in the proposed scenarios can be

easily carried out.

1.3. Methods and procedures

To start with, the peers must be able to communicate with one another to exchange

information about their relative location. In this project two alternatives are

considered to achieve this: Wi-Fi Direct and Bluetooth.

Wi-Fi Direct is a novel Wi-Fi Alliance standardised wireless communications protocol

that enables devices to connect with each other without requiring a physical wireless

access point2 . It can be used to exchange data between devices or to browse the

Internet at typical Wi-Fi speeds, even with more than one device simultaneously3,4.

Even though the vast majority of modern smartphones support Wi-Fi Direct, only one

of the Wi-Fi devices involved in the connection is required to be compliant with the

1 Philipp Schloter, Hamid Aghajan. “Wireless RFID Networks for Real-Time Customer Relationship
Management”. Department of Electrical Engineering, Stanford University and Detecon, Inc. [Online]
Available: http://wsnl2.stanford.edu/papers/wireless_RFID_networks_for_RTCRM_Final_V06.pdf.
[Accessed: 18 June 2016].
2 Wi-Fi Alliance. "Wi-Fi Direct". Discover Wi-Fi. [Online] Available: http://www.wi-fi.org/discover-wi-
fi/wi-fi-direct. [Accessed: 13 June 2016].
3 Wi-Fi Alliance. “How fast is Wi-Fi Direct?” Knowledge centre, FAQ. [Online] Available:
http://www.wi-fi.org/knowledge-center/faq/how-fast-is-wi-fi-direct. [Accessed: 13 June 2016].
4 Wi-Fi Alliance. “Can a network based on devices certified under the Wi-Fi Direct program cross
connect to an infrastructure network for internet connectivity?” Knowledge centre, FAQ. [Online]
Available: https://web.archive.org/web/20130403025145/http://www.wi-fi.org/knowledge-
center/faq/can-network-based-devices-certified-under-wi-fi-direct-program-cross-connect.
[Accessed: 9 December 2013].

 11

standard to establish a peer-to-peer connection, so compatibility is not a problem at

all.

Although Bluetooth is currently ubiquitous in consumer electronics and it has recently

been greatly updated and upgraded, the range and data transfer capabilities it offers

cannot compete with the newer Wi-Fi Direct standard, as it is not intended to cover

the needs of high performance networking or larger distances. A performance

comparison is done in the project development section.

1.3.1. Input sources and use

- Wi-Fi and Bluetooth signals RSSI for distance estimation.

- Speaker and microphone for ToF distance computation.

- Three axis accelerometer for obtaining velocity and movement by means of

integration.

- Magnetometer for obtaining the Earth’s magnetic field as a frame of reference

as well as the pitch and roll of the device.

- Three axis gyroscope for acquiring the rotation speed in any direction. By

combining it with the accelerometer and magnetometer a better estimation can

be given of the total user movement and its tracking is made more accurate.

Some input candidates have been disregarded for the lack of presence in the market

of the components they use or for their infeasibility of implementation:

- ToF-based distance computation using RF signals. Timescale too fast to be

correctly measured in a mobile device, studied in the project methodology.

- Magnetometer for distance approximation using Earth’s magnetic field

measurements correlation. Earth’s magnetic field varies too little in the range

of our interest —as seen as seen in the image below— and it’s also dependent

on altitude and time.

Figure 1: Map of the total Earth’s magnetic field intensity in 2015. British Geological Survey.

 12

- Barometer for speed of sound adjustment using the atmospheric pressure and

peer positioning in multiple levels. Component too scarce to rely upon.

- Speaker and microphone for getting a signal strength-based distance

estimation. Strongly limited by ambient noise.

- Light sensor in conjunction with the smartphone flashlight to give a distance

estimate in controlled conditions. Strongly limited by ambient light.

- Pattern recognition using the camera to measure the distance to the objective.

Limited to camera resolution and LoS only.

Once a method is chosen to get a distance measurement or estimation, the basic

procedure is as follows:

1. Communication establishment between peers.

2. Distance acquisition.

3. Device movement in any direction.

4. Acquire distance again.

5. Compute relative position and direction.

6. Repeat steps 3, 4 and 5 in loop.

1.4. Work plan and assignment of tasks

The work plan has been broken down into individual work packages, since this is a

collaborative project, the responsible of each block is specified.

1.4.1. Work packages

Project: RADIUS Responsible: Both WP ref: 1

Major constituent: Research and benchmarking Sheet 1 of 8

Short description:
Research on similar projects and mobile apps that
carry out a similar task. Continuous block.

Planned start date:
08/02/2016
Planned end date:
01/06/2016

Internal task T1:

Paper research about the usage of smartphones’ sensors in other projects

Internal task T2:

App research and evaluation

Project: RADIUS Responsible: Both WP ref: 2

Major constituent: Develop test application Sheet 2 of 8

 13

Short description:
Test app development block. It consists of developing
an app that reads all of the smartphone’s sensors.
It also serves the purpose of getting familiarised with
the Android programing environment.

Planned start date:
15/02/2016

Planned end date:
29/02/2016

Internal task T1:

Environment installation: Android Studio

Internal task T2:
Interface design

Internal task T3:

Android Language learning

Internal task T4:
Code writing

Internal task T5:

Testing

Project: RADIUS Responsible: Guillermo WP ref: 3

Major constituent: Wi-Fi Direct communications Sheet 3 of 8

Short description:

Design a communications protocol between two
devices based on Wi-Fi Direct connectivity. It includes
string and command passing.

Planned start date:
02/03/2016

Planned end date:
09/05/2016

Internal task T1:

Research on papers and projects that have already used this connectivity
Internal task T2:

Design communications protocol through an app, code writing and interface design
Internal task T3:

Testing

Project: RADIUS Responsible: Guillermo WP ref: 4

Major constituent: Bluetooth communications Sheet 4 of 8

Short description:

Design a communications protocol between two
devices using Bluetooth and compare its performance
to the Wi-Fi Direct counterpart.

Planned start date:
05/05/2016
Planned end date:
27/05/2016

Internal task T1:

Research on papers and projects that have already used this connectivity

 14

Internal task T2:
Design communications protocol through an app, code writing and interface design

Internal task T3:

Testing

Project: RADIUS Responsible: Nèstor WP ref: 5

Major constituent: Kalman Filter Sheet 5 of 8

Short description:

Implement the Kalman Filter (signal processing) to
improve the computed estimations.

Planned start date:
02/03/2016

Planned end date:
27/05/2016

Internal task T1:
Research on papers and projects that have already used this filter for other applications

Internal task T2:

Design
Internal task T3:

Simulation
Internal task T4:

Testing

Project: RADIUS Responsible:

Guillermo (RSSI)

Nèstor (sound ToF)

WP ref: 6

Major constituent: Distance estimation Sheet 6 of 8

Short description:

Compute the distance between two devices using
different systems: RSSI and sound waves time of flight
(ToF).
Estimate the direction based on the distance
computation.

Planned start date:
14/03/2016
Planned end date:
27/05/2016

Internal task T1:
Using RSSI

Internal task T2:
Using ToF

Internal task T3:
Using camera

Project: RADIUS Responsible: Nèstor WP ref: 7

Major constituent: User movement monitoring Sheet 7 of 8

 15

Short description:
Monitor the user’s movement in order to know the
source of the changes in the distance estimations
between two smartphones (i.e. how much has the user
moved between two distance estimations). This allows
to calculate the relative direction, and hence the
relative position, between the two devices.

Planned start date:
23/02/2016

Planned end date:
18/04/2016

Internal task T1:
Parameter acquisition

Internal task T2:

Computation

Project: RADIUS Responsible: Both WP ref: 8

Major constituent: Develop final app Sheet 8 of 8

Short description:
Final app development block: it includes all previous
calculations

Planned start date:
09/05/2016

Planned end date:
13/06/2016

Internal task T1:

Interface design

Internal task T2:
Code writing

Internal task T3:
Testing

1.4.2. Milestones

WP# Task# Short title Milestone / deliverable Date

2 4 Code writing
Basic sensor reading Android

app
26/02/2016

3 1
Communications

protocol
Wi-Fi Direct protocol design 25/04/2016

4 1
Communications

protocol
Bluetooth protocol design 27/05/2016

5 2 Processing/tracking Kalman Filter implementation 25/04/2016

- - CDR Critical Design Review 09/05/2016

6 - RSSI/sound ToF
Distance and direction

estimation
03/05/2016

 16

8 2 Code writing Final Android app 09/05/2016

- - FR Final Report 27/06/2016

- - Thesis defence Thesis defence 15/07/2016

1.4.3. Work breakdown structure

Figure 2: Work breakdown structure (opens in a web explorer)

https://creately.com/diagram/il5h7b07/1RR52ATGtfwUj0LhjNcSDF2Spqg=

 17

1.4.4. Gantt diagram

Figure 3: Gantt diagram

 18

1.5. Deviations and incidences

The work plan developed smoothly and without any incidences during the project

until the RSSI acquiring part. The original idea was to constantly update RSSI values at

a rate high enough to counter the effects of shadowing and the varying nature of the

RF channel. This is possible and in fact very easy to achieve using regular Wi-Fi

connectivity, but not using Wi-Fi Direct, due to the way Google implements the

manager for this kind of communication. They argue that these readings would not be

reliable and so, RSSI values can only be obtained when a scan is performed.

A scan takes about one to five seconds, which is too slow to rely on a distance

calculated in this way. An alternative was then devised: the use of Bluetooth in the

same way to achieve a higher rate of RSSI samples. Bluetooth was not the first option

because of its shorter range and slower transfer speeds (a detailed comparison is

made in the methodology section), but it promised a better distance estimations at this

point. It was found that Bluetooth only gives RSSI information when a scan is

performed as well.

At this stage, finding a faster way of doing a scan was the priority. A command-base

procedure was discovered. A scan can be done in this way in less than a second, which

is a much shorter and definite time, making the initial objective feasible. However, it

presents a large drawback: only users with access to the system partition of their

device can use it. This special access is obtained with a process called rooting, which

only some power users do. That means this way of estimating the distance is not

available to the general public.

ToF-based distance estimation, though, is available to everyone and can potentially

offer a much better precision and reliability. However, it presents the challenge of

being able to measure times in the order of nanoseconds for the distance range of

interest without specialised hardware.

 19

2. State of the art

2.1. Similar applications and projects

Currently, there are a lot of “friend locator” apps that claim to work without using GPS

or Internet access, just by using mobile networks, and they do. This problem was

solved by Google in 2007 when an update was introduced to Google Maps that gave it

the ability to compute the user’s location by triangulating between cell towers 5 .

Nowadays this technology has been polished and the accuracy has been upgraded to

the point of being able to find a friend in close range thanks to the improved precision

that fixed Wi-Fi hotspot identification and Bluetooth device recognition enables.

There are also some apps that enable communication without using cell service either.

These apps offer chat and file transfer functionalities but their scope is limited to just

that, with no interest in the location of the users. In this project this idea is taken one

step further. Its global objective is to locate a phone using no mobile networks at all

(no cell service or GPS signal). As stated in the introduction, only the embedded

sensors and communications chips of a modern smartphone are used to accomplish

this.

2.2. Current research

There is a project currently being developed called Estimote that is able to precisely

locate users in real time using Bluetooth. The main drawback is that it only works in

known indoor spaces and requires specialised hardware to be set up beforehand

(iBeacons), so it’s not very practical for the use case explored in this thesis.

As commented in the introduction, retailers are interested in following the path taken

by clients in their shops. This strategy delivers important information about their

stores and how they should arrange them to maximize sales or how to promote a

specific product giving it more visibility. This is the kind of application Estimote would

apply best to. Others use RFID tags6,7 instead of iBeacons in a very similar approach to

help locate customers in a retail store.

There have been quite a lot of paper publications lately that aim to locate users in the

conditions tackled by this thesis, but in an indoor scenario, not in the exterior. This is

to be expected, as a GPS signal is almost always available outdoors, unless it’s an area

5 Kate Greene. "Finding Yourself without GPS". MIT Technology Review, 2007. [Online] Available:
https://www.technologyreview.com/s/409138/finding-yourself-without-gps/. [Accessed: 13 June
2016].
6 Marin Vukovic, Ignac Lovrek, Hrvoje Kraljevic. “Discovering shoppers’ journey in retail environment
by using RFID”. University of Zagreb, Faculty of Electrical Engineering and Computing. [Online]
Available: https://bib.irb.hr/datoteka/596198.FAIA243-08571.pdf [Accessed 18 June 2016].
7 In-Chul Jung, Young S. Kwon. “Grocery Customer Behavior Analysis using
RFID-based Shopping Paths Data”. World Academy of Science, Engineering and Technology, 2011.
[Online] Available: http://waset.org/publications/13460/grocery-customer-behavior-analysis-using-
rfid-based-shopping-paths-data. [Accessed 18 June 2016].

 20

without coverage or it is not desired to use GPS for power consumption issues or for

any other reasons.

Some of these research publications state that their position estimation system relies

on mobile sensor fusion (the same RADUIS uses to track the users’ movements) and

others on pre-installed hardware in the room that emit signals of interest. Examples

of the first kind are “Indoor localization without infrastructure using the acoustic

background spectrum” and “Virtual Compass: Relative Positioning To Sense Mobile Social

Interactions”. Some of the second kind are “Ultrasonic Time Synchronization and

Ranging on Smartphones” and “Discovering shoppers’ journey in retail environment

by using RFID”. These papers are listed in the bibliography at the end of this report,

except the last one, which is the one referenced in Footnote 6.

 21

3. Methodology

In this section, the developed communications protocol (establishment, commands…)

and the distance computation procedures will be explained.

3.1. Wi-Fi Direct communications protocol description

3.1.1. Parts involved

There are several software parts that make up the application developed for this

project, the ones that intervene in the communications protocol will be described next.

All technical words are explained in the glossary at the end of this report.

3.1.1.1. WiFiDirectActivity

The activity that uses Google’s Wi-Fi Direct API to discover and connect with nearby

peers.

3.1.1.2. DeviceDetailFragment

A fragment that manages the interaction with a particular peer, it’s the component that

establishes the connection and manages incoming message transfer requests.

3.1.1.3. DeviceListFragment

A fragment that shows discovered peers and their status and that passes the

interaction events to the WiFiDirectActivity for being handled.

3.1.1.4. resultHandler

The component that manages the received commands form other peers, it runs and/or

calls the corresponding methods to execute the desired action. It is not a native

Android handler.

3.1.1.5. MessageTransferService

A service that manages outgoing message transfer requests.

3.1.1.6. WiFiDirectBroadcastReceiver

A BroadcastReceiver that listens to Wi-Fi Direct events (status changes) and reports

them.

3.1.2. Connection establishment

The first step is to perform a scan, which delivers a list of the current nearby peers in

the form of WifiP2pDevice objects. When a user taps on the connect button of a peer,

the DeviceDetailFragment sets up a WifiP2pConfig object and tells the

WifiP2pManager to connect both peers through the WiFiDirectActivity and a group

owner is decided, all of this is mainly done by the Wi-Fi Direct API itself.

 22

Figure 4: Connection establishment diagram

When the connection is established, the group owner IP address —which is known at

this point— is saved for later use, then the client sends a dummy text message to the

server for it to register its address as well. Finally, a MessageAsyncTask is started in

both sides of the communication. This looping background task allows bidirectional

communication between peers through TCP sockets.

3.1.3. String and command passing

When a user wants to send a message, a MessageTransferService is created and

started. This service opens a socket that connects to the receiving peer, which is

accepted by the MessageAsyncTask running in the background of it. When an incoming

message is received, the MessageAsyncTask delivers it to the resultHandler and

restarts itself to listen for new messages.

The resultHandler then analyses the message header and determines whether it’s

simply string of text to be displayed or is a command to perform some other action. It

triggers tasks like the audio ToF-based distance measurement process or requests

information to the other peer. The core methods and code that establishes the

connection and enables exchange of information is attached in the appendix.

3.2. RSSI-based computation

3.2.1. Bluetooth vs Wi-Fi Direct: speed and range comparison

Both of these technologies can be used to obtain RSSI values for distance calculation,

so the first thing to do is to choose one of them or work with both in harmony.

As stated in the introduction, Wi-Fi Direct uses the same hardware as regular Wi-Fi,

which means that the same speeds can be achieved. Both Wi-Fi Direct and Bluetooth

speeds vary depending on the standard they use. For this comparison, the 802.11n Wi-

Fi standard and the 4.0 version of Bluetooth will be regarded.

802.11n offers a maximum net data rate of up to 600 Mbps, while 4.0 Bluetooth can

reach a peak transmission speed of 24 Mbps, a much lower link speed. The maximum

Wi-Fi Direct range of almost 200 m puts it ahead of Bluetooth, with only 60 m of

 23

range8,9. For this application, range is very important and should be prioritised, which

means it’s a decisive factor in this case, meaning that the clear winner here is Wi-Fi

Direct, as it outperforms Bluetooth in both fields.

Bluetooth was only considered to be an option when it was found that by using Wi-Fi

Direct, RSSI values could only be obtained by doing a scan, and not ad lib in any

moment and with the desired polling rate as initially though. This is important to iron

out the unstable nature of the RF channel. However, Bluetooth presented the same

drawback, so the result of the comparison remained unchanged.

Both standards are supported by almost all current smartphones made in 2010 and

later, as both technologies were presented around that year. The quoted data rates

and ranges are theoretical figures, but serve the purpose of a qualitative comparison.

Security and power consumption are excluded from this benchmarking. Range results

from real-life Wi-Fi Direct tests will be exposed in the results section.

3.2.2. Value acquisition procedure

To begin with, a scan must be performed, there’s no need for the other peer to accept

an invitation or be connected at all to do so. As explained in the connection

establishment headland, the scanning action returns a list of WifiP2pDevice objects,

which contain the RSSI value of each one, although somewhat hidden, obtaining a RSSI

reading is not made easy by the Wi-Fi Direct API. The signal level figure is buried in

the return statement of the toString() method called on the desired WifiP2pDevice

object. This information can then be extracted with some fiddling and used to estimate

the distance.

3.2.2.1. Alternative method

Having met the problem that doing a scan takes more time than the required to get a

good enough RSSI sampling rate to achieve a reliable and realistic distance conversion,

another way of performing it that takes less time was researched. It exists the

possibility of going under the API to do a scan in a faster way that can achieve exactly

that objective: allow a higher RSSI value polling rate that would increase the

robustness of the algorithm.

It is a command-based solution that uses a cross-platform network entity called

wpa_supplicant that is executed in the device itself. It implements an interface that can

be used to perform a Wi-Fi Direct scan. The ADB Shell is used to run the following

commands in the smartphone from a computer. To set up the supplicant, a

configuration file must be created to grant the proper rights, which is done by setting

8 IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific
requirements-- Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY)
Specifications Amendment 5: Enhancements for Higher Throughput. IEEE Standard 802.11n-2009.
9 IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific
requirements-- Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications for Wireless Personal Area Networks (WPAN). IEEE Standard 802.15.1-2005.

 24

the update_config flag to 1. After that, the daemon is started and a tool called wpa_cli

is called to be able to execute the wpa_supplicant commands10.

The command P2P_FIND looks for peers, this is the equivalent of performing a scan

though the API, the P2P_STOP_FIND finishes the discovery. Then, all of the information

of the discovered peers can be accessed by the P2P_PEER command, which returns the

same information as the toString() method of a WifiP2pDevice object. This is the

command that returns the RSSI value in dBm under the tag “level”. In the screenshot

below, a RSSI value of -36 dBm was captured.

These commands are the ones that are ultimately executed through the API, that is the

reason why this is a faster way of doing the same thing, because it bypasses all of the

above layers.

10 ArchLinux. “WPA supplicant”. ArchLinux Wiki. [Online]. Available:
https://wiki.archlinux.org/index.php/WPA_supplicant. [Accessed 4 June 2016].

 25

Figure 5: Wi-Fi Direct scan performed using wpa_supplicant

The use of this supplicant, though, requires root privileges on the Android device that

wants to run it. As explained in the introduction, root access is beyond the reach of a

regular user —at whom this application is targeted—, so this alternative RSSI reading

method is immediately disregarded by this disadvantage as it is not possible to be

overcome.

 26

3.2.3. Distance conversion

The log-distance path loss model is used to assess the Wi-Fi Direct signal attenuation

and translate RSSI values into distance magnitudes, which is given by the following

expression:

 𝑃𝑟(𝑑) = 𝑃𝑟(𝑑0) − 10𝛼 log10 (
𝑑

𝑑0
) + 𝑋𝜎𝑟

 (3.1)

𝑤𝑖𝑡ℎ 𝑑0 = 1 𝑚, 𝑃𝑟(𝑑0) = −37.6 𝑑𝐵𝑚, 𝐸[𝑋𝜎𝑟
] = 0, 𝜎𝑟 = 6 𝑑𝐵 𝑎𝑛𝑑 𝛼 = 2.3

The received signal strength is equivalent to the received power 𝑃𝑟(𝑑) and 𝑋𝜎𝑟
 is a

random Gaussian variable of null mean and 𝜎𝑟 standard deviation. The reference 𝑑0

was set to 1 m and the RSSI was measured 30 times at that distance to get a mean

𝑃𝑟(𝑑0) value of -37.6 dBm to calibrate the algorithm. These measurements were done

in a large furnished indoor location using two LG Nexus 5 as reference devices, so the

constants 𝛼 and 𝜎𝑟were chosen accordingly11.

Since the RSSI reading rate is not very high, there is an algorithm built into the

application that dismisses “unlucky” values using a weight system in order to provide

a better distance approximation. When a value —or series of values— is unexpectedly

low, it is not taken into account towards the computation, as it could have been

induced by shadowing or by the user standing in an area of lower visibility. This

algorithm and the logic behind the direction approximation computations and their

code implementations are outside the scope of this report, as it is part of Nèstor’s.

3.3. ToF-based computation

3.3.1. Previous study

To begin with, a study was made to determine the feasibility of measuring the time of

flight of RF waves. Since the two smartphones involved in a measure are not required

to be connected to the Internet for the application to work, they cannot be

synchronized with a time server, which means that a computation based on a

timestamp is not possible.

11 Theodore. S. Rappaport. Wireless communications: principles and practices, 2nd ed. Prentice-Hall,
2002.

 27

Figure 6: Timestamp-reading ToF using synchronized devices

If both devices had Internet access, they could use the timestamp-reading strategy, the

time the message was sent could be read from it in the receiving smartphone and

subtracted from the current time, resulting in the time it took the signal to travel:

 𝑇𝑜𝐹 = 𝑡𝑖𝑚𝑒1 − 𝑡𝑖𝑚𝑒0 (3.2)

Timestamp-reading is the simplest way of measuring RF ToF, which is not possible in

this application.

Time of flight has to be calculated using a reply strategy, in which the devices do not

need to be synchronized. In order for this idea to work, the processing delay must be

perfectly known and controlled. The processing delay is defined as 𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1.

Figure 7: Message reply ToF using unsynchronized devices

With this strategy, the time of flight is calculated by this expression:

 𝑇𝑜𝐹 =
𝑡𝑖𝑚𝑒3 − 𝑡𝑖𝑚𝑒0 − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦

2
 (3.3)

At this point the next step is to check if the delay can be controlled with enough

precision to reach a reasonable distance granularity. Ideally, the delay would be null,

 28

but that is not possible. A known time in both sides of the communication is then set

as the delay time, following this diagram:

Figure 8: Message reply ToF delay control

The total delay time, 𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1, can be set to a known value if the padding time is

adaptively set to 𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1′. The delay time has to be chosen to be greater than

the execution time but not needlessly big, a compromise has to be made.

Following this strategy, a preliminary simulation using Python language was made to

check the viability, and then a more refined one using Java.

3.3.1.1. Python delay time control simulation

Python is a high-level, interpreted programming language that is fast and easy to get a

general idea of a problem approach, great for this kind of use cases. That does not

mean it’s not a serious programming language, as it is suitable to build large scale

programs and it is widely used as so.

The program follows the basic idea depicted in Figure 8 that dynamically sets the

padding time to establish the total delay time to the desired value. A Monte Carlo

simulation was written using the time.clock() method to measure time. It is the

preferred choice for Python code benchmarking as it offers a resolution of less than a

microsecond12, which is good enough for a first approach and evaluation.

A desired delay time was set to 100 ms and a random loop that takes 10 to 20 ms to

finish was used as a dummy load to represent real computations. The simulation was

repeated 𝑁 = 10000 times and the errors in real vs desired delay time were measured

and stored in a vector 𝑥, the following histogram represents the distribution of said

vector.

12 Python Software Foundation. The Python Standard Library, Generic Operating System Services.
[Online]. Available: https://docs.python.org/2/library/time.html#time.clock [Accessed: 18 June
2016]

 29

Figure 9: Histogram of delay time error using Pyhton (N=10000 samples)

Negative error times are possible, they just mean that the total processing took less

time than the established value. There’s a large spike near 1 ms that lowers when

approaching zero, there’s also a small bulge around 300 µs. The mean error is 655.6

µs and the distribution has a standard deviation of 353.3 µs, computed as:

 𝜎 = √
1

𝑁
∑|𝑥𝑖 − 𝜇|2

𝑁

𝑖=1

 𝑤𝑖𝑡ℎ 𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

(3.4)

These results show that the error is too big to be handled. In the best case, this method

would give a time resolution of μ, which corresponds to a distance of almost 200 km

at the speed of light and that is obviously unacceptable.

To get a distance resolution of 30 cm, a maxim error of a nanosecond is required. The

same study using Java language is done next to see if it brings any improvements.

3.3.1.2. Java delay time control simulation

The next step is to analyse the same problem using Java programming language, which

is basically the same as the Android language in which a hypothetical solution would

be running on. This gives the results more verisimilitude. The program follows the

same logic described in the Python section, but in this case the method used to record

times is System.nanoTime(), which is more precise than the Python counterpart,

 30

but still not great for a real implementation. Nevertheless, it offers a good idea of the

viability, which is the purpose of this study. After running the simulation another

10000 times, these results emerge:

Figure 10: Histogram of delay time error using Java (N=10000 samples)

Two big spikes can be observed around 1ms and zero, with quite a lot of executions to

the left of these values. This distribution has a mean of -3.262 µs and a standard

deviation of 599.6 µs. That means the error in the delay time using Java language is

much lower, but presents more dispersion. This solution would deliver a much better

distance resolution (just under 1 km) but would be less predictable.

The code used for both simulations can be found in the appendix.

3.3.1.3. Conclusion

It’s been proved that measuring RF waves’ time of flight in these conditions is not a

real option for this application. The Java implementation of the delay time control

delivers a resolution that could be useful in other use cases, but not in this one, as 1

km is out of the Wi-Fi Direct range anyhow. Instead, measuring audio waves’ time of

flight is proposed, this will be explained in the following section.

 31

3.3.2. Audio ToF protocol description

An acoustic ranging solution is proposed. Both smartphones emit a known signal in a

short period of time, which is recorded and processed to find the instants at which the

own signal and the remote one have been recorded. The audio samples between these

events are counted and translated into time through the sampling frequency, this

information is then passed to the other device. With both times available, a simple

equation gives the distance between smartphones. The following diagram represents

the process:

Figure 11: Audio ToF protocol

Note that there’s not a particular order in which the signals have to be emitted, there

is also no synchronization needed using this method and the processing delay does

not alter the results, so there’s no need to control it. The time of flight is computed in

this way:

 𝑇𝑜𝐹 =
||∆𝐴| − |∆𝐵||

2

(3.5)

The absolute value of the times is taken because there’s no guarantee of which signal

will be sent first. The recording time is set in the protocol implementation to a fixed

value low enough to be easily processed but sufficiently long to include the sent and

received signals. This is a master-slave protocol, but it can be started in either device,

so once the process is initialised by one of the devices, the other one shall not start it

until it has been finished completely, that is why the app doesn’t allow the user to start

it again if the process is running.

 32

The emitted audio wave is a chirp signal, which has great correlation properties to be

easily identified even with background noise, which is typical of the situations this

project applies to. The maximum theoretical distance resolution of this method is

determined by the sampling frequency of the microphones, which is considered 44100

Hz, the industry standard:

 ∆𝑑 =
𝑐𝑠

𝑓𝑠
= 7.78 𝑚𝑚 𝑤𝑖𝑡ℎ {

𝑐𝑠 = 343.2 𝑚/𝑠
𝑓𝑠 = 44100 𝐻𝑧

 (3.6)

The conditions of the used speed of sound are sea-level atmospheric pressure and

20ºC. The technical aspects of signal processing and detection and the code

implementation of them are outside the scope of this report

 33

4. Results

After making two training apps, doing a lot of research, performing lots of simulations,

modelling signals, and specially committing ourselves and dedicating a lot of time,

these are the results of the thesis.

At the start of this project two apps were created to get familiarised with the Android

environment and mobile development in general. One of them is a “phone tester”,

which reads the values of the most important sensors and prints their values. That was

an exercise to get to know basic APIs and work with values behind the scenes. The

second app is a speed cube stopwatch to measure times of Rubik’s cube solves. This

was a more user-oriented app with more emphasis on the interface and ease of use.

That doesn’t mean the innards are any less complex, as it manages memory, stores

values and computes some statistics.

During the development of the project, a Bluetooth communications protocol was

created to explore this option. The result is quite similar to the Wi-Fi Direct

counterpart, but it isn’t as mature because the idea was dropped in few days. It doesn’t

implement commands or distance estimation capabilities, but it has a chat interface to

communicate between users that could be ported to the Wi-Fi Direct client.

The final RADIUS app is able to perform a number of tasks:

- Track, print and record the trajectory of the user.

- Establish a communication between users using Wi-Fi Direct.

- Compute the distance to the remote user and estimate its direction based on

the acquired RSSI values from the communication link (with an alternative root

method).

- Ability to send and receive text messages.

- Ability to measure distances using time of flight of audio waves.

The objectives set in the statement of purpose seem to have been accomplished, and

some others have been added as well. For illustrative purposes, screenshots of the

RADIUS app can be found in the appendix of this report.

Performance of RSSI-based distance estimations will be analysed next. Audio ToF-

based distance estimations and user tracking performance, benchmarking and

analysis are not part of the scope of this report, inasmuch as Nèstor is the responsible

of these parts.

4.1. Performance benchmarking of distance estimations

To start with, the maximum range of operation is measured. The range was

determined to be a little bit over 190 m within LoS, and 60 m with obstacles in the way.

These are mean values obtained by repeating the experiment ten times in a fairly open

outdoor scenario with two LG Nexus 5 devices. Distances were physically measured

and maximum range is defined as the distance at which communication is lost due to

poor signal reception.

 34

Next, the verisimilitude of the log-distance model is assessed to check if it adjusts to

real signal propagation behaviour. Mean RSSI measured values are compared to the

log-distance model described in equation (4.1) with its calibration constant and

parameters, which is plotted with a range of one standard deviation. RSSI values were

obtained in the conditions described above and within LoS.

Figure 12: Log-distance model assessment

RSSI measurements fall nicely in the expected range. Values in the lower distances

tend to move around a little bit more, but in general lines it seems the model is

properly adjusted and that it can be trusted. These results look quite promising, but it

should be remembered that when the app is running, it can’t deliver results as accurate

because shadowing and noise are not being cancelled out by averaging over several

readings like in this case, so computations are a bit less accurate.

The same data is visualised then as the error in real versus estimated distance to gain

more insight into the results:

 35

Figure 13: Distance estimation error

This plot shows that the absolute error grows with the distance, which is to be

expected, but when taking a look at the relative error, the estimations seem to be

better in the longer distances. This is due to the RSSI values in the shorter range being

a little off the model, as seen in Figure 12.

The maximum relative error is about 30% at 10 and 15 metres, which corresponds to

an error of 3 and 4.5 m respectively, the model also presents other local maxima of

around 20% in the medium range. The minimum relative error is around 5% and it’s

produced in the short to medium and long distances, when the model best fits the real

propagation behaviour.

 36

5. Budget

This thesis does not have a physical prototype as a final product, so an estimation of
the number of hours dedicated to it are evaluated at the cost of a junior engineer salary,
as well as the licenses of the used software and the devices for developing and testing
the applications.

Concept Description Units Price Total

Matlab R2015a Academic License 1 0 € 0 €

Android Studio 2.1.1 Apache License version 2.0 1 0 € 0 €

Development devices LG Nexus 5 2 300,00 € 600,00 €

Salary Estimated work hours 400 8,00 € 3.200,00 €

 GRAND TOTAL 3.800,00 €

 37

6. Conclusions

This was a very ambitious project to which a lot of hours have been dedicated, more

than it could seem at first sight. The Android application alone has taken over two

months of dedicated work to be thought-out and written. Even then, a number of

features could not be implemented due to lack of time, they are listed below as possible

upgrades.

The results of the project could have been a little bit better, but considering the point

we have reached taking into account that we started from scratch, we are both very

pleased. This work can be continued and be further developed to deliver better

performance and incorporate new features.

6.1. Possible upgrades and future development

More and more smartphones are including pressure and temperature sensors in their

specification list lately. Taking advantage of this, an algorithm can be implemented to

adjust the speed of sound to the exact conditions of the environment in the moment of

execution. This would make the reading so precise that the final result would be

bottlenecked by the sampling frequency of the microphones.

Also, the ability to give this project a third dimension of depth can be implemented by

using a barometer. A typical pressure sensor can resolve an altitude difference of less

than a metre13, making the application able to tell the difference between floors.

The same idea of reading the environment conditions to adjust the models the

program uses can be applied to the propagation model of RF waves to give a better

RSSI to distance equivalence. The light sensor and the microphone can be useful to

determine if the user is located outdoors or indoors and how big the space is in that

case.

Furthermore, a chat interface (like the Bluetooth-based one commented in the results)

and an image or general file transfer service can be added to the application to take

the user experience to the next level. Another very simple thing to do is to add more

functionality through commands. The framework is already set, so only an idea is

necessary to be implemented right away.

Moreover, a multi-hop implementation could be considered. The idea is that a message

can be sent to a destination which is out of the reach of the original sender. This could

be achieved by broadcasting a copy of the message to all available peers in range.

Eventually, the message will reach its destination as long as the chain doesn’t break.

In which case, the message would have been transmitted further away than it would

have in the regular way in any case. But once again there’s a problem with the Android

API: when a Wi-Fi Direct connection is established, a group owner is decided. That

13 BOSCH Sensortec. “BMP280 Digital Pressure Sensor”. Datasheet. [Online]. Available: https://cdn-
shop.adafruit.com/datasheets/BST-BMP280-DS001-11.pdf. [Accessed 21 June 2016].

 38

particular device cannot act as a client of another group at the same time14. This means

that the current implementation of Wi-Fi Direct in Android forces every message to

pass through the group owner. And not only that, a device cannot be connected to

more than one group as a client, so this would derail the whole strategy. To sum up: a

multi-hop implementation can be done using Wi-Fi Direct, but cannot be easily done

with Android devices as its API doesn’t allow to do so.

A paper that tackles exactly this problem was recently published and it seems they are

able to achieve multi-hop networking using Wi-Fi Direct in Android, so there is still

hope for this idea.

14 Android Developer Reference. “WifiP2pGroup". android.net.wifi.p2p. [Online]. Available:
https://developer.android.com/reference/android/net/wifi/p2p/WifiP2pGroup.html. [Accessed 21
June 2016].

 39

7. Appendices

7.1. RADIUS application screenshots

Figure 14: RADIUS app screenshots, (a) shows the welcome screen, (b) shows the results of a peer
discovery.

 40

Figure 15: RADIUS app screenshots, (a) shows the state of an established connection, (b) shows the toast
notification of a received text message.

 41

Figure 16: RADUIS app screenshots, (a) shows the trajectory taken by the user to the distant peer with its
current relative distance and direction, (b) shows the result of an audio ToF-based distance computation.

7.2. Communications protocol code

7.2.1. Discover button callback

public boolean discover() {

 if (!isWifiP2pEnabled) {

 Toast.makeText(WiFiDirectActivity.this,

R.string.p2p_off_warning,

 Toast.LENGTH_SHORT).show();

 return true;

 }

 final DeviceListFragment fragment = (DeviceListFragment)

getFragmentManager()

 .findFragmentById(R.id.frag_list);

 fragment.onInitiateDiscovery();

 manager.discoverPeers(channel, new WifiP2pManager.ActionListener() {

 42

 @Override

 public void onSuccess() {

 Toast.makeText(WiFiDirectActivity.this, "Discovery

Initiated",

 Toast.LENGTH_SHORT).show();

 }

 @Override

 public void onFailure(int reasonCode) {

 Toast.makeText(WiFiDirectActivity.this, "Discovery Failed: "

+ reasonCode,

 Toast.LENGTH_SHORT).show();

 }

 });

 return true;

}

The discoverPeers method of WifiP2pManager is part of the API.

7.2.2. Connect button callback

mContentView.findViewById(R.id.btn_connect).setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View v) {

 WifiP2pConfig config = new WifiP2pConfig();

 config.deviceAddress = device.deviceAddress;

 config.wps.setup = WpsInfo.PBC;

 if (progressDialog != null && progressDialog.isShowing()) {

 progressDialog.dismiss();

 }

 progressDialog = ProgressDialog.show(getActivity(), "Connecting

to: " + device.deviceName,

 "Address: " + device.deviceAddress + "\nPress back to

cancel", true, true

 , new DialogInterface.OnCancelListener() {

 @Override

 public void onCancel(DialogInterface dialog) {

 ((DeviceActionListener)

getActivity()).cancelDisconnect();

 }

 }

);

 ((DeviceActionListener) getActivity()).connect(config);

 }

});

public void connect(WifiP2pConfig config) {

 manager.connect(channel, config, new ActionListener() {

 @Override

 public void onSuccess() {

 43

 }

 @Override

 public void onFailure(int reason) {

 Toast.makeText(WiFiDirectActivity.this, "Connect failed.

Retry.",

 Toast.LENGTH_SHORT).show();

 }

 });

}

The connect method of WifiP2pManager is part of the API.

7.2.3. Connection established callback

public void onConnectionInfoAvailable(final WifiP2pInfo info) {

 if (progressDialog != null && progressDialog.isShowing()) {

 progressDialog.dismiss();

 }

 this.info = info;

 this.getView().setVisibility(View.VISIBLE);

 TextView view = (TextView)

mContentView.findViewById(R.id.group_owner);

 view.setText(getResources().getString(R.string.group_owner_text)

+ ((info.isGroupOwner == true) ? getResources().getString(R.string.yes)

: getResources().getString(R.string.no)));

 view = (TextView) mContentView.findViewById(R.id.device_info);

 view.setText("Group Owner IP - " +

info.groupOwnerAddress.getHostAddress());

 serverIP = info.groupOwnerAddress.getHostAddress();

 if (info.groupFormed && info.isGroupOwner) {

 isClient = false;

 ((TextView)

mContentView.findViewById(R.id.status_text)).setText(getResources().getS

tring(R.string.server_text));

 } else if (info.groupFormed) {

 isClient = true;

 ((TextView)

mContentView.findViewById(R.id.status_text)).setText(getResources().getS

tring(R.string.client_text));

 }

 if (isClient) { sendMessage(COMMAND_DUMMY); }

 new MessageAsyncTask(getActivity(),

mContentView.findViewById(R.id.status_text)).executeOnExecutor(AsyncTask

.THREAD_POOL_EXECUTOR);mContentView.findViewById(R.id.btn_send_string).s

etVisibility(View.VISIBLE);

mContentView.findViewById(R.id.btn_send_custom_message).setVisibility(Vi

ew.VISIBLE);

 customMessageText.setVisibility(View.VISIBLE);

mContentView.findViewById(R.id.btn_send_command).setVisibility(View.VISI

BLE);

 44

mContentView.findViewById(R.id.btn_connect).setVisibility(View.GONE);

 }

7.2.4. MessageAsyncTask

public static class MessageAsyncTask extends AsyncTask<Void, Void,

String> {

 private Context context;

 private TextView statusText;

 public MessageAsyncTask(Context context, View statusText) {

 this.context = context;

 this.statusText = (TextView) statusText;

 }

 @Override

 protected String doInBackground(Void... params) {

 try {

 ServerSocket serverSocket = new

ServerSocket(SERVER_PORT);

 Log.d(WiFiDirectActivity.TAG, "Server socket opened");

 Socket client = serverSocket.accept();

 if (DeviceDetailFragment.isClient()) {

 Log.d(WiFiDirectActivity.TAG, "Server InetAddress -

" + DeviceDetailFragment.serverIP);

 } else {

 DeviceDetailFragment.clientIP =

client.getInetAddress().getHostAddress();

 Log.d(WiFiDirectActivity.TAG, "Client InetAddress -

" + client.getInetAddress());

 }

 Log.d(WiFiDirectActivity.TAG, "Connection done");

 DataInputStream inputstream = new

DataInputStream(client.getInputStream());

 Log.d(WiFiDirectActivity.TAG, "Receiving message...");

 String receivedMessage = inputstream.readUTF();

 Log.d(WiFiDirectActivity.TAG, "Received message - " +

receivedMessage);

 serverSocket.close();

 return receivedMessage;

 } catch (IOException e) {

 Log.e(WiFiDirectActivity.TAG, e.getMessage());

 return null;

 }

 }

 @Override

 protected void onPostExecute(String result) {

 if (result != null) {

 new resultHandler(context,

statusText).handleResult(result);

 }

 new MessageAsyncTask(context,

statusText).executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);

 }

 45

 @Override

 protected void onPreExecute() {

 }

 }

7.2.5. Send message callback

String messageToSend = customMessageText.getText().toString();

sendMessage(messageToSend);

customMessageText.setText(R.string.empty);

 public void sendMessage(String messageToSend) {

 Log.d(WiFiDirectActivity.TAG, "Sending message");

 Intent serviceIntent = new Intent(getActivity(),

MessageTransferService.class);

serviceIntent.setAction(MessageTransferService.ACTION_SEND_MESSAGE);

 String addr;

 if (isClient) {

 addr = info.groupOwnerAddress.getHostAddress();

 } else {

 addr = clientIP;

 }

serviceIntent.putExtra(MessageTransferService.EXTRAS_GROUP_OWNER_ADDRESS

, addr);

serviceIntent.putExtra(MessageTransferService.EXTRAS_GROUP_OWNER_PORT,

SERVER_PORT);

serviceIntent.putExtra(MessageTransferService.EXTRAS_MESSAGE_TO_SEND,

messageToSend);

 getActivity().startService(serviceIntent);

public class MessageTransferService extends IntentService {

 public static final String ACTION_SEND_MESSAGE =

"com.example.android.wifidirect.SEND_MESSAGE";

 public static final String EXTRAS_GROUP_OWNER_ADDRESS = "go_host";

 public static final String EXTRAS_GROUP_OWNER_PORT = "go_port";

 public static final String EXTRAS_MESSAGE_TO_SEND = "Mensaje por

defecto, algo va mal";

 private static final int SOCKET_TIMEOUT = 5000;

 public MessageTransferService(String name) {

 super(name);

 }

 public MessageTransferService() {

 super("MessageTransferService");

 }

 46

 @Override

 protected void onHandleIntent(Intent intent) {

 if (intent.getAction().equals(ACTION_SEND_MESSAGE)) {

 String host =

intent.getExtras().getString(EXTRAS_GROUP_OWNER_ADDRESS);

 Socket socket = new Socket();

 int port =

intent.getExtras().getInt(EXTRAS_GROUP_OWNER_PORT);

 DataOutputStream stream;

 try {

 Log.d(WiFiDirectActivity.TAG, "Opening client socket");

 socket.bind(null);

 socket.connect((new InetSocketAddress(host, port)),

SOCKET_TIMEOUT);

 stream = new DataOutputStream(socket.getOutputStream());

 Log.d(WiFiDirectActivity.TAG, "Client socket is

connected: " + socket.isConnected());

 String messageToSend =

intent.getExtras().getString(EXTRAS_MESSAGE_TO_SEND);

 stream.writeUTF(messageToSend);

 Log.d(WiFiDirectActivity.TAG, "Message sent");

 } catch (IOException e) {

 Log.e(WiFiDirectActivity.TAG, e.getMessage());

 } finally {

 if (socket != null) {

 if (socket.isConnected()) {

 try {

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 }

 }

 }

}

7.3. Python delay time control simulation code

import time

import random

objectiveTime = 0.1 # 100 ms

results = []

N = 5000

for i in range(N):

 # Program starts

 time0 = time.clock()

 # Dummy load

 L = []

 47

 for j in range(random.randint(50000, 100000)):

 L.append(random.random())

 # Program ends

 time1 = time.clock()

 # print "Execution time:"

 # print time1-time0

 time.sleep(objectiveTime-(time1-time0))

 time2 = time.clock()

 # print "Total time:"

 # print time2-time0

 # Returns the error in microseconds

 results.append((time2-time0-objectiveTime)/1e-6)

text_file = open("OutputPyhton.txt", "w")

for item in results:

 text_file.write("%s\n" % item)

text_file.close()

7.4. Java delay time control simulation code

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.util.Random;

import java.util.concurrent.TimeUnit;

public class ToFTestJava {

 static int numberOfLoops = 5000;

 static int loopObjectiveTime = 100000000; //100 ms

 static long[] results = new long[numberOfLoops];

 public static void main(String[] args) {

 for (int i = 0; i < numberOfLoops; i++) {

 results[i] = measureOneLoop();

 }

 try {

 write("OutputJava.txt", results);

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

 }

 }

 public static long measureOneLoop() {

 //Program starts

 long time0 = System.nanoTime();

 //Dummy load (between 10 and 20ms)

 int[] foo = new int[1000000];

 Random random = new Random();

 for (int i = 0; i < (random.nextInt(900000) + 100000); i++) {

 foo[i] = random.nextInt();

 }

 48

 //Program ends

 long time1 = System.nanoTime();

 //System.out.print("Execution time (ms):");

 long execTime = time1 - time0;

 //System.out.println(execTime/1000000);

 try {

 TimeUnit.NANOSECONDS.sleep(loopObjectiveTime - execTime);

 } catch (InterruptedException ex) {

 System.out.println(ex.getMessage());

 }

 long time2 = System.nanoTime();

 //System.out.print("Total time (ms):");

 //System.out.println((time2-time0)/1000000);

 //System.out.print("Error (us):");

 //System.out.println(((time2-time0) - loopObjectiveTime)/1000);

 //Returns error in microseconds

 return ((time2 - time0) - loopObjectiveTime) / 1000;

 }

 public static void write(String filename, long[] x) throws Exception

{

 BufferedWriter outputWriter = null;

 outputWriter = new BufferedWriter(new FileWriter(filename));

 for (int i = 0; i < x.length; i++) {

 outputWriter.write(Long.toString(x[i]));

 outputWriter.newLine();

 }

 outputWriter.flush();

 outputWriter.close();

 }

}

 49

Bibliography

References are cited in the footnote of each corresponding page, the consulted

bibliography is listed below:

C. Funai, C. Tapparello, W. Heinzelman. “Supporting Multi-hop Device-to-Device

Networks through Wi-Fi Direct Multi-group Networking”. Department of

Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. T. Campbell. “A Survey of

Mobile Phone Sensing”. Department of Computer Science, Dartmouth College,

Hanover, NH, USA.

J. Liu, R. Chen, L. Pei, R. Guinness, H. Kuusniemi. “A Hybrid Smartphone Indoor

Positioning Solution for Mobile LBS”. Department of Navigation and Positioning,

Finnish Geodetic Institute, Geodeetinrinne 2, Masala 02431, Finland.

D. Ayllón, H. Sánchez-Hevia, R. Gil-Pita, M. Rosa-Zurera. “Indoor Blind Localization of

Smartphones By Means Of Sensor Data Fusion”. Department of Signal Theory

and Communications, University of Alcala, Spain.

P. Lazik, N. Rajagopal, B. Sinopoli, A.Rowe. “Ultrasonic Time Synchronization and

Ranging on Smartphones”. Electrical and Computer Engineering Department,

Carnegie Mellon University, Pittsburgh, PA, USA.

N. Banerjee, S. Agarwal, P. Bahl, R. Chandra, A. Wolman, M. Corner. “Virtual Compass:

Relative Positioning To Sense Mobile Social Interactions”. University of Arkansas

Fayetteville, Microsoft Research Redmond, and University of Massachusetts

Amherst, USA.

Y. Gu, A. Lo, I. Niemegeers. “A survey of indoor positioning systems for wireless

personal networks”. Communications Surveys Tutorials, IEEE, Vol 11, 2009.

Aleksey Shipilёv. “Nanotrusting the Nanotime”. Blog post, 2014. [Online] Available:

http://shipilev.net/blog/2014/nanotrusting-nanotime/. [Accessed: 21 June

2016].

Vincent Gao. “Proximity and RSSI”. What’s new with blue? 2016. [Online] Available:

http://blog.bluetooth.com/proximity-and-rssi/. [Accessed: 21 June 2016].

Doxygen. “wpa_supplicant control interface”. wpa_supplicant / hostapd, 2015.

[Online] Available: https://w1.fi/wpa_supplicant/devel/ctrl_iface_page.html

[Accessed: 21 June 2016].

Google Inc. “Package Index". Android Developer Reference. [Online]. Available:

https://developer.android.com/reference/packages.html. [Accessed 21 June

2016].

K. A. Li, T. Y. Sohn, S. Huang, W. G. Griswold. “PeopleTones: A System for the

Detection and Notification of Buddy Proximity on Mobile Phones”. Department

 50

of Computer Science and Engineering, University of California, San Diego, CA,

USA.

Patrick Lazik and Anthony Rowe. Indoor pseudo-ranging of mobile devices using

ultrasonic chirps. In Proceedings of the 10th ACM Conference on Embedded

Network Sensor Systems, SenSys 2012, New York, NY, USA.

Stephen P. Tarzia, Peter A. Dinda, Robert P. Dick, and Gokhan Memik. Indoor

localization without infrastructure using the acoustic background spectrum. In

Proceedings of the 9th International Conference on Mobile Systems, Applications,

and Services, MobiSys 2011, New York, NY, USA.

H. Lu, W. Pan, N. D. Lane, T. Choudhury, A. T. Campbell. “SoundSense: Scalable Sound

Sensing for People-Centric Applications on Mobile Phones”. Department of

Computer Science, Dartmouth College, Hanover, NH, USA.

 51

Glossary and specific terms

RSSI: Received Signal Strength Indication.

ToF: Time of Flight.

LoS: Line of Sight.

RF: Radio Frequency.

API: Application Programming Interface. It’s a set of methods, tools and protocols used

to build an application or software.

Activity: It’s a class that focuses on a task that the user would like to do, interacting

with it and creating the user interface.

Fragment: It’s a piece of an application's user interface that makes part of the activity.

Service: It’s a component that serves the purpose of executing tasks that are longer

than normal and do not require interaction with the user.

BroadcastReceiver: It’s a base class that receives broadcast messages.

AsyncTask: It’s a class that enables to perform background tasks without the need of

threads or handlers.

ADB Shell: Android Debug Bridge. It provides a UNIX command-line interface shell

able to run commands on a connected device.

Root: It’s the name of the user account that has access to all commands and files on a

Linux operating system by default. In the Android context, it refers to the process of

gaining said privileges.

Monte Carlo simulation: It’s a type of computational algorithm that is commonly

used in the analysis of random nature problems. It relies on the repetition and

sampling of a process to extract a trend and help predict its behaviour and analyse the

results.

