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Mengoli’s mathematical ideas in Leibniz’s excerpts

MA ROSA MASSA-ESTEVE

Universitat Polit�ecnica de Catalunya, Spain

Dedicated to the memory of Jacqueline

In the seventeenth century many changes occurred in the practice of mathematics. An
essential change was the establishment of a symbolic language, so that the new language
of symbols and techniques could be used to obtain new results. Pietro Mengoli (1626/7–
86), a pupil of Cavalieri, considered the use of symbolic language and algebraic
procedures essential for solving all kinds of problems. Following the algebraic research
of Vi�ete, Mengoli constructed a geometry of species, Geometriae Speciosae Elementa
(1659), which allowed him to use algebra in geometry in complementary ways to solve
quadrature problems, and later to compute the quadrature of the circle in his Circolo
(1672). In a letter to Oldenburg as early as 1673, Gottfried Wilhelm Leibniz (1646–1716)
expressed an interest in Mengoli’s works, and again later in 1676, when he wrote some
excerpts from Mengoli’s Circolo. The aim of this paper is to show how in these excerpts
Leibniz dealt with Mengoli’s ideas as well as to provide new insights into Leibniz’s
mathematical interpretations and comments.

Introduction

I
n the seventeenth century a considerable number of changes occurred in the

practice of mathematics. An essential change was the establishment of a sym-

bolic language as a formal language in mathematics. The new language of sym-

bols and techniques could be used in operations and geometrical constructions to

obtain new mathematical results. Therefore, the use of symbolic language and alge-

braic procedures for solving geometrical problems was extremely significant for the

transformation of seventeenth-century mathematics.

The publication in 1591 of In artem analyticen isagoge by François Vi�ete
(1540–1603) constituted an important step forward in the development of this

symbolic language. Vi�ete used symbols not only to represent unknown quantities

but also to represent known ones. In this way he was able to investigate equa-

tions in a completely general form, though still rhetorical.1 In addition, Vi�ete
introduced a new algebra with his ‘specious logistic’; that is, calculations with

‘species’, in contrast to the ‘numerous logistic’; that is, calculations with num-

bers, which was already used in the Renaissance algebras. The ‘species’ used in

Vi�ete’s algebra consisted of all kinds of magnitudes, numerical magnitudes, such
as natural and rational numbers, and also geometrical magnitudes such

as lengths, areas, volumes or angles. Vi�ete showed the usefulness of algebraic

1If we observe Vi�ete’s equation, we can appreciate the rhetorical form. We provide one example to show

how Vi�ete writes an equation: ‘B in A ¡ Aquad. Aequatur Zquad’, which in modern notation would be

written Bx¡ x2 D Z2.

� 2016 British Society for the History of Mathematics
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procedures for analysing and solving problems in arithmetic, geometry and trig-

onometry (Vi�ete 1983; Giusti 1992; Bos 2001; Stedall 2011).2

As Vi�ete’s work came to prominence at the beginning of the seventeenth cen-

tury, other authors, such as Pietro Mengoli (1626/7–86) began to consider the

use of algebraic procedures for solving all kinds of problems.2 Mengoli’s name
appears in the register of the University of Bologna in the period 1648–86. He

studied with Bonaventura Cavalieri (1598–1647) and ultimately succeeded him in

the Chair of Mechanics. He graduated in Philosophy in 1650 and three years

later in Canon and Civil Law. In an initial period he wrote three works of pure

mathematics: Novae Quadraturae Arithmeticae seu de Additione Fractionum

(1650), Via Regia ad Mathematicas per Arithmeticam, Algebram Speciosam et

Planimetriam ornate Maiestati Serenisimae D. Christinae Reginae Suecorum

(1655), Geometriae Speciosae Elementa (1659, hereafter Geometria), and later,
Circolo (1672). He took holy orders in 1660 and until his death was prior of the

church of Santa Maria Maddalena in Bologna.4

We divide his scientific life into two phases; up to the year 1660 and from 1676 on,

when, in addition to diversifying his field of research, quotations from his work

diminished in scientific circles and Mengoli became increasingly isolated from his

contemporaries.5

From 1673, Mengoli’s first work, Novae Quadraturae Arithmeticae (1650),

was mentioned in many letters from European scientists and gave rise to a
debate between Gottfried Wilhelm Leibniz (1646–1716) and Henry Oldenburg

(1615–77) on the series studied by Mengoli. Indeed, he added infinite series in

his Novae quadraturae and proved the divergence of the harmonic series (Giusti

1991). In Oldenburg’s correspondence, we find a first letter dated 26 February

1673 in which Leibniz expressed an interest in this work by Mengoli, during his

stay in Paris (Oldenburg 1986). Oldenburg replied (6 March 1673) forwarding a

letter to him by John Collins (1624–83), where this author explained that

2Viete’s algebra was spread by some authors, thereby facilitating the algebraicization of mathematics. One

example is Thomas Harriot (c. 1560–1621) in his mathematical writings. On Harriot’s algebraic works we

can see Stedall’s seminal researches in Stedall (2003, 2007). Another example is the encyclopaedic work by

Pierre H�erigone (1580–1643), Cursus mathematicus, Paris (1634, 1637, 1642), which consists of six volumes,

one of which is on algebra. On H�erigone’s work we can see a comparative analysis between Vi�ete’s and

H�erigone’s algebra in Massa-Esteve (2008), the treatment of Euclid’s Elements in H�erigone’s work in

Massa-Esteve (2010) and the influence of Vi�ete’s work on H�erigone’s work and from that to Mengoli’s

work in Massa-Esteve (2012).
3Pierre de Fermat (1607–65) was among the mathematicians who used algebraic analysis to solve geometric

problems. He did not publish any of his work during his lifetime, although it circulated in the form of let-

ters and manuscripts and was referred to in other publications. On Fermat’s works see Fermat (1891–

1922, 65–71 and 286–292) and Mahoney (1973, 229–232). The most prominent figure in this process of

algebraicization was Ren�e Descartes (1596–1650), who published La g�eom�etrie in 1637. There are many

excellent useful studies on Descartes, including Giusti (1987, 409–432), Mancosu (1996, 62–84), and Bos

(1981 and 2001).
4Formore biographical information on Mengoli, see Natucci 1970–91; Massa-Esteve 1998, 2006b; and

Baroncini and Cavazza 1986.
5Althoughhe published nothing between 1660 and 1670, the latter year saw the appearance of three works:

Refrattioni e parallase solare (1670), Speculationi di musica (1670), and Circolo (1672). These reflected

Mengoli’s new aim of pursuing research not on pure but on mixed mathematics, such as astronomy, chro-

nology, and music. Furthermore, his research was clearly in defence of the Catholic faith. Mengoli went

on writing in this line, publishing Anno (1675) and Mese (1681) on the subject of cosmology and Biblical

chronology, and Arithmetica rationalis (1674) and Arithmetica realis (1675) on logic and metaphysics.

2 BSHM Bulletin
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Mengoli had found the sum of infinite series with the reciprocal figurate num-

bers and the proof of the impossibility of the sum of the harmonic series. How-

ever, Mengoli was unable to add the reciprocal square numbers (Basel problem).

Leibniz replied (14 May 1673) by saying that he did not think Mengoli would

have added infinite series, but rather a finite sum. He also claimed: ‘Yet if Men-
goli has done the same thing I shall not be astonished because different people

commonly fall into agreement’.6

In addition, it has been known since the 1920s that in April 1676 Leibniz had the

opportunity to study Mengoli’s Circolo (1672), and that he had made extensive

excerpts from this work (Hofmann 1974). Thus, we focus on the relationship between

Mengoli’s arithmetic-algebraic method of quadratures and Leibniz’s arithmetical

quadrature (Leibniz 1993; Knobloch 2002). In Geometria (1659), Mengoli showed

the properties of geometric figures through algebraic expressions and calculated their
quadratures. Thus, he proved that the areas between 0 and 1 of all geometric figures

determined by y D Kxm(1 ¡ x)n, with adequate coefficients, have value 1, when m

and n are natural, which in modern notation we would write as follows (Massa-

Esteve 1998, 2006a):

ðmþ nþ 1Þ ¢ mþ n

n

� �
¢
Z 1

0

xm ¢ð1� xÞndx ¼ 1

And later in Circolo (1672) he derived as a corollary:

Z 1

0

xmð1� xÞndx ¼ 1

ðmþ nþ 1Þ ¢ mþ n

n

� �

Furthermore, in this work Mengoli interpolated geometric figures, and proved the
values of these quadratures when the exponents are rationales with denominator 2,

expressed in modern notation as:

Z 1

0

xm=2ð1� xÞn=2dx ¼ 1�
ðmþ nÞ=2þ 1

�
¢ ðmþ nÞ=2

n=2

� �

In particular, he made a computation of the quadrature of the circle with an approxi-

mation of the number p up to eleven decimal places (Massa-Esteve 1998; Massa-

Esteve and Delshams 2009).

Four years later, in 1676, Leibniz wrote down some excerpts from Mengoli’s Cir-

colo, after reading the main ideas on Mengoli’s quadrature. Recently in 2015, Probst

described the contents of these excerpts, although he did not address the matter in

6‘Si tamen idem et Mengolus praestitit, non miror; saepe enim concurrere solent diverse’ (Oldenburg 1986,

vol IX, 648). According to Probst (2015), Leibniz probably did not get access to the Novae quadraturae of

Mengoli during his stay in Paris. However when he visited London a second time in October 1676 he made

excerpts from the correspondence between James Gregory and John Collins. In the sections copied by

Leibniz, there is also a passage on Mengoli’s proof of the divergence of the harmonic series, characterized

by Leibniz in a marginal note as ‘ingeniose’ (A III, 1 N 88_2 p 486f).

Volume 0 (2016) 3
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relation to Mengoli’s ideas in Circolo (1672). Therefore, in this paper our aim is to

provide an analysis of the main mathematical ideas in Mengoli’s quadrature, which

Leibniz referred to in his excerpts, in order to discuss Leibniz’s mathematical inter-

pretations and comments. These analyses show the relevance of Mengoli’s algebraic

procedure and the originality of his quadrature approach, which may have inspired
Leibniz in some aspects of his own arithmetical quadrature or of his further

researches in 1679.

Main mathematical ideas in Mengoli’s quadrature

The mathematical ideas in quadratures are found in both of Mengoli’s works: Geo-

metria (1659) and Circolo (1672). Mengoli’s Geometria is a 472-page text on pure

mathematics with six Elementa whose title: ‘Elements of Specious Geometry’ already

indicates the singular use of symbolic language in this work, and particularly in

geometry.7 Mengoli unintentionally created a new field, a ‘specious geometry’ mod-

elled on Vi�ete’s ‘specious algebra’ since he worked with ‘specious’ language, which

means that symbols are used to represent not just numbers but also values of any

abstract magnitudes.
Thus, Mengoli used this idea to compute quadratures of geometric figures

through their algebraic expressions. Mengoli’s aim was the computation of the quad-

rature of the semicircle of diameter 1, which corresponds to the integralR 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

dx, as we can read at the beginning of the Circolo: ‘Since I was young I

have been researching the problem of the quadrature of the circle, the foremost prob-

lem in the Geometry...’.8 In fact, according to Mengoli the results of the Circolo date

back to 1660.9 Instead of computing only this quadrature, Mengoli created a new

arithmetic-algebraic method for the computation of countless quadratures. From
our previous researches (Massa-Esteve 2006a, 2006b; Massa-Esteve and Delshams

2009), it is evident that there are three main ideas that are essential for Mengoli’s

determination of quadratures: the use of algebraic expressions for working with geo-

metric figures; the role of triangular tables of geometric figures, and the identification

7TheGeometriae Speciosae Elementa (1659) consists of an introduction entitled Lectori elementario, which

provides an overview of the six individually titled chapters or Elementa that follow. In the first Elementum,

De potestatibus, �a radice binomia, et residua (1659, 1–19), Mengoli shows the first 10 powers of a binomial

given with letters for both addition and subtraction, and explains that it is possible to extend his result to

higher powers. The second, De innumerabilibus numerosis progressionibus (1659, 20–94), contains calcula-

tions of numerous summations of powers and products of powers in Mengoli’s own notation, as well as

demonstrations of some identities. In the third,De quasi proportionibus (1659, 95–147), he defines the ratios

‘quasi zero’, ‘quasi infinity’, ‘quasi equality’ and ‘quasi a number’. With these definitions, he constructs a

theory of quasi proportions on the basis of the theory of proportions found in the fifth book of Euclid’s

Elements. The fourth Elementum, De rationibus logarithmicis (1659, 148–200), provides a complete theory

of logarithmical proportions. He constructed a theory of proportions between the ratios in the same man-

ner as Euclid with the magnitudes in the fifth book of Elements. From this new theory in the fifth Elemen-

tum, De propriis rationum logarithmis (1659, 201–347) he found a method of calculation of the logarithm

of a ratio and deduced many useful properties of the ratios and their powers. Finally, in the sixth Elemen-

tum, De innumerabilibus quadraturis (1659, 348–392) he calculates the quadrature of figures determined by

the ordinates now represented by y D K ¢ xm ¢ (t ¡ x)n. A detailed analysis of this work can be found in

Massa-Esteve (1998).
8‘Cercai, fino da giovinetto, il Problema Della quadratura del Circolo, il pi�u desiderato di tutti nella Geo-

metria’ (Mengoli 1672, 1).
9In the opening pages of the Circolo, Mengoli explains that he had found this result, the quadrature of the

circle, in 1660, but had not published it because, according to him, he only wanted to publish the mathe-

matics he needed to explain natural events (Mengoli 1672, 1).

4 BSHM Bulletin
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of the triangular tables of geometric figures with the triangular tables of values of

quadratures of these geometric figures.

Mengoli’s first idea: geometric figures expressed by algebraic expressions

The relationship between the ordinates and the abscissas of a geometric figure or of

the curve that describes it, as currently understood, was not yet established in the

mathematics of the seventeenth century. Some authors made several attempts to

introduce algebra into geometry in order to construct algebraic curves using the new

algebraic language (Bos 1981). Others defined and used curves through their proper-

ties, while still others defined geometric figures or the curves that determined these

figures through the description of their construction point-to-point or through their

movement (Bos 2001). However, these authors did not identify the algebraic expres-
sions with the geometric figures using a coordinate system, and even less without

using the drawing when working on it. As shown below, Mengoli presented a proce-

dure that was original and innovative for its time, by using algebra in geometry in a

singular way.

In the first definitions of Elementum sextum in Geometria, Mengoli stated his own

system of co-ordinates, abscissa, and ordinate. He proposed a line segment, which he

named ‘Rationalis’, and put it in a straight line that he called ‘Tota’ and represented

with the letter t (sometimes with the letter u, if its value is 1). He defined a base as a
straight-line segment of length t or 1 and he used the word abscissa10 represented by

the letter ‘a’, for our x, but within this finite base in a horizontal axis. The remainder

was represented by the letter ‘r D t ¡ a’ or ‘1 ¡ a’, depending on whether the base

was a given value t or the unit u.

With regard to the word ordinate,11 he first defined the ordinates of known fig-

ures, such as the square (or rectangle) and the triangle, from his construction on

every point of the base. For instance, he defined the ordinates of a square as follows:

10. Over a base is described a square, and I assume that from any of the
points of the base a straight line will be drawn to the opposite side, main-

taining itself parallel at all times to the sides of the square; this will be called

ordinate in [a] square.12

Mengoli did not define the ordinates through their constructions in the case of

mixed-line figures (determined by a straight part and a curved part), but he explained

that the ordinates were equal to the abscissas or power of the abscissas and named

10Theword abscissa had appeared in 1646 in Fermat’s works (1891–1922, 195), in Torricelli’s work (1919,

III, 366), in Cavalieri’s work in 1647 (1966, 858–859), and in Degli Angeli (1659, 175–179). Other authors

also used the word ‘diameter’ with the same meaning.
11Mengoli used the word ‘ordinata’ instead of the word ‘applicata’, which was commonly in use at that

time. Descartes defined the ordinates as ‘celles qui s’appliquent par ordre’ (Descartes 1954, 67). Smith in

this note explains: ‘The equivalent of “ordinate application” was used in the fifteenth-century by translat-

ing Apollonius’. The note also cites that the Mathematical dictionnary of Hutton (1796) gave ‘applicata’ as

the word corresponding to the ordinate, and explained that the expression ‘ordinata applicata’ was also

used. In fact, Fermat and Cavalieri used ‘applicata’. Mengoli in Circolo (1672) named them ‘ordinatamente

applicate’ (Mengoli 1672, 5).
12‘10. Super basi describatur quadratum: & ab uno quolibet puncto in basi sumpto, recta ducatur, usque ad

oppositum latus, reliquis lateribus quadrati parallela: quae dicetur, Ordinata in quadrato.’ (Mengoli 1659,

368)
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them ‘ordinate in form’. So, for the ordinates corresponding to a parabolic figure he

claimed: ‘any one ordinate is abscissa square’.13 Later, in some proofs of the proper-

ties of the figures, he used the equality between the ordinates and the powers of

abscissas expressed by means of proportions such as, 1: y D (1: x)n.
He did not use a vertical axis, and always drew the ordinates as lines perpendicu-

lar to the base. In fact, in Geometria he made only three figures and in Circolo he did

not include any drawing.

He described the geometric figures that he wanted to square as ‘extended by their

ordinates’. He denoted these geometric figures (which he referred to as ‘forms’)14 by

means of an algebraic expression written, in Mengoli’s notation, as FO.amrn., where

‘FO.’ denotes the form, a expresses the abscissa (x) and r the remainder (1 ¡ x). He

called this expression ‘Form of all products of m abscissae and n remainders’. Men-

goli again began with known figures such as the square (FO.u) and the triangle (FO.
a) and then progressed to any mixed-line figures.

23. And generalising, if over the base a figure is constructed, not extended

more than by ordinates within the square, in which any ordinate is consid-

ered as some element of the proportional table [am.rn with a abscissa and r

remainder]. [This figure] is called the ‘Form of all of possible proportional’

and an appropriate character will represent it. For instance, ‘Form of all
third abscissae’, FO.a3, ‘Form of all products of the second abscissae and the

remainders’, biprimae, FO.a2.r, ‘Form of all products of the abscissa and sec-

ond remainders’, unisecundae, FO.a.r2, ‘Form of all third remainders’, FO.r3

and so on.15

Nevertheless, Mengoli had to ensure that each of the defined algebraic

expressions, which were new algebraic objects, could be associated with a defi-

nite geometric figure. He enunciated the proposition as a problem, and proved
how algebraic expressions could be used to construct the ordinate in a geometric

figure at any given point. Mengoli here drew one horizontal axis AR and a per-

pendicular line (not in the middle) with the letter B over the base and the letter

C at the top of the perpendicular line (see Figure 1). Next we present the tran-

scription of Mengoli’s proof.

Problem I. Proposition 3. Find the ordinate of a proposed [geometric] figure at a

given point and from a given base.16 Hypothesis

That is, given FO.10a2r3, over a given base AR, in which is given a point B. It is

necessary to find the ordinate of [the point] B.17

13‘Unaquaelibet ordinata, est abscissa secunda’ (Mengoli 1659, 369).
14Theword forma dates from the previous century and was identified by measuring the intensity of a given

quality. (Clagett 1968, 91–92; Crombie 1980, 82–95).
15‘23. Et generaliter, si super basi concipiatur figura, extensa non nisi per ordinatas in quadrato: & in qua,

unaquaelibet ordinata, est assumpta quaedam in tabula proportionalium: dicetur, Forma omnes tales pro-

portionales aptoque significabitur charactere. vt Forma omnes abscissae tertiae, FO.a3: Forma omnes

biprimae, FO.a2r: Forma omnes unisecundae, FO.ar2: Forma omnes residuae tertiae, FO.r3. & sic dein-

ceps’ (Mengoli 1659, 369).
16‘Formae propositae, in data basi, per datum punctum, ordinatam invenire’ (Mengoli 1659, 377).
17‘Esto proposita FO.10 a2r3, super data basi AR, in qua datum punctum B. Oportet per B ordinatam

invenire’ (Mengoli 1659, 377).
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Construction.18

Given AR, and given AB, BR, the recta BC will be found, to which AR is a ratio
composed of given ratios AR to AB squared, AR to BR cubed, and of the ratio

one tenth: and BC will be put perpendicular to AR. I affirm that BC is the ordi-

nate of B, in FO.10 a2r3.19

Demonstration

The ratio AR to BC will be composed of ratios AR to AB squared, AR to BR

cubed, and of one tenth; but AR is u; AB, is a; BR, is r. Thus, the ratio AR to BC
will be composed of ratios ‘u to a’, squared, ‘u to r’, cubed, and of one tenth. But

u to 10 a2r3 will be composed of these: then AR to BC is like u to 10 a2r3. But AR

is u, so BC is 10 a2r3: then BC is the ordinate of [the point] B, in FO. 10 a2r3.20

Note here that Mengoli not only worked with proportions of segments but also

identified the length of segments with the letters u, a, r. He equated the product of

195

200

205

Figure 1. Illustration of Problem 3 (Mengoli 1659, 376)

18Throughout the book, Mengoli presented Theorems and Problems. In this case, he wrote the word Con-

struction, as Euclid did, before the demonstration and explained the construction used in it, as Euclid did

in Mengoli’s source H�erigone (Massa-Esteve 2010).
19‘DataAR, datisque AB, BR, inveniatur recta BC, ad qu�am AR, rationem habet compositam ex datis

rationibus, AR ad AB duplicata, AR ad BR triplicata, & ex ratione subdecupla:& collocetur BC perpendi-

culariter ad AR. Dico BC, esse ordinatam per B, in FO.10 a2r3’ (Mengoli 1659, 377).
20‘RatioAR ad BC, componitur ex rationibus AR ad AB duplicata, AR ad BR triplicata, & ex subdecupla:

sed AR, est u; AB est a; BR est r: Ergo AR ad BC ratio, componitur ex rationibus u ad a duplicata, u ad r

triplicata, & ex subdecupla: sed ex ijsdem componitur u ad 10 a2r3: ergo AR ad BC est ut u ad 10 a2r3: sed

AR est u: ergo BC est 10 a2r3: ergo BC est ordinata per B, in FO. 10 a2r3.Quod&c’ (Mengoli 1659, 378).
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segments with the composition of ratios because he knew the Euclidean theory of

proportions very well and took it as a link. However, unlike Descartes, Mengoli did

not define previously an algebra of segments; rather he demonstrated, for a given

measure u, the unity, how to construct the ordinate from the algebraic form corre-

sponding to a curve using the composition of ratios defined at the beginning of his
Geometria. His approach here was deeply original because he used these new sym-

bols, which he had associated with geometric figures, for algebraic calculations.

In this way, Mengoli’s first idea can be described as the establishment of an iso-

morphic relationship between algebraic objects and geometric figures, thereby allow-

ing him to deal with these geometric figures by means of their algebraic expressions.

Mengoli’s second idea: infinite triangular tables of geometric figures

After defining the given geometric figures: square, rectangle and any mixed-line fig-

ures, and assigning algebraic expressions to them, Mengoli proceeded to display

these algebraic expressions representing geometric figures in an infinite triangular

table (Tabula Formosa), a table of ‘forms’, inspired by the combinatorial triangle

(also known as Pascal’s triangle),21 without making a graphical representation. In

fact, the triangular table of geometric figures could be extended indefinitely accord-

ing to the binomial development. The expression placed in the vertex represented a
square of side 1. The two algebraic expressions of the first row represented two trian-

gles. The first ‘FO.a’ is determined by the diagonal of the first quadrant y D x, the

axis of the abscissas and the straight line x D 1, and the second triangle ‘FO.r’ is

determined by the straight line y D 1 ¡ x traced from the point (1, 0) to the point (0,

1) and the axis of the abscissas. The three algebraic expressions of the second row are

determined by the ordinates of a parabola, the axis of the abscissas and the straight

line x D 1, respectively. The first figure, ‘FO.a2’, is determined by the ordinates y D
x2, the second, ‘FO.ar’, is determined by the ordinates y D x.(1 ¡ x), and the third,
‘FO.r2’, is determined by the ordinates y D (1 ¡ x)2 and in the same way in the other

rows. See Mengoli’s table of forms (Figure 2) and my sketches of these geometric fig-

ures arranged as a triangular table (Figure 3).

As for the graphical representation of these geometric figures, it should be

emphasized that there are only three drawings of geometric figures in the Geometria,

and in his later work, Circolo, in which he made a computation of the quadrature of

the circle, he did not include any drawings. Mengoli did not draw these geometric fig-

ures, but made it clear that the drawings could be deduced from their definitions and
their positions in the triangular table. In fact, he considered three groups of geomet-

ric figures in the triangular table: the first, in the outside left diagonal of the Tabula

Formosa, FO.am, geometric figures determined by increasing ordinates; the second,

in the opposite diagonal of the table, FO.rn, geometric figures determined by decreas-

ing ordinates, and the third, in the middle of the table, FO.amrn, geometric figures

determined by ordinates that are first increasing, and after decreasing. He proved

that the latter geometric figures achieved the maxima value in an abscissa that divides

the base in the same ratio as the ratio between the exponents (Massa-Esteve 2016).

210

215

220

225

230

235

240

245

21The combinatorial triangle is known in history as Pascal’s triangle, because Blaise Pascal (1623–62)

explained and proved the properties in a very clear style (Bosmans 1924, 25–36; Pascal 1954, 91–107;

Edwards 2002, 57–86). Mengoli may not have known about Pascal’s treatise since it was published in

1665, but he knew its source very well, which was H�erigone’s work. On Mengoli’s triangular tables see

Massa (1997).
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He proves the characteristics for each group of geometric figures for only one spe-

cific entry, although he took this demonstration as true for all the entries due to the

symmetry of the triangular tables, and the regularity of their rows. Thus, the role of

the triangular tables for classifying, and for establishing the generality of the results

for each group of geometric figures becomes essential.

Mengoli’s third idea: the identification of the infinite triangular table of geometric

figures with the infinite triangular table of values of their quadratures

In Geometria, Mengoli introduced his method based on the construction of triangu-

lar tables and used the theory of quasi-proportions to compute the quadratures of

these geometric figures FO.amrn (Massa 1997). Indeed, he proved that all quadratures
of geometric figures with the appropriate coefficients have value 1.

Later, in Circolo he displayed in an infinite triangular table the numerical values

of their quadratures, where the notation with halves in the symbols is introduced (see

Figure 4), which is nothing other than the harmonic triangle (also known as Leibniz’s

triangle).22 Mengoli then identified these numbers, the inverse of the coefficients of

250

255

260

Figure 2. Tabula Formosa (Mengoli 1659, 366)

Figure 3. Our sketches of Mengoli’s geometric figures (Massa-Esteve 1998)

22The harmonic triangle, also called Leibniz’s triangle, is formed by the reciprocal of the elements (bino-

mial coefficients) of the binomial triangle times their own numbers. Its definition is related to the successive

differences of the harmonic sequence. See Edwards 2002, 106.
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algebraic expressions in geometric figures with the values of their quadratures of the
Tabula Formosa by homology. Homologous terms for Mengoli are terms situated in

the same place in each of the tables, which also preserve their proportions. Thus, the

square of the vertex is homologous to the unity, and the geometric figures in the first

row are homologous to 1
2
and so on (Figure 4).

Mengoli explained this relation of the homologous terms rhetorically:

15. Which [figures] I have proved to be proportional to the quantities arranged in

the third triangular table; and the square of the Rational FO.u, is homologous to

the unity; and the triangles FO.a, and FO.r, are homologous to the half; and the

[parabolas] FO.a2, FO.ar, FO.r2, are homologous to a third, a sixth and a third of

the unity; and FO.a3, FO.a2.r, FO.a.r2, FO.r3, are homologous to a fourth, a

twelfth, a twelfth and a fourth of the unity, and of the square itself; and thus all

the other forms in order, as also in the sixth element, as also in the sixth element

one may deduce by corollary from Proposition 10.23

265

270

275

Figure 4. (a) Mengoli’s Tabula Formosa; (b) Mengoli’s harmonic triangle (Mengoli 1672, 4 and 7), and

(c) author’s transcription with fractions

B=w in print; colour online

23‘15. Le quali tutte h�o dimostrato, che sonoproportionali, come le quantit�a disposte nella terza tavola tri-

angulare; ed �e il quadrato Della Rationale FO. u, homologa all’unit�a; e i triangoli FO. a, e FO. r, homo-

loghi all�a met�a; e le FO. a2, FO. ar, FO. r2, homologhe alle parti quarta, duodecima, duodecima, e quarta,

dell’unit�a, e dello stesso quadrato; e cos�ı tutte le altre forme per ordine: como ivi en el sesto elemento si

pu�o dedurr�e per corollario dalla prop. 10’ (Mengoli 1672, 6).
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Mengoli subsequently applied his method to compute infinitely many values of geo-

metric figures through the interpolation of both tables for half-integer values of the

exponents. First, he displayed the interpolated geometric figures
R
1
0x

m/2(1 ¡ x)n/2dx

for natural numbers m and n, in an infinite interpolated triangular table, which I will
call interpolated Tabula Formosa (Figure 5).

He then obtained an infinite interpolated triangular table of values of their quad-

ratures. With the help of the properties of combinatorial triangle, Mengoli was now

able to fill the interpolated combinatorial triangle (Figure 6), except for an unknown

number ‘a’ (Massa-Esteve and Delshams 2009).

The number ‘a’ is closely related to the quadrature of the circle (1/2a D p/8),

thereby constructing the interpolated harmonic triangle (Figure 7). In fact, he

obtained successive approximations of the number ‘a’ in order to approximate the
number p up to eleven decimal places (Massa-Esteve 1998).

The proportion between the geometric figures in the interpolated Tabula Formosa

and the homologous values of their areas in the interpolated harmonic triangle is pre-

served thanks to their construction. Mengoli makes clear that this relation referred to

by him as ‘the co-ordination of the two tables’, is maintained, since the first tables

(geometric figures and values of areas) are reproduced inside the interpolated tables.

Later, these ideas were read by Leibniz and he himself wrote some excerpts from

Mengoli’s work as we describe below.

Mengoli’s ideas in Leibniz’s excerpts (1676) from Circolo (1672)

Leibniz acquired new mathematical knowledge during his stay in Paris in the years
1672–76 and wrote some excerpts from Mengoli’s Circolo. According to Probst

(2015), the first part of the excerpts from Circolo, declared as missing in the Cata-

logue critique of Leibniz’s manuscripts (Rivaud 1914–24), is probably at least partly

identical to the manuscript LH 35 XII 1 fol 9–10, entitled Arithmetica infinitorum et

interpolationum figuris applicata et summa harmonicorum sub finem adiecta, printed in

A VII, 3 No 57_ 2 (Leibniz 2003), and which formerly had been located together

with the excerpts by Leibniz. Indeed, in a note written by Leibniz we can read ‘I put

this sheet to the Excerpta ex Mengoli Circolo’.24 There, Leibniz essentially discusses
the first triangular tables used by Mengoli in his Circolo and tries to find a method

for the computation of areas using the harmonic series.

Later Leibniz made other excerpts from Circolo entitled by the editors: Aus und zu

Mengolis Circolo. These manuscripts consist of two different parts: the first part, the

construction of the interpolated triangular tables, and the second, the computation of

280

285

290

295

300

305

310

315

320

Figure 5. Mengoli’s interpolated Tabula Formosa (Mengoli 1672, 5)

B=w in print; colour online

24‘Hoc schediasma collocavi apud Excerpta ex Mengoli Circulo’ (Leibniz A VII, 3 No 57_1). This was later

removed to another place within the collection of Leibniz’s manuscripts (at an unknown date before the

end of the nineteenth century).
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the number p. The first part is printed in A VII 6 N. 13_1, 113–120 (Leibniz 2012),

which corresponds to Mengoli’s Circolo, from page 1 to 20. The second part is enti-

tled by Leibniz: Pars 2 Excerptorum ex Circulo Mengoli, et Ad Eum Annotatorum,

printed in A VII 6 N. 13_ 2, 120–131 (Leibniz 2012), which corresponds to Mengoli’s

Circolo from page 26. In this paper we focus only on the first part of these excerpts,

that is, Leibniz’s interpretation of the interpolated geometric figures, and their quad-

ratures through the interpolated triangular tables. Thus, the computation procedure

of the number p that Leibniz dealt with in the second part of these excerpts has not
been compared with the corresponding calculations in Mengoli’s Circolo yet.

Leibniz’s interpretation of Mengoli’s ideas in Arithmetica infinitorum et
interpolationum figuris applicata (Fine April 1676)

In the first part, these excerpts consist of some triangular tables and their explana-

tions (Leibniz 2003). In fact, the Tabula Formosa with geometrical figures in

Mengoli’s Circolo was reproduced in Leibniz’s excerpts with a triangular table, where

the terms are the ordinates of these geometric figures. Mengoli’s harmonic triangle
with the values of quadratures of geometric figures in Mengoli’s Circolo was repro-

duced in Leibniz’s excerpts with a harmonic triangle, but they were written in a dif-

ferent notation. Mengoli wrote the denominator in brackets like 1(2), while in

contrast Leibniz wrote the fraction 1
2
(see Figure 4 and Figure 8).

325

330

335

340

345

350

Figure 6. Mengoli’s interpolated combinatorial triangle (Mengoli 1672, 13)

B=w in print; colour online

Figure 7. Mengoli’s interpolated harmonic triangle with our annotations (Mengoli 1672, 19)

B=w in print; colour online
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In addition, there is a sharp contrast between Mengoli’s rhetorical justification of

identification of terms in Tabula Formosa and Harmonic Triangle by homology and

Leibniz’s interpretation of this identification. Indeed, Leibniz justified the identifica-

tion of table of ordinates of geometric figures and their quadratures by designing a
geometrical figure and explaining all the segments of the drawing (Figure 9).

For the coordinates, Leibniz took abscissas in a vertical axis and ordinates in a

horizontal axis, in contrast with Mengoli’s system of coordinates defined in Geome-

tria.25 In the drawing of the geometrical figure, Leibniz identified the segments as the

tota (AR), the abscissa (AB), the remainder (BR) and the ordinate (BC) (Figure 9):

Let trilateral space ARDCA be closed by two straight lines AR, RD and a curve

ACD. The line AR tota is t. Abscissa AB is a. Residua BR is r. The ordinate BC

is y.26

Furthermore, Leibniz identified the geometric figures: the square (ARDE), the

triangle (ARD) and the parabolic curve (ARDGA) in the same figure, changing the

value of the ordinate BC and assuming the value of tota equal to 1 (Figure 9).

If we put [iam] that y D t, it is as if by geometric figure ARDCA would be the

square ARDE. If y were equal to a, or well, to r, or if the ordinate BF were equal

to AB, the geometric figure ARDCA would be the triangle a semi-squareARD. If

y D a2/t or well put t D 1 if y D a2 D BG, the geometric figure ARDCA would be
the geometric figure ARDGA trilateral space parabolic and also for other figures,

as if y were equal a3, or well a4.27

355

360

365

370

Figure 8. Leibniz’s table of ordinates of geometric figures (tab. I) and Leibniz’s harmonic triangle (tab.

II) (Leibniz 1676, AVII 3, No 572, 2003, 736)

B=w in print; colour online

25Leibnizmay not have read Mengoli’s system of coordinates, because in Circolo Mengoli did not include

any drawing of geometric figures.
26Sit trilineum ARDCA duabus rectis AR.RD et curva ACD. Inclusum. Recta AR tota sit t.Abscissa AB sit

a. Residua BR sit r. Ordinata BC sit y (Leibniz 1676, 57_ 2, 2003, 737).
27Si ponamus iam esse y P t. ut si pro figura ARDCA erit quadratum ARDE. Si y sit P a vel r, seu si ordi-

nata BF sit P AB. pro figura ARDCA, erit triangulum a semiquadratum ARD. Sin y Pa2/t vel posita tP

1, si y Pa2 P BG, pro figura ARDCA, erit ARDGA trilineum parabolicum, et ita de caeteris altioribus, ut

si y sit a3, vel a4 (Leibniz 1676, AVII 3, 57_2, 2003, 737).
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On the other hand, in his Circolo Mengoli did not identify these geometric

figures through a drawing. Indeed, Mengoli did not include any drawing of geo-

metric figures and always worked with algebraic expressions of these geometric

figures.

Leibniz then identified the terms in the triangular Table I, which are ordi-

nates of geometric figures, with the terms of the triangular Table II (Figure 8),

which are values of areas. And for this identification with the values of areas he
used the sum of all ordinates of geometric figures. Leibniz explained this idea

rhetorically:

Further, since it has all the (geometric) figures whose ordinates are shown in Tab.

1, it will yield the quadratures (and they are obviously all of the kind of Parabolic,

for rational whole numbers); therefore, the complete area of the (geometric) fig-

ures or indeed the sums of all [omnium]28 ordinates from A to R that will be

expressed in the Tab. 2. Of course, all of a, or indeed the area ARD is 1
2
of the

square ARDE. All of a2, or indeed the area ARDGA is 1/3 of the same (square);

and so on.29

Mengoli did not identify the terms of the triangular table with ordinates, per-

haps to avoid the idea of summing all ordinates, influenced by Cavalieri’s con-

troversial ideas on indivisibles. Leibniz, on the other hand, identified the terms

of the triangular table with ordinates, drawing a figure for identifying the ordi-

nate of each geometric figure and making the summation of ordinates for squar-

ing geometrical figures without any problem. Besides, Leibniz did not state that

375

380

385

390

395

Figure 9. Leibniz’s geometrical figure (Leibniz 1676, AVII 3 No 572, 2003, 737)

28Obviously the expression was originated with Cavalieri.
29Porro quoniam harum figurarum omnium quarum ordinatae tab. I exhibentur, datae sunt quadraturae

(sunt enim omnes ex genere paraboloeidum, quippe rationales integrae) ideo area figurarum completarum

seu summas omnium ordinatarum ab A ad R. expressimus tab. II. Nempe omnes a. seu area ARD est 1
2

quadrati ARDE. Omnes a2, seu area ARDGA, est 1/3 eiusdem; et ita de caeteris (Leibniz 1676, AVII 3,

57_2, 2003, 738).
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it was his own interpretation, because in Mengoli’s Circolo there were no draw-

ings of the geometrical figures, only algebraic expressions of geometric figures

and the identification of triangular tables.

Leibniz’s interpretation of Mengoli’s ideas in Aus und zu Mengolis Circolo (1676)

The first part of Aus und Zu Mengolis Circolo consists of a large sheet with three tri-

angular tables: an interpolated combinatorial triangle, an interpolated harmonic tri-

angle and an interpolated table of ordinates of geometric figures, containing

explanations of their constructions (Leibniz 2012). In the first paragraphs, Leibniz

explained the construction of the interpolated combinatorial triangle (Figure 10) and

taking AB, the unities: 1, 1, 1,...; EF, the arithmetic numbers: 1, 2, 3,...; KL, the trian-
gular numbers 1, 3, 6,...; PQ, the pyramidal numbers, 1, 4, ... and so forth, he calcu-

lated the interpolated lines CD, GH, MN, RS, and so on. In fact, these explanations

for computing the interpolated combinatorial triangle in Figure 10 are easier and

more understandable than Mengoli’s explanations in Circolo for computing a similar

table (Massa-Esteve and Delshams 2009).

The construction of Leibniz’s interpolated harmonic triangle (Figure 11) from the

interpolated combinatorial triangle (Figure 10) was explained by some operations of

multiplication and the inversion of the results, as in Mengoli’s Circolo, without any
additional comment:

The series of the table will be multiplied in the horizontal, the first or well the ver-

tex 1, by 1, or well by 2/2; the second or well 1, 1, by 3/2; the third, or well, 1, b, 1,

395
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440

Figure 10. Leibniz’s interpolated combinatorial triangle (Leibniz 1676, AVII 6 No 131, 2012, 114)
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by 4/2 or well 2; the fourth 1, 3/2, 3/2, 1, by 5/2, and so on. All the terms of prod-

ucts that will be inverted, the unities in the numerator and the product in the

denominator, make up the table .30

Nevertheless, if we compare Leibniz’s interpolated harmonic triangle (Figure 11)

with Mengoli’s interpolated harmonic triangle (Figure 7), two small differences can

be observed: Mengoli gave the letter a, while Leibniz put the letter b for finding the
number p, and as in the former triangular tables, Leibniz wrote fractions, and Men-

goli put the denominator in brackets.

However, the most remarkable differences are in Leibniz’s construction of

the triangular table of interpolated geometric figures. Thus, although Leibniz

wrote the ordinates of these interpolated geometric figures (Figure 12), he did

not write the expressions of geometric figures (Forms) as Mengoli did in his Cir-

colo (Figure 5). Furthermore, Leibniz did not refer to Mengoli’s way of express-

ing his Forms.
As in the other excerpts, Leibniz drew a geometric figure (Figure 13) for establish-

ing the identification between the interpolated table of ordinates of geometric figures

(Figure 12), and the values of their quadratures in the interpolated harmonic triangle

(Figure 11).

Leibniz explained rhetorically the interpolated tables of ordinates, identifying

each ordinate of the corresponding geometric figure. He explained this identification

in his additional geometric figure, taking again the vertical axis as the x-axis, and the

horizontal axis the y-axis. Leibniz identified the abscissa (AF), the remainder (FC)
and the tota (AC). In addition, he expressed the ordinates of the circle and of the

parabola (FG) (Figure 13):

445

450

455

460

465

Figure 11. Leibniz’s interpolated harmonic triangle (Leibniz, 1676, A VII 6 No 131, 2012, 115)

B=w in print; colour online

30Series Tabulae � horizontales multiplicentur, prima seu vertex 1. per 1. seu 2/2. secunda seu 1. 1. Per 3/2.

tertia seu 1. b. 1. Per 4/2 seu 2. quarta 1. 3/2. 3/2. 1. per 5/2. Et ita porro. Termini singuli producti invertan-

tur, unitato numeratore in nominatorem et contra, fiet Tabula (Leibniz 1676, AVII 6 No 131, 2012, 118).
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The table , can be explained from the additional geometric figure. AF D a

abscissa, FC D r remainder, AC tota. The ordinates FG will be the other terms of

the table , and if AGD were the quadrature of the circle, FG would be xar, and

if parabola were with axis AB, [the ordinate] FG would be,xa or wellxr.31

Leibniz justified the values of quadratures of the interpolated geometric figures by

the drawing of geometric figure (Figure 13), specifying that by approximating the

quadrature of the circle, he needed to find the letter b and to put the value of tota
equal to 1:

Also terms of series explained the areas of geometric figures AGDCLA, put AC

square of tota AC, 1.32

Leibniz made similar interpretations for the interpolated triangular tables as in

the former triangular tables. However, we wish to point out that, from page 21 to 25

in Circolo, Mengoli justified the quadratures of interpolated geometrical figures

465

470

475

Figure 12. Leibniz’s interpolated table of ordinates of geometric figures (Leibniz 1676, AVII 6 No 131,

2012, 115)

Figure 13. Leibniz’s geometric figure (Leibniz, 1676, AVII 6 No 131, 2012, 119)

B=w in print; colour online

31Tabula, ex figura adjecta explicatur AF P a. abscissa, FC P r residua, AC tota. FG ordinata erit aliquis

terminus tabulae, ,. ut si AGD sit quadrans circuli FG eritxar, si parabola sit cujus axis AB, erit FG, xa

velxr (Leibniz 1676, AVII 6 No 131, 2012, 119).
32Termini autem seriei explicant aream figurae AGDCLA, posito AC, quadrato totius AC, 1 (Leibniz

1676, AVII 6 No 131, 2012, 119).
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through a classification of kinds of quadratures and also computed some particular

examples of each kind (Massa-Esteve and Delshams 2009).

Some final remarks

Mengoli used ‘specious’ language both as a means of expression and as an analytic

tool. Mengoli dealt with species, forms, triangular tables and quasi ratios using his

specious language. We claim that the triangular tables of quadratures that Mengoli

constructed indefinitely as visual structures were true algebraic tools. Through these

tables, he classified the geometric figures into three groups, and proved the properties

of each group by using the symmetry of the triangular tables and the regularity of

their rows (Massa-Esteve 2016). However, we also argue that the most innovative

aspect of Mengoli’s algebraic procedure was his use of letters to deal directly with
the algebraic expression of the geometric figure. This identification and the triangular

tables allowed him to work with geometric figures and to calculate their quadrature

via their algebraic expressions, while at the same time deriving known and unknown

values for the areas of a large class of geometric figures.

As for Leibniz’s interpretation, this author learned of Mengoli’s new mathemati-

cal ideas only a few years after 1672, when they were published. In his excerpts of

1676 from Mengoli’s Circolo, Leibniz constructed the triangular table of ordinates,

whereas Mengoli had constructed the triangular table of geometrical figures through
algebraic expressions, and in this way Leibniz made his own interpretation. In addi-

tion, Leibniz drew a geometrical figure to justify rhetorically the quadratures of the

figures through the segments, although he did not mention that this geometrical

figure and this interpretation were not present in Mengoli’s Circolo. In fact, Mengoli

justified the identification of the triangular tables rhetorically without the help of

some figure. He worked only with the algebraic expressions, so the relation between

the Tabula Formosa and the harmonic triangle preserves the proportion between the

terms situated in the same place in each of the tables referred to by Mengoli as
‘homologous’ terms. This interpretation is also absent in Leibniz’s excerpts on inter-

polated figures. Perhaps Leibniz thought that his own interpretation of Mengoli’s

work by means of a drawing was easier and more understandable than Mengoli’s

weak rhetorical explanation by homology.

A further difference is the use of the sums of all ordinates for the identification of

the values of quadratures in Leibniz’s excerpts. Mengoli did not make this sum in his

method of quadratures, and his aim was not to make it. Mengoli could not pursue

this approach because he was the pupil of Cavalieri, and was very familiar with the
controversy of the indivisibles method, that is, the idea that the sum of all ordinates

of one dimension could not give one figure of two dimensions (Massa-Esteve 2015).

Leibniz was convinced that he could add the ordinates, and furthermore he

attempted ‘to set the methodus indivisibilium on solid grounds’ (Rabouin 2015). How-

ever, the option of avoiding any mention of Mengoli’s algebraic way concealed the

originality of Mengoli’s work.

Nevertheless, it should be pointed out that in 1679 Leibniz again took Mengoli’s

tables in order to arrive at new results, and in this case the treatment is different and
involved infinite series. We therefore surmise that Mengoli’s mathematical ideas

based on algebraic procedures may have influenced Leibniz’s later developments

regarding quadratures and the use of triangular tables as a tool for the computation

of areas.
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Indeed, as Probst (2015) also has mentioned, Mengoli was quoted in Leibniz’s

works as one of the scholars with whom Leibniz would like to collaborate. In one of

his projects for an international science organization, Consultatio de naturae cogni-

tione (1679), Leibniz mentions Mengoli among the scholars whose cooperation he

desires (A IV, 3 No 133 p 868). In fact, not all authors of the seventeenth century
understood Mengoli’s new ideas. It is possible that his complex and confusing writ-

ing style, as well as the complicated nature of his notation, made his works too hard

to read. However, it is equally possible that his original introduction of algebra into

geometry failed to accord with the prevailing mathematical practice of the seven-

teenth century.
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