
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tmrl20

Download by: [147.83.95.34] Date: 22 September 2016, At: 07:03

Materials Research Letters

ISSN: (Print) 2166-3831 (Online) Journal homepage: http://www.tandfonline.com/loi/tmrl20

Atomic displacements accompanying deformation
twinning: shears and shuffles

R. C. Pond, J. P. Hirth, A. Serra & D. J. Bacon

To cite this article: R. C. Pond, J. P. Hirth, A. Serra & D. J. Bacon (2016): Atomic displacements
accompanying deformation twinning: shears and shuffles, Materials Research Letters, DOI:
10.1080/21663831.2016.1165298

To link to this article:  http://dx.doi.org/10.1080/21663831.2016.1165298

© 2016 The Author(s). Published by Taylor &
Francis.

Published online: 04 Apr 2016.

Submit your article to this journal 

Article views: 319

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tmrl20
http://www.tandfonline.com/loi/tmrl20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/21663831.2016.1165298
http://dx.doi.org/10.1080/21663831.2016.1165298
http://www.tandfonline.com/action/authorSubmission?journalCode=tmrl20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tmrl20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/21663831.2016.1165298
http://www.tandfonline.com/doi/mlt/10.1080/21663831.2016.1165298
http://crossmark.crossref.org/dialog/?doi=10.1080/21663831.2016.1165298&domain=pdf&date_stamp=2016-04-04
http://crossmark.crossref.org/dialog/?doi=10.1080/21663831.2016.1165298&domain=pdf&date_stamp=2016-04-04


MATER. RES. LETT., 2016
http://dx.doi.org/10.1080/21663831.2016.1165298

Atomic displacements accompanying deformation twinning: shears and shuffles

R. C. Ponda, J. P. Hirthb, A. Serrac and D. J. Bacond

aCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK; bIndependent Scholar; cDepartment of
Civil and Environmental Engineering, Univesitat Politècnica de Catalunya (UPC), Jordi Girona 1-3 Modul C-2, 08034 Barcelona, Spain; dSchool of
Engineering, University of Liverpool , L69 3GH, Liverpool, UK

ABSTRACT
Deformation twins grow by the motion of disconnections along their interfaces, thereby coupling
shearwithmigration. Atomic-scale simulations of thismechanismhave advanced to the pointwhere
the trajectory of each atom can be followed as it transits from a site in the shrinking grain, through
the interface, and onwards to a site in the growing twin. Historically, such trajectories have been
factorised into shear and shuffle components according to some defined convention. In the present
article,we introduce amethodof factorisation consistentwith disconnectionmotion. This procedure
is illustrated for the case of (101̄2)〈1̄011〉 twinning in hexagonal close-packed materials, and shown
to agree with simulated atomic trajectories for Zr.

Impact Statement: Shear and shuffle displacements accompanying (101̄2) twinning are quantified
consistently with growth by the observed mechanism of disconnection motion. This advance will
facilitate the understanding of twinning kinetics.
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Twinning is a ubiquitous mechanism of deformation and
has been studied for many decades. Developments have
been reported in an extensive literature, and the most
recent comprehensive review was published in 1995 by
Christian and Mahajan.[1] The objective of the present
authors is to discuss progress over the two decades since
Christian andMahajan’s review regarding a key aspect of
twinning, namely the division of atomic displacements
accompanying twinning into shear and shuffle compo-
nents. Such displacements are factors relevant to the
active mode of twinning and growth kinetics.

In the pioneering treatments, twin formation is
described phenomenologically as a homogeneous sim-
ple shear, but subsequent experimental investigations
demonstrated that twin growth actually proceeds by
motion of twinning dislocations along the twin interface,
that is, by an inhomogeneous deformationmechanism.[1]
Figure 1(a) is a schematic representation of the twinning
elements for homogeneous twin formation: the invari-
ant plane, K1, the shear direction, η1, and their con-
jugate quantities, K2 and η2. The line PQ in the par-
ent crystal represents a fiducial marker parallel to the
trace of K2 in the plane of shear. Following the twin-
ning shear, γ , this is rotated, but not distorted, becoming
parallel to QR, that is, the trace of K ′

2. By contrast,
Figure 1(b) schematically depicts twin formation through
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motion of twinning dislocations. Here, we refer to such
defects as ‘disconnections’, represented by the param-
eters, (b, h), signifying their Burgers vector and step
height, respectively.[2] These defects move sequentially
along consecutive K1 planes. During the passage of each
individual disconnection leftwards, the twin crystal (des-
ignated white, and represented by the symbol λ) is dis-
placed rigidly by−bwith respect to the parent (black,μ)
material, and, concomitantly, the K1 plane steps down-
wards by−h. Observed macroscopically, the fiducial line
QR would appear as a continuous line, like Figure 1(a).
However, at the microscopic scale, such shearing would
cause discrete shear offsets, as represented schematically
in Figure 1(b). Moreover, these shears may not be suffi-
cient to create the correct twinned crystal structure, in
which case additional local atomic shuffles must occur
simultaneously with the shear.[1,3,4]

For a complete elucidation of atomic displacements
during twin growth, it is necessary to continuously track
the position of each atom during its motion from an
initial position in a perfect μ crystal site, through the
advancing interface, and into to a perfect λ site. Such
atom tracking has not yet been followed in detail exper-
imentally. However, atomic-scale simulations of twin
growth have advanced to the point where atomic dis-
placements can be tracked. Below, as an example, we
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(a)

(b)

Figure 1. (a) Schematic representation of twinning by homo-
geneous simple shear, and (b) inhomogeneous deformation by
motion of disconnections with Burgers vector, b, and step height,
−h. The bold black arrow in (b) denotes the direction ofmotion of
successive disconnections, and their line-direction, ξ , is out of the
paper.

summarise the atom tracking reported for simulated
(101̄2)〈1̄011〉 twinning in Zr.[5] In earlier work,[3,4] a
crystallographic method for identifying the overall dis-
placement between the end points of an atomic track
was introduced. Here, we refer to these as being ‘per-
manent’ since the ‘transient’ locations between the end
points are not considered: permanent displacements can
also be extracted from plots of simulated atomic tracks.

As discussed by Christian and Mahajan,[1] alterna-
tive prescriptions for the division of permanent displace-
ments into shear and shuffle components are equally
valid within the classical framework. Thus, in one visual-
isation, atoms are regarded as being embedded in a con-
tinuumwhich is sheared homogeneously to give the twin.
In a second visualisation, atomic motif units are consid-
ered to be rigid, and each atom in a motif is assumed
to undergo the same homogeneous displacement as its
associated lattice point.[3,4] In their overview of twin-
ning in superlattice structures, Christian and Laughlin
[6] concluded that the selected prescription is a matter
of mathematical convenience and does not imply kineti-
cally separate processes. The present authors propose that
a self-consistent, physically realistic, factorisation is fea-
sible when the topological properties of disconnections

are considered explicitly. In this approach, atomic dis-
placements associated with motion of the step and dislo-
cation parts of a disconnection are considered separately.
Thus, shuffles can be envisioned to be associated with the
motion of the step part, and shear from the motion of the
dislocation part.

Here, we illustrate the factorisation of permanent
displacements for the particular case of (101̄2)〈1̄011〉
twinning in Zr. Consider leftward motion of discon-
nections along the K1 planes as depicted in Figure
1(b). Experimental observations show that (b2,−h2) dis-
connections are active in (101̄2) twinning,[7,8] where
h2 = 2d(101̄2), that is, twice the spacing of (101̄2)
planes, and b2 = q[101̄1̄], where q = {3 − (c/a0)2}/{3 +
(c/a0)2}, and a0 is the hexagonal close-packed (hcp)
lattice parameter.[1,7] A simulation of a (b2,−h2) dis-
connection, taken from Khater et al.,[5] is depicted in
Figure 2, and corresponds very closely with experi-
mental images.[7,8] In the theory of interfacial defect
character,[9] b2 can also be expressed as, b2 = t(λ) −
t(μ), where t(λ) = [101̄0]λ and t(μ) = [0001̄]μ, as indi-
cated in the figure.

We consider λ and μ atomic lattice-complexes, that
is, the interpenetrating arrangement of atomic sites in
perfect crystals. Such configurations are referred to here
as dichromatic complexes, or DCs,[10] and a section of
that for (101̄2) twins is depicted in Figure 3. It is neces-
sary to specify a reference DC where the λ and μ atomic
lattice-complexes have some chosen relative position: a
convenient choice in the present case is where λ and μ

centres of symmetry coincide, Figure 3. Other relative
positions are defined by a rigid body displacement, p,
of the μ lattice-complex away from the chosen reference
position, p = 0, that is, a shift of μ with respect to λ.
We define two cells within the DC, both delineated by
the same interface translation vectors, 1/3[1̄21̄0]λ,μ and
[1̄011]λ,μ, and where the third vectors are the aforemen-
tioned translation vectors, t(λ) and t(μ), Figure 3. These

Figure 2. Projection of a simulated (b2,−h2) disconnection in a
(101̄2) twin in Zr [5] viewed along−x, which is parallel to [1̄21̄0].
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Figure 3. A section of the reference dichromatic complex for (101̄2) twinning where p = 0: λ and μ exchange cells are depicted for
leftwards motion of a (b2,−h2) disconnection. Centres of symmetry are represented by small open circles. The four representative sites
are depictedbybold circles and squares, corresponding to different levels along [1̄21̄0], and equivalent sites are shownas fainter symbols.
The upper and lower interface levels are LU and LL, respectively.

cells extend from the upper to the lower interface levels
in an ideal bicrystal,[10] LU and LL, respectively, and are
designated exchange cells because shuffles (for leftward
motion of disconnections in this case) correspond to dis-
placements from sites in the μ cell to sites in the λ cell.
For conservative disconnection motion, there are equal
numbers of sites in each cell, and these are designated rep-
resentative atomic sites. In the present case, there are four
representative λ and μ sites: these comprise two λ and
two μ basis-pair sites, as indicated by the dash-dot lines
in Figure 3. When exchange cells contain more than one
site, as in the present case, a multiplicity of μ → λ shuf-
fles is possible. Those with the smallest magnitudes are
indicated by arrows between the bold symbols in Figure
3. For comparison with Figure 1, the vectors −η2 and
−η′

2, are also outlined in Figure 3.
We now formulate the permanent displacements.

These are relative motions, and in this case the μ lattice-
complex is fixed (in agreement with the simulations
described below, where the lowest surface of theμ crystal
is fixed). Motion of the step part leftwards would pro-
duce the shuffle displacements designated, u0i , in Figure
3, where the superscript signifies that p = 0, and the
subscript refers to the representative atom in question,
that is, i = 1 to 4. If a finite rigid body displacement is

present, these displacements are supplemented by−p, so
the permanent shuffles, sμ→λ

i , are given by

sμ→λ
i = {u0i − p}. (1)

Motion of the dislocation part leftwards imparts a
shear displacement,−b2, on all λ sites above LL. Thus,
in an actual bicrystal, the same interface structure can
form at level LL as at the initial level LU irrespective of
transient relaxations. Therefore, the overall permanent
displacements of the representative sites are given by

uμ→λ
i = sμ→λ

i − b2. (2)

Factorisation into shuffle, sμ→λ
i , and shear compo-

nents, −b2, reflects an essential difference between these
two types of displacement. Shuffle displacements apply
only to representative sites in the exchange cells. On the
other hand, shear displacements are experienced by all
λ sites above LL. Thus, shear displacements produced by
repeated passages of (b2,−h2) defects along an interface
are cumulative, leading to the macroscopic (engineering)
shear strain, γ = b2/h2, as in Figure 1(b). In other words,
macroscopic shape changes in real bicrystals are related
to shearing, but are not affected by shuffles.

Figure 4. (Colour online) Projection along [1̄21̄0] of the simulated structure of a (101̄2) twin in Zr.[5] Symbol colours represent hydro-
static pressure: atoms occupying blue and red sites in the composition plane experience positive and negative hydrostatic pressures,
respectively.
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Figure 4 shows the twin boundary structure obtained
for Zr using atomic-scale simulation by Khater et al.[5]
The puckered nature of (101̄2) atomic planes is indicated
in regions of the λ and μ crystals beyond the inter-
facial distortion field. We designate the distinct atomic
sites of a basis-pair, A and B types, as is widely used to
describe the stacking of (0002) atomic planes in hcp crys-
tals. Then, we can represent the unequal separations of A-
and B-type atoms along a (101̄2)λ plane by the repeating
sequence, . . . A− B-A . . . , with amirror related config-
uration in (101̄2)μ planes. Along the composition plane,
local relaxation has removed these puckers, forming a
flat coalesced plane, where the atoms occupy positions
intermediate between perfect λ andμ atomic sites. Relax-
ation also leads to a small rigid body displacement, p =
[0, 0, pz], where pz is positive with magnitude ∼0.01 nm
for Zr corresponding to a small negative excess volume
in the bicrystal. High-resolution transmission electron
microscopy studies of (101̄2) twins in Zn [7] and Ti [8]
show similar structural features.

Khater et al. [5] recorded the atomic displacements of
representative atoms during quasi-static simulations in
which (b2,−h2)twinning disconnections repeatedly pass
leftwards along sequential (101̄2) twin planes, Figure 5.
The abscissa on each plot is the displacement of the λ

crystal leftwards relative to the μ crystal, calibrated in
units of |b2|. The left-hand graph of Figure 5(a) shows the
z coordinate changes for atoms 1 and 2. Their ‘rocking’
motion is evident from the reversal of z for each atom as
they transit fromμ to λ crystal sites. The coalesced plane
at the interface is clearly indicated by the location where
the z coordinates of atoms 1 and 2 become identical. The
transient z displacements of atoms 1 and 2 during transit
through the interfacial distortion field from μ to λ are
evident, occurring over a distance equal to ze ≈ 4d(101̄2).
In addition, the oscillations on the z curves correspond to
elastic distortions experienced by these two atoms while
in the μ crystal as disconnections pass along the inter-
face above them, and, correspondingly, below them after
entering the λ crystal.

In the right-hand graph of Figure 5(a), showing the y
coordinate variations, the ‘swapping’ motions of atoms
3 and 4 are evident as they are displaced to λ sites,
that is, where the puckered sequence . . . A-B−A . . . in
(101̄2)μ planes changes to . . . A−B-A . . . in (101̄2)λ
planes. The difference between the y coordinate val-
ues for these atoms is larger in the μ crystal, cor-
responding to the separation A−B, than that after
transit to the λ crystal, A-B: that is, atoms swap
nearest neighbours within (101̄2) planes. None of the

(a)

(b)

Figure 5. (Colour online) (a) atomic displacements for the four representative atoms associated with the motion of (b2,−h2) discon-
nections moving leftwards in a (101̄2) twin in Zr.[5] (b) permanent displacements deduced from (a) after suppression of the transient
displacements.
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Table 1. Shear and shuffledisplacements for the four representa-
tive atoms when a (b2,−h2) disconnection moves leftwards in a
(101̄2) twin in Zr.[5]

Displacements x(a0) y(a0) z(a0)

b2 0 0.14 0

u01 0 0 −0.228

u02 0 0 0.228

u03 0 −0.117 0

u04 0 0.308 0

p 0 0 0.031

representative atoms experienced displacements parallel
to x.

When transient displacements are suppressed, the per-
manent displacements are more clearly revealed, Figure
5(b). Thus, the small displacement, pz ∼ 0.01 nm, is seen
from the downward coordinate offset for both atoms after
reaching the λ crystal, Figure 5(b) - left. In Figure 5(b) -
right, the permanent swapping displacements are evinced
by the difference between the y separations of atoms 3–4
when in the λ crystal compared with that in theμ crystal.
Also, after transit into the λ crystal, these two atoms
progressively accumulate a y displacement equal to −b2
for each disconnection that passes along the interface
below them, as revealed in the graph by a gradient equal
to minus unity. The factorised permanent displacement
components extracted from Figure 5 concur with those
predicted by Equation (2), and are listed in Table 1. Shuf-
fles are equal to sμ→λ

i = {u0i − p}: evidently, atoms 1 and
2 undergo equal and opposite z shuffles, u01 and u02, that
is, rocking, while, atoms 3 and 4 undergo swapping shuf-
fles. The shear displacement of all four atoms is −b2 per
disconnection.

We have described progress towards a fuller under-
standing of atomic displacements accompanying twin-
ning, particularly atom tracking by quasi-static atomic-
scale simulation of twin growth. Only two twinning
modes have been studied using this promising tech-
nique so far, (101̄2)〈1̄011〉 and (112̄1)〈1̄1̄26〉 in Zr,[5]
and the former has been reviewed briefly here. In
addition, we have related the atomic displacements so
obtained to a simple mathematical expression describ-
ing permanent atomic displacements, that is, excluding
transient contributions. Factorisation of permanent dis-
placements into shear and shuffle components has been
described for (101̄2) twinning, the predominant mode
in hcp materials.[1] Our method differs from earlier
treatments,[3,4] wherein the shear displacements of lat-
tice sites are homogeneous. Here, disconnection motion
produces an inhomogeneous shear displacement equal
to |b2| across the interface level LL. In consequence,
the magnitudes of shuffles parallel to b2 are different in

the two approaches. A fuller account will be presented
elsewhere.[11]

In a series of recent papers, it has been claimed that the
(101̄2)〈1̄011〉mode is ‘non-classical’ on the grounds that
shuffling ‘dominates’ shear to such an extent that no shear
strain is observed inmicroscopic specimens.[12–15] This
contention has been criticised elsewhere,[16–18] and is
clearly not supported by Table 1, where it is seen that the
values of |si/b2| for atoms 1–4 in Zr are 1.41, 1.85, 0.86
and 2.21. Moreover, although the twinning shear strain
for Zr is relatively small, γ = |b2|/h2 = 0.165, active
modes are known with smaller magnitudes than this in
other materials.[1] Also, as pointed out by Yoo,[19] for
hcp materials the magnitudes, |b2| and h2, and hence γ ,
depend on c/a0: in particular, |b2| → 0 as c/a0 → √

3
because then, t(λ) = t(μ). However, in Cd–Mg alloys
specially prepared with such lattice parameter ratios, the
(101̄2)〈1̄011〉 mode is not activated.[1,p. 24] In twinning
systems with this special crystallographic feature, that is,
where the DC exhibits periodicity perpendicular to the
K1 plane, pure steps could form, and hence could move
by pure shuffling without accompanying shear.

Finally, there has also been confusion regarding the
nucleation of (101̄2) twins,[e.g. 14] as distinct from
(101̄2) twin growth. Wang et al.,[20] using atomic-
scale simulation, showed that twin nuclei bounded by
{101̄0}λ//(0001)μ and (0001)λ//{101̄0}μ facets form by
pure shuffle. However, such nuclei formed in a con-
strained volume of the parent material, that is, without
shape change, so no shearing took place during nucle-
ation. This is typical of all types of solid-state nucleation
where the initial nuclei are coherent to minimise sur-
face energy, but growing crystals become semicoherent
to minimise strain energy.
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