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Abstract—This paper revisits the model order selection prob-
lem in the context of second-order spectrum sensing in cognitive
radio. Taking advantage of the recent interest on the gener-
alized likelihood ratio (GLR), the asymptotic performance of
the minimum description length (MDL) rule under unknown
noise variance is addressed. In particular, by exploiting the
asymptotically Chi-squared distribution of the GLR, a complete
characterization of the error probability is reported, instead of
approximating only the missed-detection probability as done in
the literature.

Index Terms—Model order selection, minimum description
length, generalized likelihood ratio, noise uncertainty.

I. INTRODUCTION

MODEL ORDER SELECTION is the signal processing
problem that consists of determining the dimension of

the parameter vector of the data model [1]–[3], and has many
applications from radar to biomedicine.

Model order selection is cast a composite hypothesis testing
problem among all the possible dimension of the parame-
ter vector. As a composite hypothesis testing problem, the
estimation of the dimension is driven by the detection of a
signal satisfying a probability density function (PDF), known
up to some unknown parameters. In order to circumvent
the unknown parameters, one approach consists of maximum
likelihood estimate (MLE) the unknowns and formulate the
corresponding generalized likelihood ratio (GLR) [4]. Unluck-
ily, this leads to a systematic overestimation of the dimen-
sion of the parameter vector, for which the introduction of
dimension-dependent penalty terms is required. Among others,
the minimum description length (MDL) [5], also known as
the Bayesian information criterion (BIC) [6], is the most
commonly adopted model order selection statistic due to
its motivation in the information theory community and its
tradition in the coding theory. Even though the choice of MDL
for the present work has information theoretical fundamentals,
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the results obtained in this paper can be extrapolated to other
model order selection statistics [7], as the likelihood ratio is a
common denominator.

It is worth noting that both MDL and BIC have received
recent attention surrounding the discussion of consistency [8],
[9] within the signal-to-noise ratio (SNR), or the asymptotic
equivalences within the recently proposed exponentially em-
bedded family (EEF) rule [10]. The problem of spectral occu-
pancy estimation has also been recently pointed out in [11],
where a maximum a posteriori (MAP) estimation of the signal
rank with known noise variance is addressed. Historically,
MDL and other information criterion rules had their major
role in the problem of estimating the number of sources in
an array of sensors [12]. In [12], the detection problem is
first presented as a minimization over the MDL rule, instead
of the at that time conventional composite hypotheses testing
approach. Even though the MDL has been one of the core rules
in classical signal processing problems such as model order
selection in autoregressive models [13] and sinusoids [14],
the asymptotic performance analysis has not been exhaustively
addressed.

By considering that the difference between two MDL statis-
tics is normally distributed, the performance of the MDL has
been characterized in [15], [16], and more recently in [17] and
[18]. As a common denominator in the aforementioned works,
the error probability is characterized by the missed-detection
probability, i.e., the probability of underestimating the model
order, because the MDL tends to underestimate. More specifi-
cally, the missed-detection probability is further approximated
by the probability of the single event MDLn−1 < MDLn, i.e.,
the probability that the MDL rule decides for the model order
immediately inferior to the correct order. In this work, on the
other hand, the MDL is formulated from a likelihood ratio
instead as from a likelihood function. As a result, since the
GLR part of the MDL rule is known to be asymptotically Chi-
squared distributed, this contributed to a more accurate char-
acterization of the MDL for Gaussian sources. Furthermore,
this allows to characterize the complete error probability, i.e.,
the analysis takes into consideration all the missed-detection
and false-alarm as error events.
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II. PROBLEM FORMULATION

This paper formulates the model order selection problem
of a zero-mean Gaussian signal with unknown low-rank
correlation matrix immersed in zero-mean white Gaussian
noise with unknown noise variance. This problem naturally
arises in multi-measurement passive radar, rank estimation or
cognitive radio problems [19], [20]. As in signal detection, the
phenomenon of noise uncertainty is an important problem in
model order selection when the noise variance is inaccurately
known a priori [21]. Hence, both the signal correlation matrix
and the noise variance are incorporated as nuisance parame-
ters. This naturally leads to the formulation of the generalized
likelihood ratio GLR statistic [22], which has been recently
reported as the sphericity test [23] for the valuable scenario of
low-rank Gaussian signals. Because the GLR asymptotically
follows a non-central Chi-squared distribution, the statistical
characterization of the proposed sphericity MDL is further
addressed in this paper together with the MDL statistic with
priorly known noise variance. Explicit expressions of both the
PDFs of the MDLs and the associated error probabilities are
obtained as a function of the main detection parameters, i.e.,
the signal-to-noise ratio (SNR), the observation size, and the
dimensions of the signal. A simple approach based on the
Jensen’s approximation of the expectation of the MDLs is
proposed to obtain the non-centrality parameters of the Chi-
squared distributions. Numerical results show the accuracy of
the proposed statistical characterization in predicting both the
PDFs and the error probabilities, and show that the proposed
sphericity MDL is robust to noise uncertainty.

In a cognitive radio scenario, the problem of determining
the dimension of the primary signal subspace spanned by the
eigenvectors of the correlation matrix is cast as follows. Each
of the secondary users acquire a data set of LM samples in
the silent periods in which the secondary system is inactive.
These observations are vectorized in L vector measurements
xl of dimension M which follow the discrete-time model

xl = sl +wl, (1)

for 1 ≤ l ≤ L, where each realization sl and wl represent
the primary signal and the noise components at secondary
user with power P and variance σ2, respectively. The average
signal-to-noise ratio (SNR) in this problem is defined as

SNR .
=
NP

σ2
, (2)

where N is the dimension of the primary signal, and P is
the power per degree of freedom, i.e., the power associated
to each of the N dimensions of the primary signal. For
Gaussian signals1, the primary signal and noise components
are distributed as

sl ∼ CN (0,Rs) (3)
wl ∼ CN (0, σ2I), (4)

1The Gaussian assumption on both the primary signal and the noise is
adopted in this paper as a worst-case scenario in the model order selection
problem.

for all l, where Rs represents the correlation matrix of the
primary signal. The objective of the model order selection
problem is to determine the degrees of freedom of Rs, defined
as

N
.
= rank(Rs), (5)

with N ≤ M , from the dataset x1, . . . ,xL with unknown
signal autocorrelation matrix Rs. This paper presents a generic
formulation of Rs without any structure or constraint rather
than (5). Therefore, the results harvested in this paper are valid
for arbitrary correlation domains, e.g., time, or space2.

III. SPHERICITY MINIMUM DESCRIPTION LENGTH WITH
UNKNOWN NOISE VARIANCE

Typically, the primary signal subspace estimation problem
involves low SNR regimes, as the secondary system may
be far away from the primary system. In the assumption of
white noise with unknown noise variance, the primary signal
subspace estimation problem requires estimating the following
parameters: the noise variance, the dimension of the primary
signal subspace, and the eigenvectors associated to the primary
signal subspace.

Because the estimation of the dimension of the primary
signal subspace is a model order selection problem, the
formulation of the following MDL statistic is required [4]

MDL(n) = − logGLR(n) + nM log(L), (6)

where GLR(n) is the GLR which jointly estimates the un-
known parameters, i.e., the noise variance and the eigenvectors
associated to the primary signal space. That is,

GLR(n) =
maxσ2,Rs

p(x1, . . . ,xL|Hn)
maxσ2 p(x1, . . . ,xL|H0)

, (7)

where Hn and H0 denote the hypotheses that the primary
signal has dimension n or zero, respectively, i.e.,

Hn : rank(Rs) = n, (8)

for n = 0, 1, . . . ,M . Solving (7) for Rs and σ2 for a given
primary signal subspace size n derives to the rank-n sphericity
test [23]. As a result, for n < M−1, the MDL for the primary
signal subspace estimation problem is given by (9) on the top
of the next page, where λ1, . . . , λM are the eigenvalues of the
sample covariance matrix

R̂ =
1

L

L∑
l=1

xlx
H
l . (10)

As noted in [23], for n ≥ M − 1 the low rank structure of
the signal correlation matrix cannot be exploited, and hence
(9) particularizes to the AGM detector [24]. It is important to
note that the traditional MDL in array processing (see, e.g.,
[12, Eq. (14)]) omits the first term of (9), as it is independent
of the optimization variable n. In this work, however, the

2It is worth noting that in the case of temporal domain, Rs has a Toeplitz
structure which could be exploited in the formulation of the MDL to further
improve performance. However, the MLE of a Toeplitz matrix has not known
closed-form solution.
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MDL(n) =


LM log

∏M
m=1 λ

1/M
m

1
M

∑M
m=1 λm

− L(M − n) log
∏M
m=n+1 λ

1/(M−n)
m

1
M−n

∑M
m=n+1 λm

+ nM log(L) n < M − 1

LM log

∏M
m=1 λ

1/M
m

1
M

∑M
m=1, λm

+ nM log(L) n ≥M − 1

(9)

likelihood ratio structure of the MDL is preserved in order
to take advantage of the asymptotic results of GLR detectors.

From (9), the estimation of the primary signal subspace
dimension involves the minimization

N̂ = argmin
n

MDL(n), (11)

where the search is performed in the set n = 0, . . . ,M .

A. Statistical Characterization

The statistical characterization of the primary signal sub-
space estimation problem resorts to identify the statistical
properties of the MDL function in (11). Because the MDL(n)
in (6) implements a GLR statistic for n > 0, its distribution
is asymptotically (as L → ∞) given by a non-central Chi-
squared distribution [4]. More specifically, as

2 logGLR(n) ∼ X 2
rn(µn), (12)

it follows from (6) that

2 · [nM log(L)−MDL(n)] ∼ X 2
rn(µn), (13)

where rn are the degrees of freedom and µn is the non-
centrality parameter. In the following, the Chi-squared param-
eters are obtained for arbitrary n, which will be further use to
derive the error probability.

Because the noise variance is a nuisance parameter and
MDL(n) involves the estimation of an Toeplitz Hermitian
complex matrix of rank n, in Appendix A it is proved that
the degrees of freedom rn are given as

rn = 2Mn− n2 +M − n− 1 (14)

On the other hand, the non-centrality parameter µn depends on
the occupancy of the primary signal, i.e., the true hypotheses
HN . If the primary signal is not present (i.e., if H0 is true),
the distribution is non-central and µn = 0 for all 1 ≤ n ≤M .
This task under HN is a more difficult problem, as it involves
the computation of the non-centrality parameter µn. Making
use of the Jensen’s approximation, a good approximation holds
for n ≥ N :

µn + rn
2

≈ L log

(
1 +

SNR
M

)M
(
1 +

SNR
N

)N . (15)

It is worth noting that for n ≥ N , i.e., when the MDL(n)
statistic has reached the true primary signal dimension N ,
the non-centrality parameter does not improve with n. This
is due to the fact that the second part of the MDL(n) in (9)

uncovers no structure in the noise subspace. Even tough, as the
nM log(L) penalty term in (6) continues to increase with n,
the MDL will “prefer” n = N in front of higher dimensions.
Finally, for n < N , the non-centrality parameter is affected
by a negative term, i.e.,

µn + rn
2

≈ L log

(
1 +

SNR
M

)M
(
1 +

SNR
N

)N

−L log

(
1 +

N − n
M − n

SNR
N

)M−n
(
1 +

SNR
N

)N−n , (16)

because the second part of the MDL(n) in (9) now evaluates
a portion of the signal subspace of dimension N − n. A last
note on MDL is that by construction, MDL(0) = 0 in a deter-
ministic fashion. A sketch of the proof of the non-centrality
parameters (15) and (16) is provided in Appendix B. Both the
expressions involved in The expressions involved in (15) and
(16) have the structure of a Shannon opportunity measure, i.e.,
the difference between capacity terms that quantify the amount
of information contained at each subspace. As an example,
(15) can be rewritten as

µn + rn
2

≈ML log

(
1 +

SNR
M

)
−NL log

(
1 +

SNR
N

)
(17)

with N < M .

B. Error Probability

An important application of the statistical characterization
of the primary signal subspace estimation problem is the com-
putation of the error probability. In particular, the statistical
characterization of the sphericity MDL allows to determine
the probability of selecting n as the dimension of the primary
signal subspace is employed, i.e.,

Pn
.
= P

[
argmin

m
MDL(m) = n

]
, (18)

for n = 0, . . . ,M . In Appendix C it is shown that this
probability is given by

Pn =
n−1∏
m=0

CDF−X 2
rn−rm

(µn−µm)

(
(m− n)M log(L)

2

)

×
M∏

m=n+1

CDFX 2
rm−rn

(µm−µn)

(
(m− n)M log(L)

2

)
, (19)
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Fig. 1. Probabilities of error, missed-detection and approximated missed-detection versus SNR for M = 8, N = 2, 4, 6 and L = 1, 000.

where rn and µn are given in (14) and (15)–(16), respectively,
under either H0 or HN . The error probability is defined as the
complementary probability to the probability of detection, i.e,

Pe
.
= 1− PN , (20)

being PN the probability of detection given by (19) for n = N
under HN . As it is appreciated from (19), the pairs (n,m) that
exhibit smaller µn−µm will contribute to the error probability.

It is worth noting that in cognitive radio an incorrect
primary signal subspace detection will produce a different
effect, depending if either the estimated dimension is smaller
or larger than the true dimension. If N̂ < N , the secondary
user will underestimate the primary signal subspace, hence will
cause interference, whereas if N̂ > N , the secondary user will
overestimate the primary signal subspace, hence losing oppor-
tunity. From the formulation above, these underestimation and
overestimation probabilities, also denoted as missed-detection
and false-alarm probabilities respectively, are given by

PMD =
N−1∑
n=1

Pn, (21)

and

PFA =
M∑

n=N+1

Pn. (22)

Furthermore, it is also worth mentioning that in the model
order selection literature (see, e.g., [15]–[17]) the following
approximation for the error probability is commonly adopted

PMD ≈ P [MDL(N − 1)−MDL(N) < 0] , (23)

due to the fact that the MDL tends to underestimate the model
order, and hence the error probability (19) becomes dominated
by the term m = N − 1 in the product. Using this result, (20)
can be approximated as

PMD ≈ 1− CDF−X 2
2K(µN−µN−1)

(
−M logL

2

)
, (24)

where the difference of means equals

µN − µN−1 = 2L log

(
1 +

1

1 +K

SNR
N

)1+K

(
1 +

SNR
N

) + 2K, (25)

where the noise subspace dimension has been defined in the
former expression as K .

=M −N .

IV. NUMERICAL RESULTS

This Section provides numerical results to show the behav-
ior of the sphericity MDL statistic, and to assess the theoretical
characterizations proposed in this work. The theoretical char-
acterization addressed by [17, Eq. (12)] has been included as
benchmarking, i.e.,

PMD ≈ 1−Q
(µ
σ

)
, (26)

where µ and σ are the asymptotically mean and variance of
the asymptotically (as L → ∞) normally distributed random
variable MDL(N − 1)−MDL(N).

The probability of error, the missed-detection probability
and the approximated missed-detection probability are de-
picted in Figure 1 versus SNR for several values of the signal
order N and a fixed observation size of L = 1, 000. Lines
illustrate the theoretical evaluations, and markers correspond
to the average of 100,000 simulations. On the other hand,
Figure 2 shows the same probabilities versus the number of
observations L for a fixed SNR of 2.5 dB.

From both figures, it can be concluded that
1) As known in the literature, the missed detection is the

main source of error. The simulation results (markers) in
both figures support this claim. On the other hand, the
theoretical curves corresponding to the error probability
and the missed-detection probability are slightly apart.

2) The behavior of the theoretical characterizations behave
distinctly regarding the signal order N . For small N ,
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the approximated missed-detection and the true missed-
detection probabilities are equivalent. However, as N
becomes large, the cross-terms MDLm − MDLn, for
m < n, cannot be neglected. Therefore, the approxi-
mation (22) is not valid.

3) The present work improves the existing work by (i)
considering the complete error probability, (ii) providing
a more accurate characterization, and (iii) allowing to
obtain insights of the problem by inspecting the means
of the MDL statsitics, e.g., (14)–(16).

4) The slopes (error exponents) of the proposed theoretical
characterization exhibit a more accurate matching with
that of the empirical simulations, when compared to the
Gaussian assumption adopted by [15]–[17].

V. CONCLUSIONS

In this paper, we have provide the statistical characterization
of the sphericity minimum description length (MDL) for the
model order selection problem under unknown noise variance.
By exploiting the asymptotically Chi-squared distribution of
the generalized likelihood ratio (GLR) statistic, a complete
characterization of the error probability for Gaussian sources
is addressed.
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