

Real time distributed BGP Hijack Detection

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Joan Ficapal Vila

In partial fulfilment

of the requirements for the degree in

TELEMATICS ENGINEERING

Advisor: Dario Rossi

Co- advisor: Josep Vidal

Barcelona, June 2016

 1

Abstract

The main goal of this work is to study, design and develop a distributed system which is

able to identify BGP hijacks in real time. The system will be deployed over group of

computers available as a testbed.

BGP hijacking is considered one of the largest internet security threats with companies

such as Google, YouTube, Amazon. This shows the need in our Internet for a system which

would be able to detect and show the attacks geolocation, which highlights the importance

of this work.

This thesis consists on contributing to improve the iGreedy software building new ways of

result visualization and optimizing its functionality. The work includes the injection of some

randomized BGP hijacks in order to assess and evaluate the performance of the system.

 2

Resum

El principal objectiu d'aquest treball és l'estudi, disseny i desenvolupament d'un sistema

distribuït que sigui capaç d’identificar els atacs al protocol BPG en temps real. El sistema

s'implementarà sobre grup d'ordinadors amb funció de “testbed”.

Els atacs a BGP són considerats una de les amenaces de seguretat més grans a internet

per empreses com Google, YouTube o Amazon. Això ens mostra la necessitat real d’un

sistema que sigui capaç de detectar i localitzar els atacs, que posa en evidència la

importància d’aquest treball.

Aquesta tesis consisteix en ajudar a millorar el software iGreedy construint noves eines de

visualització de resultats i optimitzant la seva funcionalitat. El treball inclou injeccions

d’atacs aleatoritzats per tal d'avaluar el funcionament del sistema.

 3

Resumen

El principal objetivo de este trabajo es el estudio diseño y desarrollo de un sistema

distribuido que sea capaz de identificar los ataques al protocolo BGP en tiempo real. El

sistema será implementado en un grupo de ordenadores con función de “testbed”.

Los ataques BGP son considerados una de las amenazas de seguridad más grandes a

internet para empresas como Google, Youtube o Amazon. Esto nos muestra la necesidad

real de un sistema que sea capaz de detectar y localizar los ataques, que pone en

evidencia la importancia de este trabajo.

Esta tesis consiste en ayudar a mejorar el software iGreedy construyendo nuevas

herramientas de visualización de resultados y optimizando su funcionalidad. El trabajo

incluye la inyección de ataques aleatorizados para evaluar el funcionamiento del sistema.

 4

Acknowledgements

I would like to thank Danilo Cicalese and Dario Rossi for their support during this project.

They both have been my supervisors in my hosting university Telecom Paristech during

this project and have provided me the required knowledge introducing me about the very

promising iGreedy algorithm and guiding me during the whole stage.

Josep Vidal has been my tutor in Universitat Politècnica de Catalunya, he has showed me

the procedure to follow offering help when I’ve been in need. I would like to thank him as

well.

 5

Revision history and approval record

Revision Date Purpose

0 06/04/2016 Project Plan creation

1 24/04/2016 Project Plan revision (Critical Review)

2 27/06/2016 Thesis submission

DOCUMENT DISTRIBUTION LIST

Name E-mail

[Joan Ficapal Vila] ficapal18@gmail.com

[Josep Vidal] josep.vidal@upc.edu

[Dario Rossi] dario.rossi@telecom-paristech.fr

WRITTEN BY:

Joan Ficapal Vila

REVIEWED AND APPROVED BY:

Date 6/07/2016 Date 21/06/2016

Name Joan Ficapal Name Josep Vidal

Position Project author Position Project Supervisor

mailto:ficapal18@gmail.com

 6

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Acknowledgements .. 4

Revision history and approval record .. 5

Table of contents .. 6

List of Figures ... 7

List of Tables: ... 8

1. Introduction .. 9

1.1. Anycast .. 9

1.2. BGP Hijack ... 9

1.3. Problem Statement ... 10

1.4. Statement of purpose ... 12

2. State of the art of the technology used or applied in this thesis: 16

2.1. Latency-Based Anycast Geolocation: Algorithms, Software and Datasets 16

2.2. BGP Hijack Detection ... 18

3. Methodology / project development: .. 19

3.1. Visualization ... 19

3.2. VP Selection ... 23

3.2.1. Database ... 23

3.2.2. Procedure .. 26

4. Results .. 31

4.1. Visualization ... 31

4.2. VP Selection ... 36

5. Budget ... 40

6. Conclusions: .. 41

7. Future development ... 42

Bibliography: ... 44

Appendices: .. 45

Glossary ... 46

 7

List of Figures

fig. 1 Routing schemes ... 9

fig. 2 BGP Scheme ... 10

fig. 3 Comparison Detection Prob. vs Cost ... 11

fig. 4 Gantt Diagram.. 15

fig. 5 iGreedy num. 1 .. 17

fig. 6 iGreedy num. 2 .. 19

fig. 7 iStreaming .. 22

fig. 8 iGreedy streaming version ... 23

fig. 9 Measurement ... 24

fig. 10 Map Probes ... 24

fig. 11 Probes per country ... 25

fig. 12 VP Sel. Random plot .. 26

fig. 13 Arrival 0 .. 31

fig. 14 Arrival 1 .. 32

fig. 15 Arrival 5 .. 32

fig. 16 Last Arrival ... 33

fig. 17 Slider ... 33

fig. 18 Probe info .. 34

fig. 19 Instance circles .. 34

fig. 20 Heat map ... 35

fig . 21 Random vs K-means ... 36

fig. 22 K-means Trick vs None .. 36

fig. 23 K-means trick vs Country ... 37

fig. 24 K-means trick vs ASN .. 38

fig. 25 Rank performer ... ¡Error! Marcador no definido.

fig. 26 Comparing all K-means .. 39

fig. 27 Boxplot K-means rank .. 39

fig. 28 Dirty dataset ... 42

fig. 29 Clean dataset ... 42

file:///C:/TFG/REPORT/TFG.docx%23_Toc454553812
file:///C:/TFG/REPORT/TFG.docx%23_Toc454553820
file:///C:/TFG/REPORT/TFG.docx%23_Toc454553829

 8

List of Tables:

table 1 Gantt ... 15

table 2 State of the art .. 16

table 3 Budget .. 40

 9

1. Introduction

The introduction section will first explain a basis of the two main topics of this project,

anycast and BGP Hijack detection, in order to make the reader better understand the

problem statement, which will be the following section. The statement of purpose will be

exposed at the end.

1.1. Anycast

The Internet Protocol addressing systems have currently five main routing schemes which

have the utility of identifying hosts and providing a logical location. Each one is different

and can be useful for a particular case:

Geocast

Unicast

Multicast

Broadcast

Anycast

fig. 1 Routing schemes

[https://en.wikipedia.org/wiki/Routing]

While in unicast the message is delivered to a single specific node, or in broadcast is

delivered to all nodes of the network, in anycast the message is delivered to anyone out of

a group of nodes, typically to the topologically nearest one.

The same IP prefix is advertised from more than one location, and the network is

responsible to decide which location to route the request using the routing protocol costs.

1.2. BGP Hijack

The Border Gateway Protocol is a crucial component of internet, it is responsible of

determining the routing paths between independently operated networks.

A collection of IP prefixes operated by the same entity is called Autonomous System or AS.

As long as the information doesn’t leave that AS we will only need an intra- area protocol,

such as RIP or OSPF. But if any user wants to interact with another AS, then an inter-area

protocol will also be needed to make the routing decisions. Although there are several

exterior gateway protocols, BGP is the standardized one.

https://en.wikipedia.org/wiki/File:Geocast.svg
https://en.wikipedia.org/wiki/File:Multicast.svg
https://en.wikipedia.org/wiki/File:Broadcast.svg
https://en.wikipedia.org/wiki/File:Anycast.svg

 10

fig. 2 BGP Scheme

[http://ciscorouterswitch.over-blog.com/article-bgp-protocol-is-essential-in-your-ip-network-115059468.html]

Since is BGP who determines how data travels from its source to its destination looking at

its available path routes, it is possible to attack the protocol announcing a node with better

path or a more specific announcement. This might result as a rerouting of information, and

the malicious announcement could cause traffic interception or modifications.

Finally, it is because IP-level anycast is realized through announcements of the same BGP

prefix from multiple points, that anycast and hijacks are “syntactically” equivalent for a

router speaking the BGP language.

1.3. Problem Statement

Among the feasible techniques to detect anycast instances I will focus on a latency based

algorithm which is the basis of the thesis.

Let’s imagine we have M Vantage Points distributed around the earth globe, and for a given

IP address target, we draw circles centred on the VPs with its radius [Km] based on their

own Round Trip Time (RTT) towards the target, assuming the signal to travel at speed of

light. If there are any pair of disks that do not overlap, we proof that this target is an anycast

address, otherwise it would imply a speed of light violation.

As stated, anycast and BGP hijacks share the success of more than two identical IP

prefixes which makes possible to use the described method to solve both problems.

However, we need a bigger amount of time for enumerating than detecting. That difference

may cross the required limits for detecting BGP hijacks, which usually happen during a

short period.

Knowing that each VP can only detect an anycast replica, for a given number of N anycast

instances in a dataset, if our purpose is to enumerate then 2 ≤ N ≤ M vantage points are

needed. In the other hand, only 2 ≤ M vantage points would be needed for detecting.

 11

The more vantage points used, the bigger is the time elapsed and its cost. This dilemma is

shown in the following plots (fig.3), where the probability is defined as Detections / N:

fig. 3 Comparison Detection Prob. vs Cost

For a high detection ratio we also need to increase the amount of vantage points, which

will increase the total cost and procedure time. For the reason explained, we assume that

there’s not a ‘win-win’ for this problem.

 12

1.4. Statement of purpose

This project is carried out at Telecom ParisTech in the LINCS department and is a

continuation of another project. The Erasmus supervisor of the project is Dario Rossi and

the UPC Tutor is Josep Vidal.

The project main goals are:

 Become familiar with the previous software version: iGreedy. Understand exactly

how it works and learn the required coding languages and APIs (Python,

JavaScript, JSON, HTML, Google Maps and Ripe Atlas APIs)

 Create a software that queries Ripe Atlas API last version, capable to stream the

information and retrieve as many details about the experiment as possible. Plug the

software into iGreedy, which is currently unable to display streaming information.

Make the application and its web interface capable to show results dynamically and

improve the web visualization system.

 Study, test, and analyze with clustering methods new ways to initialize the

geological situation and number of Vantage Points.

 13

Work Packages:

Project: Introduction WP ref: (WP1)

Major constituent: research Sheet 1 of 2

Short description:

Become familiar with the previous software version and

learn the required APIs and coding languages.

Planned start

date:08/02/2016

Planned end date:22/02/2016

Start event:

End event:

Internal task T1:

Learn Python

Internal task T2:

Become familiar with the Ripe Atlas enviroment

Internal task T3:

Understand the iGreedy functionality. Learn how to use

it and how it’s built

Deliverables: Dates:

Project: Build iStreaming software WP ref: (WP2)

Major constituent: SW Sheet 1 of 2

Short description:

Create the Streaming software (iStreaming).

Planned start date:

22/02/2016

Planned end date:

07/03/2016

Start event:

End event:

Internal task T1:

Ripe Atlas Streaming Query retrieving

Internal task T2:

Understand JSON environment, and retrieve the results

in a proper format

Internal task T3:

Make it compatible with multiple IPs as input

Deliverables:

Project

proposal and

work plan

Dates:

Project: iGreedy- streaming version WP ref: (WP3)

Major constituent: SW Sheet 2 of 2

Short description:

Plug iStreaming into iGreedy.

Planned start

date:08/03/2016

Planned end date:22/04/2016

Start event:

End event:

Internal task T1: Deliverables: Dates:

 14

Build the application

Internal task T2:

Learn javascript notions and build the website

Project: Optimize results using clustering methods WP ref: (WP4)

Major constituent: research, simulation, SW Sheet 2 of 2

Short description:

Study, test, and analyze with clustering methods the

Vantage Point optimal initialization.

Planned start date:

17/04/2016

Planned end date:

27/06/2016

Start event:

End event:

Internal task T1:

Research possible classification algorithms and

implement them.

Internal task T2:

Analyze results and find optimal solutions

Internal task T3:

Once the project has been finished, the conclusions and

procedure will be explained in the final report.

Deliverables:

Critical

Review

Final Report

Dates:

Milestones:

WP# Task# Short title Milestone /

deliverable

Date

(week)

1 1

2

3

Learn Python.

Learn Ripe Atlas Environment.

Understand iGreedy.

Be able to continue 1

1-2

1-2

2 1

2

3

Ripe Atlas Query retrieving

Results in a proper JSON

format.

Multiple IPs as input.

iStreaming

2-3

3-4

3 1

2

PC application.

Web application.

iGreedy- streaming

version

5-7

8-12

4 1

2

3

Clustering algorithm research

and implementation.

Conclusions.

Final Report.

Research and

Implementation

Conclusions / Final

Report

12-16

16-19

16-20

 15

Time Plan (Gantt diagram):

Task Name Start Date End Date

Duration

 1 08/02/16 22/02/16 11d

Learn Python. 08/02/16 12/02/16 5d

Learn Ripe Atlas Environment. 14/02/16 22/02/16 7d

Understand iGreedy. 14/02/16 22/02/16 7d

 2 22/02/16 07/03/16 11d

Ripe Atlas Query retrieving 22/02/16 26/02/16 5d

Results in a proper JSON format. 27/02/16 01/03/16 3d

Multiple IPs as input. 29/02/16 07/03/16 6d

 3 08/03/16 15/04/16 29d

PC application. 08/03/16 22/03/16 11d

Web application. 23/03/16 22/04/16 18d

 4 17/04/16 27/06/16 52d

Clustering algorithm research and

implementation.

17/04/16 30/05/16 32d

Clustering algorithm research and

implementation.

17/04/16 30/05/16 32d

Final Report. 14/05/16 27/06/16 32d

table 1 Gantt Diagram

fig. 4 Gantt Diagram

 16

2. State of the art of the technology used or applied in this

thesis:

Anycast server enumeration and geolocalization is a topic which has widely concerned the

research community to geographically map the Internet infrastructure and identify the

various components of the physical Internet.

While latency-based unicast geolocation is well studied, there's a lack of understanding in

anycast because techniques such as triangulation at the intersection of several

measurement used in unicast do not apply.

Research on anycast has focused either on architectural modifications or the

characterization of existing deployments. A large fraction of these studies quantify the

performance in current IP anycast deployments in terms of metrics such as proximity,

affinity, availability or load balancing. These studies are compactly summarized in the

following table (table 2):

table 2 State of the art

2.1. Latency-Based Anycast Geolocation: Algorithms, Software and Datasets

Fewer algorithms instead exist that allow to detect, enumerate or geolocate anycast

replicas. As explained in [1] JSAC, with the exception of iGreedy that this work extends, no

other technique exists that is capable in a lightweight and protocol-independent way to find

the geolocation of anycast replicas.

This method uses the latency based algorithm explained in the Problem Statement of

Introduction section. It achieves the enumeration and its city level geolocalization from a

set of known vantage points.

 17

Results of a validation campaign show this algorithm to be robust to measurement noise,

and very lightweight as it requires only a handful of latency measurements.

The procedure is shown in fig. 6:

fig. 5 iGreedy num. 1

My background for this work has been mainly provided by this publication [1], it includes:

 The iGreedy technique for lightweight service-agnostic anycast discovery, capable

of accurately enumerate and geolocate (>75% true positive geolocation) replicas

with a handful of latency measurements.

 Its thorough validation, using multiple targets pertaining to different services (DNS

and CDN) from two measurement infrastructures (RIPE Atlas and PlanetLab).

 An open-source implementation of the technique, able to operate on offline datasets,

as well as to generate new datasets (from RIPE Atlas);

 A simple environment to visualize on a map the results of detection and

classification algorithms.

 A ground truth database.

 A dataset comprising exhaustive latency measurements from two measurement

infrastructures (RIPE Atlas, PlanetLab) towards anycast addresses in the ground

truth.

 18

2.2. BGP Hijack Detection

BGP lacks any form of path or origin validation, leaving it extremely vulnerable to attacks
and misconfiguration. One example is the fact that networks can advertise illegitimate paths
that redirect traffic destined for another network to themselves, known as BGP hijacking.

Plenty of work has been done in the past, but we are still far from having a general near
real time detection system of the BGP hijacks. The detection methods have been
addressing the problem from the control plane [15, 16] or data plane [17,18] measurements.
Limitations of data-plane and control-plane measurements separately led to the
development of hybrid approaches [19, 20, 21].

However, timing becomes critical because some attacks last few tens of seconds. This may
make ineffective the previous publications, introducing the need of a complementary
system. For this reason, we want to face the problem from another perspective, correlating
anomalies on the data-plane with the control-plane measurements. This approach will allow
to have information on data and control planes, before and after the attacks. To achieve
this objective, JSAC [1] which this work extends, started building over a system able to
perform an IPv4 census in few hours, an algorithm capable to do lightweight and fast scans.
It is required to scan quickly and continuously the IPv4 space from a set of vantage points
on the data plane.

It achieves the challenge of implementing an effective detection technique able to raise
alert taking care of timing, keeping the number of false positive limited. On the other side,
the system is able to check suspicious events raised on the control-plane running new
measurements and checking in the previous measurements.

 19

3. Methodology / project development:

As the first part of the project (packages 1-3) and the second (package 4), are dealing with

different topics and have different goals although both aim to improve iGreedy, the

explanation in the following sections will be split in two, the visualization and the vantage

points selection improvement.

3.1. Visualization

3.1.1. iStreaming

As previously explained, iGreedy software is capable of enumerating and detecting anycast

instances. With an input consisting on an IP target (e. g: www.google.com) and a list of VP

that the user is willing to use, the global network of probes produces ping measurements.

Once analysed, the results are retrieved in a CSV or JSON format and optionally displayed

in the webpage using Google Maps API.

For a better understanding, the previous version of iGreedy structure is shown in fig. 6:

fig. 6 iGreedy num. 2

Testing our iGreedy we noticed that results change dramatically at the beginning, but after

few seconds the algorithm makes only minor changes. Contrarily to our interests, in fig. 6

we appreciate that it is composed of a closed process of three steps, one after the other,

and the analysis results are shown once all the measurements are retrieved, fixing this way

the final retrieval of results. Thereby, we have restructured iGreedy adding the streaming

mode and making it able to show both, complete and early results.

To realize it, I needed a previous knowledge of the environment. I spent approximately two

weeks learning Python and the functionality and structure of iGreedy. Our software uses

RIPE Atlas and Planetlab as global networks of probes, they allow several operations like

pinging from multiple points around the world in exchange of credits, so I also learnt how

to use the RIPE Atlas Magellan API, which is the library’s last version and also allows to

Step 1

• Ip
• VPs

Step 2

• Measurement Query
• Measurement result

obtaining
• iGreedy

Algorithm/representation

Step 3

• Output file
• Map Representation

 20

fetch streaming measurements. A seminar in Cisco Systems Building, and webinars were

included in the learning process as well.

This Ripe Atlas library concedes using all the toolkits on bash command line or Python. It’s

been made for the purpose of facilitating the visualization of public data of protocols and

services such as Ping, DNS, SSL, Traceroute, HTTP or NTP. For our project we don’t only

need ping reports visualization but also measurement creation, which is a little more

complicated and has some instabilities because is still in beta version.

Ripe Atlas library is a Linux- based tool that can be installed easily with the two following

commands if we already have pip installed:

sudo apt-get install python-dev libffi-dev libssl-dev

pip install git+https://github.com/RIPE-NCC/ripe-atlas-tools.git

Its requirements are:

• ripe.atlas.cousteau

• ripe.atlas.sagan

• tzlocal

• pyyaml

It’s important to clarify that while using its visualization tools is free, creating any kind of

measurements requires an account and has a credit cost. Credits are obtained by paying,

helping Ripe Atlas to improve, or hosting your own probes.

We first tried the Python version but we had several problems creating new queries for

many probes in a single demand. We supposed it was a problem of that version in particular,

because we were able to do it with the past one in non-streaming mode. As said, we knew

it was a beta version which could have some instabilities. Our purpose for this early phase

was not researching but making things work. For this reason, we moved on the bash

commands version where we succeeded.

We query Ripe Atlas server for measurements using a function that has as input the IP

target, all the probe IDs, and the user account identification. The query requires curl to be

installed and has this structure:

curl --dump-header - -H "Content-Type: application/json" -H "Accept: application/json" -X POST -d '{

 "definitions": [

 {

 "af": 4,

 "packets": 3,

 "size": 48,

 "description": "Ping measurement",

 "interval": 240,

 "resolve_on_probe": false,

 "skip_dns_check": false,

 "type": "ping"

 }

],

 "probes": [

 {

 21

 "value": " PROBE_ID1, PROBE_ID2, PROBE_ID3, PROBE_ID4 ...",

 "type": "probes",

 "requested": NUMBER_OF_PROBES

 }

],

 "is_oneoff": false,

 "bill_to": "ACCOUNT_EMAIL"

}' https://atlas.ripe.net/api/v2/measurements/?key=YOUR_KEY_HERE

The last code is passed through “subprocess” Python module which allows to spawn new

processes as using an actual Linux terminal.

Data retrieval was easier because we directly succeeded implementing it with Python:

def run(self):

 atlas_stream = AtlasStream()

 atlas_stream.connect()

 # Measurement results

 channel = "result"

 # Bind function we want to run with every result message received

 atlas_stream.bind_channel(channel, self.on_result_response)

 # Measurement id

 stream_parameters = {"msm":self.id}

 atlas_stream.start_stream(stream_type="result",**stream_parameters)

 # Probe's connection status results

 channel = "probe"

 atlas_stream.bind_channel(channel, self.on_result_response)

 stream_parameters = {} # Here its possible to add the start time

 atlas_stream.start_stream(stream_type="probestatus", **stream_parameters)

 # Timeout all subscriptions after 1200 secs. Leave seconds empty for no

timeout.

 atlas_stream.timeout(seconds=1200)

 # Shut down everything

 atlas_stream.disconnect()

def on_result_response(self,*args):

 """

 Function that will be called every time we receive a new result.

 Args is a tuple, so you should use args[0] to access the real message.

 """

 self.infile=Handler.retrieveResult(self.infoprobes,args[0])

Once the run function is called, whenever any new packet arrives in that connection the

on_result_response function is called. This function is responsible of retrieving results in a

file in JSON and CSV format.

This two pieces of code and two other classes used to control and retrieve are the main

basis of our streaming system.

 22

Instead of just modifying our software we decided to build an independent module, thinking
about using it in future applications in an easy way. It is called iStreaming (fig. 7):

fig. 7 iStreaming

This program is written in Python and improves the two first iGreedy steps. Once

iStreaming has read the inputs, it queries RIPE Atlas server asking for streaming

measurements and retrieving its identification in a different file as extra output. Appending

the measurements ID in RIPE Atlas URL brings us to the concrete measurement

information with extra detail, that’s useful in the sense of checking them again whenever

we want without needing to run iGreedy and consuming credits. It also allows multiple IPs

as input and the output format is exactly the same as iGreedy, making it easier to plug.

Finally, the results for each IP are retrieved as soon as obtained and we can move on next

steps without waiting for all measurements to be completed.

3.1.2. iGreedy Streaming Version

Now that our module was built, it was time to merge it with iGreedy. Although the main

algorithm didn’t need big changes, the webpage interface and the output structure did.

The output files are refreshed each second if new measurements are received from our

measurement infrastructures, but we still keep the past ones making it possible to represent

again all the steps during the performance with a slider that will be shown in results section.

The webpage is not hosted by an online server, it’s instead an application inside iGreedy

written in JavaScript and HTML which is read by these interpreters in the same computer

that is executing iGreedy. Hence, no internet is needed to just visualize if we forget about

creating new measurements. The main pros for this format include avoiding the payment

of a domain or the hosting and the offline availability. We thought about creating server but

we continued this way because it would mean a complexity increase and all the features

were working properly.

To modify the webpage and adding new complements I needed to apply basic notions of

HTML and JavaScript, but this time I managed myself to success without any courses but

some internet sources and solved examples.

 23

In fig. 8 there’s the resulting structure:

fig. 8 iGreedy streaming version

3.2. VP Selection

The aim of this section is finding out if there is any possible way to improve the vantage

points initialization. Imagine we have a total amount of M vantage points, if we were able

to guess the winner probes, say N, we could use the M – N probes for other IP targets in a

parallelized iGreedy.

3.2.1. Database

In order to test each new technique, the first step was modifying iGreedy to make it a

simulation tool. With an input consisting on a measurement file, it had to be able to give

back as fast as possible the same output format without consuming credits querying RIPE

Atlas or Planetlab server. In other words, a similar program optimized for doing large

simulations, and skipping the step of querying measurements to obtain reports, which we

want to replace with our database.

Given an initial Planetlab measurement dataset of 1400 files from March 2016, we ran each

one with the simulation version, then we sorted the outputs by the number of instances

detected. Each measurement file has its own target, hence if the amount of detections are

equal or higher than 2, it means that there is an anycast instance, otherwise it means that

there’s not.

Fig. 9 shows an example of a standard RIPE Atlas measurement file, each hostname

belongs to a probe and each line contains the latitude, longitude, RTT, TTL and country.

Every probe has 3 lines containing the average, maximum, and minimum RTT of the

received pings.

 24

fig. 9 Measurement

As previously explained, we only need a minimum of 2 instances to determine a detection,

instead of 2 ≤ N ≤ M for enumerating. Our purpose was improving iGreedys capacity to

detect Hijacks, so we cleaned our dataset leaving only the files with exactly 2 replicas as

output. In this new dataset which is the one we have used during the study, the maximum

detections for each file is always 2.

The new set is composed of 298 files with 140 different probes distributed approximately

in the following geographical locations (fig. 10):

fig. 10 Map Probes

 25

Which can also be displayed as fig. 11 representing the number of probes per country.

fig. 11 Probes per country

These graphs have a crucial importance for our work because they allow us to conclude

that the probes are not distributed uniformly around the world. They are concentrated

particularly in United States of America and Europe. Although this could be produced by

our file filtration, information from Planetlab web confirms it is quite representative and the

actual geographical situation of all probes usually follows these densities.

 26

3.2.2. Procedure

Our research started picking K random probes from each file and simulating them over

iGreedy. Doing the sum of the anycast detections we obtain the graph (fig. 12) for Planetlab,

which we will use as point of comparison for any further algorithm.

To compare each result with the past ones trying to minimize the luck factor, every

experiment shown as a graph in this work is an average of 10 simulations. As a curious

fact, each graph has taken approximately between 1 and 5 hours depending on the

complexity.

Our experience shows that the closer two anycast replicas are, the more difficult is to

analyze them because they get confused. As a consequence, if we had to choose the most

difficult scenario, it would be one with only two very close replicas for the same IP.

For this reason, we decided to create clusters using k-means algorithm to select far

distanced vantage points. To understand K-means, suppose we have a data set consisting

of N observations of a random D-dimensional Euclidean variable x. Our goal is to partition

the data set into K clusters. We might think of a cluster as comprising a group of data points

whose inter-point distances are small compared with the distances to points outside of the

cluster. We could then create µk, composed by K vectors of D dimensions associated with

the centers of each cluster. For our scenario, the D dimensions would be 2 if considering

latitude and longitude, or 3 if we want to use x, y, z. While the number of VP would be

represented by K.

We want to find an assignment of data points to clusters and a combination of µk, such that

the sum of the squares of the distances of each data point to its closest µk center is a

fig. 12 VP Sel. Random plot

 27

minimum. If we define Ck as the representation label of the K different clusters, the

mathematical expression would be defined as:

Instead of coding our own algorithm, we used the K-means version provided by Scikit-learn

Python library, in pseudocode it would result as:

Initialization: choose K random centroids

Do classify n samples according to nearest µi

 Compute µi again

Until no change in µi

Return µ1, µ2… µc

End

To have a friendly environment, we have also used Matplotlib and NumPy which are widely

used together with scikit-learn and for managing big data with Python. Numpy is the

fundamental package for scientific computing with Python, able to create powerful N-

dimensional array object, sophisticated functions and useful linear algebra capabilities. It’s

considered for some people an equivalent of Matlab for Python. Meanwhile, Matplotlib is a

plotting library where it’s numerical mathematics extension NumPy. It provides an object-

oriented API for embedding plots into applications.

The most basic example of K-means with actual Python code would be as shown below

(K=4 clusters):

Imports

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

import Handler

from scipy.misc import imread

import matplotlib.cbook as cbook

Database Prepariation

DB_1=Handler.readprobesinfo()

array_numpy=np.zeros((len(DB_1),2),dtype=object)

array_numpy is built from x,y,z coordinates of each VP

i=0

for key, value in DB_1.iteritems():

 array_numpy[i,0]=float(DB_1[key][1])

 array_numpy[i,1]=float(DB_1[key][0])

 array_numpy[i,2]=float(DB_1[key][2])

 i+=1

 28

X=np.array(array_numpy)

kmeans=KMeans(n_clusters=4)

Train Kmeans

kmeans.fit(X)

Outputs

centroids=kmeans.cluster_centers_

labels=kmeans.labels_

Where DB_1 is built from a function that lists each probe of the input dataset and its

information in a dictionary structure. Then, a NumPy array is created in order to properly

format the input for training K-means. Once trained, the output centroids and labels are

available, which we usually visualize with Matplotlib library.

The following work explored 4 different ways to apply K-means choosing different criteria

to select probes within clusters. Although the analysis will be stated in results section, a

basic explanation of the methodology applied is described for each one in this section:

I. K-means Random: It’s the option we started with, we wanted to see its

performance to have a comparison base. It consists on picking K random

measurements for each input file and simulate iGreedy with set.

II. K-means Random Trick: K-means Random algorithm was assigning null values

to centroids because no sample were owned by them at the beginning, so instead

of having K centers we were obtaining less (fig.13). To solve this problem we

“cheated” adding as many as ‘K - Resulting centroids’ measurements to each set

after applying the algorithm. Finally, these sets are simulated with iGreedy.

fig. 13 K-means centroid loss

 29

III. K-means ASN Selection: The next thing we tried was picking as many different

ASN identifications from probes as we could. To achieve this objective, we used

two python modules, “ipwhois” which asks the IP of each hostname, and “lookup”

which gives domain names information including the ASN number in exchange IPs.

Instead of adding a new dimension to K-means we just tried to select for new each

cluster new ASN that weren’t selected by other clusters before. We did this way

because ASN numbers do not necessarily give information by the proximity of their

numbers.

IV. K-means Country Selection: We repeated the ASN selection process but using

countries, which are provided by our database.

V. Brute Force Approach: Due to our bad results, we tested in a brute force approach

the random classification without any K-means algorithm. We ran it 1.000.000 times

for K= 25, 50, 75, 100 and we picked the best result to check how difficult was our

problem, it took 4 days to compute in parallel.

We saw that it was a really difficult problem because the best options were not

increasing significantly the amount of detections. But concerning to our

methodology, even best cases performed worse than K-means random selection.

VI. K-means Rank selection: Although the previous fact, we decided to explore a bit

more. If the situation between probes of the same cluster didn’t matter in terms of

BGP structure or countries, maybe there were probes in which we could trust more

than others, maybe there were super-probes with more power to detect than others.

To confirm our theory we built an automatized script (fig. 25) able to create a list of

probes with associated numeric values about its ability to detect in multiple

scenarios. Using a set of measurement files as input, the algorithm gives an

organized list associating each probe a value. The higher the coefficient is, the more

importance is given to that probe.

For each file, K probes are randomly selected. If the result of iGreedy simulation

gives an anycast instance, then 1/K value is added to all the probes of the input.

Since the vantage points do not appear the same amount of times in files, if we left

the values this way the most popular probes would have a higher value because

they would participate more. To solve this problem a correction function is also

applied, it counts the times each probe appears in the input and divides their

coefficient by this value. Finally, the coefficients are normalized.

 30

fig. 14 Rank performer

Once created our organized list, we modified the K-means selector of probes to pick

from each cluster the vantage point with the highest value in the rank similarly to

country or ASN systems.

 31

4. Results

Similarly to Methodology structure, the explanation in the following sections will be divided

in two, the Illustration section, linked with visualization results, and the vantage points

selection improvement.

4.1. Visualization

The results concerning about the visualization are displayed in the following pictures. This

is the answer of iGreedy after targeting the IP address 8.8.8.8 (www.google.com) with 500

RIPE Atlas Vantage Points.

Until the first information packet is retrieved, the map stays without any mark.

Arrival 0:

fig. 15 Arrival 0

 32

When the first packet arrives, the information is actualized. The first instances are being

detected and the bar on the right-top with the title “Actualization number” can now be slid.

This tool will show the previous states that have happened in the map indicating with the

format hh:mm:ss to hh2:mm2:ss2 the interval being displayed.

Arrival 1:

fig. 16 Arrival 1

Arrival 5:

fig. 17 Arrival 5

 33

It's been some seconds since the last packet and the screen hasn't shown any actualization,

which means it should be quite complete. The filled red circles are the ones that have

detected an instance, the non-filled indicate a mere measurement.

Arrival 8:

fig. 18 Last Arrival

Moving the actualization slider we select the desired time range (fig. 19).

fig. 19 Slider

 34

There are also several other options such as circles visualization with the choice of

selecting their maximum radius, or the Vantage Points. They can also be visualized in all

the past states of the simulation.

Clicking a probe its information pops up (fig. 20):

fig. 20 Probe info

It is possible to choose a circle radius limit from 300 to 6400 Km (fig. 21).

fig. 21 Instance circles

 35

A heat map showing the ping activity is also available (fig. 22).

fig. 22 Heat map

I can conclude that the results are the ones our team expected, iGreedy has its previous

functionalities and we have added new ones, and both work in streaming mode.

 36

4.2. VP Selection

The hypothesis we wanted to demonstrate is that the geographical proximity of the probes

matter to solve our problem. To prove it, we ran K-means over each measurement file,

using K as the number of desired clusters fig. 20.

Our result improved random results for 25 < K < 90, but after the initialization the algorithm

was assigning null values to centroids because no sample were owned by them at the

beginning, so instead of having K centers we were obtaining less. We were picking as

many VP as Centroids which was producing less input measurements for iGreedy

simulation, which was logically detecting less replicas.

We solved that problem randomly adding K – Initial centroids after performing K-means.

The improvement is shown in the graph fig. 21.

fig. 24 K-means Trick vs None

fig . 23 Random vs K-means

 37

Leaving apart the improvement from the random simulation, it was quite obvious that

randomly selecting the VP inside each cluster shouldn’t give the best results. Watching the

map we realized that clusters were spread over several countries when they were big, and

our new hypothesis was that trying to select VP from as many countries as possible would

help for internet topology reasons.

From this point, we started using the dataset explained in 3.2.1-Database to make sure our

results were as accurate and reliable as possible.

We proceeded to modify K-means algorithm assigning for each cluster, vantage points

from countries that were not already chosen, if possible. Otherwise a random one was

picked from that cluster.

As shown in the graph (fig. 25) we were wrong because it performed nearly similar to the

simple version.

fig. 25 K-means trick vs Country

Maybe if we were trying distinguish techniques from the internet topology we would have

to pick a BGP metric, so we tried the same algorithm but instead of using the country of

each probe this time we used the ASN (fig. 26), which is a number that identifies each

autonomous system.

 38

fig. 26 K-means trick vs ASN

Our results (fig.27) were stable but unsuccessful, ASN and country versions were

performing similarly to basic version of K-means.

fig. 27 Comparison ASN vs Country

 39

As explained in Methodology section 3.2.2, we tested the random algorithm 1.000.000
times to have a reference of how difficult was our problem of optimizing the VP selection.
We concluded it was though since the variance for each K case was not high much and K-
means-random was giving always better results.

Once we had the brute force approach results, K-means didn’t seem as bad as before
because it was improving the best case of 1.000.000 random simulations, for this reason
we gave it a last try.

We built the rank system which quickly gave significant improvements (fig. 28):

fig. 28 Comparing all K-means

In the next Boxplot graph (fig. 29) the minimum, maximum, average, first and third quantile

of the data are also displayed, which indicate the variance of our results. Our conclusion is

that the rank version of K-means is also stable.

fig. 29 Boxplot K-means rank

 40

5. Budget

This research project has been developed using open software, or with partners resources.

Its cost mainly comes in the shape of the time spent by the involved researchers.

 Amount Wage Hours spent Total

Undergraduate
engineer

1 8 € /h 500 4.000 €

PhD student 1 16 € /h 50 800 €

 Final Cost: 4.800 €

table 3 Budget

 41

6. Conclusions:

6.1. Visualization:

After this work I can conclude that all the features in the new streaming version of iGreedy

work perfectly. The software provides a better visualization and the new structure provides

the desired and expected information.

This new version is still as robust and lightweight as the previous one because the main

algorithm hasn’t changed. Even a single latency sample per vantage point, from a few

vantage points is enough to provide satisfactory enumeration and geolocation performance.

In reason of its lightweight and its low computational complexity, the technique is capable

to perform continuous large scale measurements, which will be helpful for mapping the

Internet.

Personally, I’ve understood how hard is to pick an ongoing complex software to improve

the code that was already written. The process of understanding of what was already done

was tough, especially with things concerning the webpage interface because I didn’t have

a strong knowledge basis on that topic. With the iGreedy algorithm and data management

was easier because I’m used to Object-Oriented languages similar to Python such as Java

or C#.

6.2. VP Selection:

The aim of the second part was trying to determine a way to minimize the number of probes

required to detect BGP Hijacks. In this work we have focused on K-means clustering to

balance the distance between probes.

After this thesis, we have discovered that what matters the most when selecting

geographically close vantage points is its power to detect in general. It seems that not all

the probes have the same power since there were probes much better positioned in our

rank than others for nearly the same positions.

With the brute force approach we didn’t only see we were trying to solve a difficult problem,

but also that our initial hypothesis about geographical discrimination was quite right

because our random K-means was performing much better than the brute force best cases.

Keeping in mind that this algorithm increases the iGreedy detections instead of improving

its capacity to detect the actual hijacks based on [1] JSAC, it’s fair to say that the global

algorithm is still not perfect since the number of false negative responses quite high.

Finally, our algorithm seems strong when applying the rank to choose within each cluster,

improving the probe cost compared to random in 31 for the 90% of detections in our

database. Which is a significant amount considering it represents a reduction of 37%

probes for a decent result.

 42

7. Future development

We have tested different ways of vantage points initialization for K-means algorithm in this

project. Although our results are trustworthy, they are particularized for a specific database

where the probes are carefully selected.

When we built our database, we took care of bugged measurements provided by Planetlab

or RIPE Atlas. To do so, we searched for detections which were only happening for a

combination of 2 specific probes. With the results we realized that there was one probe

which was appearing the 30% of times, meaning that percentage was only reachable if that

particular probe was present in the input.

When we proceeded to check information about it we found that its latitude and longitude

were 1, which would imply being in the middle of the ocean. Probably, it was due to an

initialization default problem in Planetlab database, but it was still affecting negatively our

results.

In the next figures the difference can be appreciated. The fig. 26 is obtained with the dirty

database, and the fig. 27 is the clean one, which grows faster for K between 0 and 80.

fig. 30 Dirty dataset

fig. 31 Clean dataset

 43

We should build an automatic software to detect wrong probe content and remove them

from the measurements dataset instead of repeating this procedure manually.

We have also left open a new discussion about what we call super-probes. Analyzing the

features which make the common probes different to powerful ones could be the key to

discover the proper way to choose our vantage points.

Bringing back the brute force approach and its conclusions, we are now surer that the

geographical organization of probes should be one of the key factors for iGreedy

initialization. Given the fact that random K-means version was not highly improving our

system but the rank version was, we propose the research of new methods such as

convolutional classification also with super-probes key features.

 44

Bibliography:

[1] [JSAC-16] Cicalese, Danilo, Joumblatt, Diana , Rossi, Dario, Buob, Marc-Olivier , Auge, Jordan and

Friedman, Timur , Latency-Based Anycast Geolocalization: Algorithms, Software and Datasets .V.C.

Gungor, B. Lu, G.P. Hancke. "Opportunities and challenges of Wireless Sensor Networks in Smart Grid".

IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3557-3564, October 2010. DOI:

10.1109/TIE.2009.2039455.

[2] https://www.planet-lab.org

[3] https://www.ripe.net

[4] http://scikit-learn.org/stable/

[5] D. Madory, C. Cook, and K. Miao, “Who are the anycasters,” Nanog, 2013.

[6] X. Fan, J. S. Heidemann, and R. Govindan, “Evaluating anycast in the domain name system.” in Proc. IEEE

INFOCOM, 2013.

[7] P. Boothe and R. Bush, “DNS Anycast Stability: Some Early Results,” CAIDA, 2005.

[8] S. Sarat, V. Pappas, and A. Terzis, “On the use of anycast in DNS,” in Proc. ICCCN, 2006.

[9] D. Karrenberg, “Anycast and bgp stability: A closer look at dnsmon data,” Nanog, 2005.

[10] H. Ballani and P. Francis, “Towards a global IP anycast service,” in Proc. ACM SIGCOMM, 2005.

[11] H. Ballani, P. Francis, and S. Ratnasamy, “A measurement-based deployment proposal for ip anycast.” in

Proc. ACM IMC, 2006.

[12] Z. Liu, B. Huffaker, M. Fomenkov, N. Brownlee, and K. C. Claffy, “Two days in the life of the DNS anycast

root servers.” in Proc. of PAM, 2007.

[13] M. Levine, B. Lyon, and T. Underwood, “Operational experience with TCP and Anycast,” Nanog, 2006.

[14]http://ciscorouterswitch.over-blog.com/article-bgp-protocol-is-essential-in-your-ip-network-115059468.html

[15] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, "PHAS: A Prefix Hijack Alert System," in

Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15, USENIX-SS'06,

(Berkeley, CA, USA), USENIX Association, 2006.

[16] V. Khare, Q. Ju, and B. Zhang, "Concurrent prefix hijacks: Occurrence and impacts," in Proceedings of

the 2012 ACM Conference on Internet Measurement Conference, IMC '12, (New York, NY, USA), pp. 29-

36, ACM, 2012.

[17] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, "iSPY: Detecting IP Prefix Hijacking on My Own,"

IEEE/ACM Trans. Netw., vol. 18, pp. 1815-1828, Dec. 2010.

[18] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, "A Light-weight Distributed Scheme for Detecting Ip Prefix

Hijacks in Real-time," in Proceedings of the 2007 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, SIGCOMM '07, (New York, NY, USA), pp. 277-288, ACM,

2007.

[19] X. Hu and Z. M. Mao, "Accurate Real-time Identification of IP Prefix Hijacking," in Proceedings of the 2007

IEEE Symposium on Security and Privacy, SP '07, (Washington, DC, USA), pp. 3-17, IEEE Computer

Society, 2007.

[20] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, "Detecting prefix hijackings in the internet with argus," in

Proceedings of the 2012 ACM Conference on Internet Measurement Conference, IMC '12, (New York, NY,

USA), pp. 15-28, ACM, 2012.

[21] https://www.caida.org/funding/hijacks [8] D. Cicalese D. Joumblatt, D. Rossi, J. Auge, T. Friedman

Characterizing IPv4 Anycast Adoption and Deployment . In ACM CoNEXT, Heidelberg, December 2015.

https://www.planet-lab.org/
https://www.ripe.net/
http://scikit-learn.org/stable/
http://ciscorouterswitch.over-blog.com/article-bgp-protocol-is-essential-in-your-ip-network-115059468.html

 45

Appendices:

How to run iGreedy:

Usage:

 igreedy.py (-i INPUT | -m MEASUREMENT | -h) [-p PLANETLAB] [-r RIPE] [-o OUTPUT]

 [-g GROUNDTRUTH] [-a ALPHA (1)] [-n NOISE (0)] [-t TRESHOLD (\infty)]

 [-b (false)]

Mandatory:

 -i input file

 -m IPV4 or IPV6 (real time measurements using the RIPE Atlas and/or PlanetLab vantage points in

datasets/*-vps)

Optional:

 -o output prefix (.csv,.json)

 -b browser (visualize a GoogleMap of the results in a browser)

 -g measured ground truth (GT) or publicly available information (PAI) files

 (format: "hostname iata" lines for GT, "iata" lines for PAI)

 -a alpha (tune population vs distance score; was 0.5 in INFOCOM'15, now defaults to 1, more details in

TECHREP-16 or INFOCOM'15)

 -t threshold (discard disks having latency larger than threshold to bound the error; discouraged)

 -n noise (average of exponentially distributed additive latency noise; only for sensitivity)

 -r vantage points file or number of random vantage points (datasets/ripe-vps) for real time measurements

from Ripe Atlas

 -p vantage points file or number of random vantage points (datasets/planetlab-vps)for real time

measurements from PlanetLab

 -s Streaming mode

Run iGreedy on existing measurement, example:

 ./igreedy -i datasets/measurement/f-planetlab

Run iGreedy on new measurement, example:

 ./igreedy -m 192.5.5.241 -p 20 -r 5 -b

Run Stream mode, example:

 ./igreedy -m 192.5.5.241 -p 20 -r 5 –b -s

 46

Glossary

VP: Vantage Points.

URL: Uniform Resource Locator

ASN: Autonomous System Network.

BGP: Border Gateway Protocol

JSON: JavaScript Object Notation

CSV: Coma Separated Values

