
PROJECTE FINAL DE CARRERA

Parallelization of Finite Difference Methods:

Nodal and Mimetic solutions of the wave equation.

Estudis: Enginyeria de Telecomunicació

Autor: Ferran Moya Arrayás

Codirectors: Beatriz Otero, Otilio Rojas

Any: 2016

Parallelization of Finite Difference Methods i

Collaborations

Departament of Computer Architecture – Barcelona School of Telecommunications Engi-
neering (ETSETB)

ii Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods iii

Thanks

I would first like to thank my project director Dr. Beatriz Otero of the Departament of
Computer Architecture at Barcelona School of Telecommunications Engineering. She gave me
total independence and constantly encouraged me to push my limits and keep on improving my
work.

I would also like to thank the Dr. Otilio Rojas for his help and guidance in understanding
compact finite difference methods and their subtleties as well as to MSc. Luis J. Córdova whose
MATLAB algorithms were seminal to this work.

Last but not least, I would like to thank my family –my parents and my brother– and my
friends for encouraging and supporting me throughout the development and writing of this work
and my life in general.

Ferran Moya Arrayás

iv Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods v

Contents

Collaborations i

Thanks iii

Abstract ix

Resum xi

Resumen xiii

1 Introduction 1

1.1 Project context . 1

1.2 Objectives . 2

1.3 Document structure . 2

2 Theoretical background 5

2.1 Acoustic wave propagation . 5

2.2 Boundary conditions . 5

2.3 A review of finite difference methods . 5

2.3.1 Finite differences on nodal grids . 6

2.3.2 Stencils . 7

2.3.3 Popular methods for parabolic problems 7

2.3.4 Alternating Direction Implicit (ADI) method 8

2.3.5 Staggered grids . 8

3 The Nodal method 11

3.1 Description . 11

3.1.1 Physical parameters . 14

3.2 Algorithm . 14

3.3 Complexity analysis . 15

3.3.1 Operations . 18

3.3.2 Analysis . 18

4 The Mimetic method 21

4.1 Description . 21

4.2 Algorithm . 23

4.3 Complexity analysis . 26

4.3.1 Operations . 26

4.3.2 Analysis . 26

vi Parallelization of Finite Difference Methods

5 Linear algebra libraries 29

5.1 Basic Linear Algebra Subprograms (BLAS) . 29

5.2 Linear Algebra PACKage (LAPACK) . 30

5.3 CUDA BLAS (cuBLAS) . 31

5.4 Matrix storage . 31

6 Reference MATLAB implementation 33

6.1 Optimization strategies . 33

6.1.1 Matrix inversion . 33

6.1.2 Optimized BLAS . 33

6.1.3 Multiprocessing . 33

6.1.4 Vectorization . 34

7 General application structure 37

7.1 Language . 37

7.2 Architecture . 37

7.2.1 Matrix objects . 38

7.2.2 MatrixTester objects . 38

7.2.3 Problem objects . 39

7.2.4 Grid objects . 39

7.2.5 Nodal and Mimetic objects . 39

7.3 Program flow . 39

8 C++ implementation 43

8.1 Programming model . 43

8.1.1 CPU . 43

8.1.2 Memory . 43

8.1.3 Cache . 45

8.2 Optimization strategy . 45

9 OpenMP implementation 49

9.1 Programming model . 49

9.1.1 Core elements . 49

9.1.2 Memory model . 49

9.2 Optimization strategy . 50

10 CUDA implementation 55

10.1 Programming model . 55

10.2 Hardware architectures . 57

10.2.1 Fermi . 58

10.2.2 Maxwell . 61

10.3 Optimization strategy . 61

10.4 Implementation . 64

10.4.1 cudaEnvironment class . 64

10.4.2 cuMatrix template class . 65

10.4.3 CUDA kernels . 66

10.4.4 Parallel reduction . 66

Parallelization of Finite Difference Methods vii

10.4.5 Banded matrix kernels . 67
10.4.6 Solver convergence . 67

11 Results 69
11.1 Test systems . 69
11.2 Output . 69
11.3 MATLAB / Octave . 69
11.4 Single–threaded C++ . 77
11.5 Multi–threaded C++ (OpenMP) . 77
11.6 CUDA C++ . 80
11.7 Compared performance . 83

12 Conclusions 89

A Matrix naming 91
A.1 The Nodal method . 91
A.2 The Mimetic method . 91

B MATLAB sources 93
B.1 Description . 93
B.2 The Nodal method . 93
B.3 The Mimetic method . 96

B.3.1 matriz RG.m . 100
B.3.2 matriz RD.m . 100

C CUDA kernels 103
C.1 Basic matrix operations . 103
C.2 Reduction . 105
C.3 Banded matrix multiplication . 106
C.4 Thomas algorithm . 108

References 111

List of Figures 115

viii Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods ix

Abstract

In the present work we analyse two finite difference methods for the propagation of acoustic
waves proposed by Córdova et al. [1] to optimize its performance. The computational domain is
rectangular. The first of these methods uses a nodal grid and traditional compact finite differ-
ences that imply solving tridiagonal systems for numerical differentiation. The second method
applies mimetic differential operators in explicit form in a center-distributed grid, avoiding the
need to solver linear systems of equations.

Starting from a basic MATLAB implementation of both methods, we study their algorithmic
complexity and attempt a first optimization of the reference code. Then several optimization
strategies are explored. We develop a single–threaded C++ version and then build an OpenMP
version to exploit multithread parallelism. Massive parallelization strategies are implemented
in a GPU accelerated version using CUDA. Finally, we perform a comparative study of the
methods and their behaviour towards different optimization strategies.

Each optimization technique used is optimal for a certain range of problem sizes. By com-
bining the options developed in this work, it is possible to obtain an execution time speedup
between 10–28× (nodal method) and 18–50× (mimetic method) for the whole range of usable
problem sizes.

x Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods xi

Resum

En el present treball s’analitzen dos mètodes en diferències finites per a la propagació d’ones
acústiques proposats per Córdova et al. [1] amb l’objectiu d’optimitzar-ne el rendiment. El
domini computacional és rectangular, i el primer d’aquests mètodes fa servir una malla nodal
i diferències finites compactes tradicionals que impliquen la resolució de sistemes tridiagonals
per la diferenciació numèrica. El segon mètode aplica en forma expĺıcita operadors mimètics de
diferenciació en una malla centre-distribüıda, evitant d’aquesta manera la resolució de sistemes
lineals.

Partint d’una implementació bàsica per MATLAB dels mètodes proposats, s’analitza la com-
plexitat numèrica i s’intenta optimitzar el codi original. A partir d’aquesta implementació de
referència explorem diverses estratègies d’optimització. Primerament es desenvolupa una versió
en C++ per a una sola CPU i a partir d’aquesta implementació s’explota el paral·lelisme mit-
jançant una versió multifil emprant la tecnologia OpenMP. Seguidament s’exploren les possibil-
itats de paral·lelització massiva mitjançant el càlcul accelerat per GPU amb CUDA. Finalment
es presenta un estudi comparatiu dels diferents mètodes i el seu comportament enfront de les
diferents optimitzacions emprades.

Cada tècnica d’optimització resulta òptima per a un rang de mides del problema. Combinant
les diferents opcions desenvolupades en el present treball, es possible obtenir una acceleració del
temps d’execució entre 10–28× (mètode nodal) i 28–50× (mètode mimètic) per a tot el rang de
mides usables.

xii Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods xiii

Resumen

En el presente trabajo se analizan dos métodos en diferencias finitas para la propagación de
ondas acústicas propuestos por Córdova et al. [1] con el objeto de optimizar su rendimiento. El
domino computacional es rectangular, y el primero de estos métodos emplea una malla nodal
y diferencias finitas compactas tradicionales que implican la resolución de sistemas tridiago-
nales para la diferenciación numérica. El segundo método aplica en forma explicita operadores
miméticos de diferenciación en una malla centro-distribuida, y aśı evita la solución de sistemas
lineales.

Partiendo de una implementación básica para MATLAB de los métodos propuestos, se anal-
iza la complejidad numérica y se intenta optimizar el código original. A partir de esta im-
plementación de referencia se exploran diversas estrategias de optimización. Primeramente se
desarrolla una versión en C++ para una sola CPU y a partir de esta implementación se explota
el paralelismo mediante una versión multihilo usando la tecnoloǵıa OpenMP. Seguidamente se
exploran las posibilidades de paralelización masiva mediante el cálculo acelerado por GPU con
CUDA. Finalmente se presenta un estudio comparativo de los distintos métodos y su compor-
tamiento con las diferentes optimizaciones usadas.

Cada técnica de optimización utilizada resulta óptima para un rango de tamaños de problema.
Combinando las diferentes opciones desarrolladas en el presente trabajo, es posible obtener
una aceleración del tiempo de ejecución de entre 10–28× (método nodal) y 28–50× (método
mimético) para todo el rango usable de tamaños de problema.

xiv Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 1

Chapter 1

Introduction

1.1 Project context

Acoustic waves are longitudinal waves which propagate through the adiabatic compression and
decompression of the particles of the medium. For instance, sound is an acoustic wave where
the particles of either a gas or a liquid vibrate according to an acoustic source. Seismic waves
are another example of acoustic waves and a common application for the algorithms discussed
in this work.

The acoustic wave problem is defined as a system of differential equations which has no
general closed solution. For real world application, numerical methods are required to simulate
acoustic waves. The numerical methods discretize the problem constructing a grid of nodes over
the domain. Nodal methods are defined in the seminal work by Lele [2]. The first nodal grid
methods [3] [4] were low order approximations. Center distributed methods [5] employed a grid
where the scalars are offset by h

2 to center the variables into their dependent nodes to increase
accuracy. Those methods were improved to 4th order [6] [7] [8] and even applied to solve some
elastic problems. The increase of method order gave rise to stability problems –which where
most significant on the domain boundary due to the potential discontinuities– so methods where
devised to reduce the order [9] [10].

The methods studied in this work employ two types of differential operators. The nodal
method employs implicit operators (they require solving a system of equations in the forward-
backward direction) whereas the ones used by the mimetic method are explicit (they compute
the forward value directly from the current one). It is expected that an implicit method will be
more stable than an explicit one, albeit slower due to the increased computational cost.

In [11], Aboulai and Castillo generalize and reparametrize the 4-th order operators proposed
by Castillo and Grone [12]. This gives rise to a decomposition in smaller (compact) stencils
which is the one studied in this work. Aside from the perfomance increase given by the proposed
methods, more improvement can be gained with traditional software optimization techniques.
We also expect to be able to increase performance with some degree of parallelization.

From the utilization of current multiprocessor systems to exploiting massive parallelism in
GPU hardware, parallelization is a very active topic in today’s high performance computing
and several technologies exist to streamline the development of parallel software. In this work
we will employ OpenMP, which is a multiplatform C/C++ API for concurrent programming
on multi-CPU architectures and CUDA, which is a set of extensions to the C/C++ language
to allow heterogeneous parallel programming on NVIDA GPUs.

2 Parallelization of Finite Difference Methods

Modern commercial computer architectures have 2-8 CPUs 1. A commercial GPU usually
has hundreds to thousands of processing units with an architecture which is totally unlike a
general purpose CPU. The use of OpenMP and CUDA helps to speedup the development of
the software but the radical differences between CPU and GPU oriented parallelization pose
a serious challenge to the effective parallelization of these finite difference methods, which are
mostly sequential in nature.

The optimization and search for parallelization opportunities in the methods proposed in [1]
is the main objective of this work.

1.2 Objectives

There are three main work objectives.

1. Implement the finite difference methods for solving wave problems proposed by [1].

2. Test several optimization techniques to improve its performance.

3. Develop a software to test the different implementations, automating the performance
exploration over the wide range of parameters and variations.

To ensure the results correctness, a test system will be developed for automated implemen-
tation validation.

To ensure reproducibility, a system will be developed to define the implementations to be
tested for each method and the parameter range to explore. Results will be presented in a
unified format for their automatic processing.

The work in [1] is recent. This adds an exploratory nature to this work due to the antici-
pated need of modifying or widening its scope. Each optimization will be implemented in an
incremental fashion, aiming for a high level of code reusability and thus providing a high degree
of scalability to allow for agile exploration of new solutions.

For this reason, even though obtaining the maximum performance will be a high priority for
this work, it also becomes essential to design a modular and reusable software, being this the
most prioritary design objective.

1.3 Document structure

This work begins by summarising the fundamentals of acoustic wave propagation and reviewing
some concepts of finite difference methods that lay out a more in depth analysis of the nodal
and mimetic methods as proposed by [1].

A brief summary of linear algebra libraries is included along an analysis of the reference
MATLAB implementation as introductory material to the application description.

1In the case of supercomputing systems, the CPU count can be much higher.

Parallelization of Finite Difference Methods 3

The main application is conceptually divided into a general application structure – which is
mostly a high level abstraction of the theoretical ideas – and the low level implementation of
the optimization/parallelization strategies (C++, OpenMP and CUDA).

In the last part of the work, results for all implementations and variations are presented
and their performance is compared. Finally, the most important results are analysed in the
conclusions.

Three annexes are included, which contain relevant MATLAB and CUDA source code, along
with a guide on matrix naming for an easier source review.

4 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 5

Chapter 2

Theoretical background

2.1 Acoustic wave propagation

In this section, we review the formulation of the acoustic wave equation subject to Dirichlet
boundary conditions and adequate initial conditions. Acoustic waves have several properties:

� Propagation is achieved by compression and decompression of medium particles.

� Acoustic waves are longitudinal waves, i.e., the displacement of the medium is parallel to
to the travelling direction.

� Acoustic propagation is assumed as an adiabatic process: no energy is transferred in or
out of the system.

The propagation of acoustic waves can be described by the pressure-velocity formulation of the
wave equation

1

k

∂u

∂t
= −∇ · v + f

ρ
∂v

∂t
= −∇u

(2.1)

where ρ is the medium density, k is the adiabatic medium compression modulus, u is the pressure
field and vector v = (v, w) the particle velocity vector.

This work concerns with the finite difference simulation of acoustic wave propagation under
the conditions described below. However, the numerical methods we use can be readily extended
to the solution of more general acoustic problems.

2.2 Boundary conditions

In this work, we consider as propagation domain Ω = [0, 1] × [0, 1] whose boundary is ∂Ω, as
used in [1]. In addition, we impose Dirichlet boundary conditions on ∂Ω, thus the unknown
solution to 2.1 is specified on this boundary

u(x, y, t) = uo(x, y, t) ∀x, y ∈ ∂Ω (2.2)

Finally, we here also provide initial conditions with the form u(x, y, t = 0) and v = 0.

2.3 A review of finite difference methods

Finite Difference Methods (FDM) are a family of numerical methods for solving differential
equations based on replacing each continuous derivative by a finite difference approximation.

6 Parallelization of Finite Difference Methods

Thus, the discrete computational version of the original differential equation is a set of difference
equations [13]. In the case of time dependent problems, the finite difference discretization is
performed at two main levels:

� The time interval is discretized in time steps which usually need to be small for stability
constraints and to avoid using of long stencils that may increase memory costs.

� The spatial domain is discretized by using a grid of points where the difference equations
are evaluated and finally solved. The distance between each two points of the grid is
adjusted according to the accuracy tolerance required on discrete solutions.

A common class of finite difference methods discretize time derivatives by implicit strategies
and then require solving a system of linear equations to update the discrete solution. Similarly,
standard compact finite differences employ implicit stencils for spatial differentiation and arising
linear systems are typically banded, and therefore efficiently solved [2] [14]. This work focuses
on the two high-order compact finite difference methods described in [1], one of them is spatially
implicit, while the other one is a recent explicit scheme. Next, we briefly introduce some basic
finite difference concepts to provide some context to the development of these compact methods.

2.3.1 Finite differences on nodal grids

Let us use the Taylor expansion of a smooth one-dimensional function f(x) to construct a finite
difference approximation for the first derivative. On a grid with spacing h that comprises the
point xo, we can write

f(xo + h) = f(xo) +
f ′(xo)

1!
· h+R1(x) (2.3a)

f ′(xo) ≈
f(xo + h)− f(xo)

h
(2.3b)

Which is the forward difference form of a finite difference divided by the grid size plus an R1(x)
error term which is the first order reminder of the Taylor Series Expansion. We can improve the
approximation by using more series terms, building a higher order finite difference operator.
Depending on which grid points we use to compute the finite difference we will get the three
most used forms of finite differences [15]:

� Forward difference: the forward (next) point of the function is used to compute the
difference.

f ′(xo) ≈
f(xo + h)− f(xo)

h
(2.4)

� Backward difference: the backward (previous) point of the function is used to compute
the difference.

f ′(xo) ≈
f(xo)− f(xo − h)

h
(2.5)

� Central difference: the central (in–between) points of the function are used to compute
the difference.

f ′(xo) ≈
f(xo + h

2)− f(xo − h
2)

h
(2.6)

From this relations one can define discrete differential operators that compute the derivative
approximation from the function evaluations according to the selected criteria.

Parallelization of Finite Difference Methods 7

2.3.2 Stencils

The set of points used for computing a finite difference around a central point is called a
stencil. Stencils are an easy way to visualize the spatial-time dependencies in a finite difference
algorithm. By only considering the time dependencies, an implicit simple stencil will be ‘T’
shaped, with the current value (j, n) at the base and the future values (j − 1, n + 1), (j, n +
1), (j + 1, n + 1) at the top. On the other hand, its explicit version will be a reversed stencil,
with three points (the current values) at the base and one at the top (the next step value).

Figure 2.1: Implicit Method Stencil

To achieve higher precision on a finite difference approximation a larger stencil that accounts
for several neighbouring points can be used. However, wide implicit stencils are not desirable
because thay imply high computation costs due to the complexity of the linear system arising
from the stencil application.

2.3.3 Popular methods for parabolic problems

We can obtain the second derivatives with the succesive application of the finite diferences along
each dimension. Several methods are possible:

� FTCS [14]: The Forward-Time Central-Space or explicit method uses a forward difference
for space and a central difference for space.

� BTCS: The Backward-Time Central-Space or implicit method uses a backward difference
for space and a central difference for space.

� CTCS [16]: The Crank-Nicolson method uses a central difference at time tn+ 1
2

and a

second-order central difference for the space derivative.

Each method has different computational requeriments, stability properties and error rates:

Method Computation Stability Error

Explicit Direct Conditional O(ht) +O(hx
2)

Implicit Equation system Unconditional O(ht
2) +O(hx)

Crank-Nicolson Equation system Unconditional O(ht
2) +O(hx

2)

Let us assume the following 1D Dirichlet problem defined on a region Ω:
ut = αuxx, x ∈ Ω, t > 0

u(x, 0) = φ(x), x ∈ Ω ∪ ∂Ω

u(x, t) = γ(x, t), x ∈ ∂Ω, t > 0

(2.7)

8 Parallelization of Finite Difference Methods

Figure 2.2: 1D Crank-Nicholson Stencil

Let Unj denote the finite difference approximation unj = u(j∆x, n∆t). Then, applying the 1D
Crank-Nicholson stencil we obtain the following discretization:

Un+1
j − Unj

∆t
= α

δ2
x

∆x2

Un+1
j + Unj

2
(2.8)

Where the second differential operator in space
δ2
x

∆x2
is computed as a second order central

difference from 2.3.1. We are effectively applying the trapezoidal rule in time, so convergence is
second order. The method is also implicit, to obtain a value of u at the next timestep a system
of linear equations must be solved.

2.3.4 Alternating Direction Implicit (ADI) method

The application of the Crank-Nicolson method to a time dependent differential equation usually
leads to a banded system. In the case of parabolic problems, the Peaceman-Rachford decom-
position [17] transforms a banded system into a more easily solvable tridiagonal systems by
incorporating a half-step iteration, and solving along one spatial direction at a time. For a brief
review, let us the system of ordinary differential equations as given in [18]:

dy

dt
= f(t, y), where (2.9a)

f(t, y) = f1(t, y) + f2(t, y) (2.9b)

where the splitting function f1 corresponds to a one-dimensional differential operator with a
associated tridiagonal finite difference operator. Then, the following equations define the ADI
method of Peaceman and Rachford:

y∗ = yn +
1

2
∆tf1(tn +

∆t

2
, y∗) +

1

2
∆tf2(tn, yn) (2.10a)

yn+1 = 2y∗ − yn +
1

2
∆tf2(tn + ∆t, yn+1)− 1

2
∆tf2(tn, yn) (2.10b)

This splitting scheme is the base of the implicit compact method on nodal grids in [1], and
allows reducing computation time.

2.3.5 Staggered grids

When using a finite difference method, we need to define a grid where the differences are
computed. The most natural option seems to be an equispaced grid. This is true for the main
function grid, but not for the differences grid.

Parallelization of Finite Difference Methods 9

For each two points of the grid we will get a difference. This value ‘belongs’ to the point
between the two used for the difference but using the same grid for the function and the
differences we can only assign it to the left or right point.

A much better solution [2] can be obtained by using an staggered grid, that is, a regular
h–spaced grid for the function values and a h–spaced with h

2 –offset grid for the differences.

Figure 2.3: Staggered grid example

10 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 11

Chapter 3

The Nodal method

3.1 Description

The nodal method we refer in this work is the one implemented by Córdova et al [1] to model
acoustic wave propagation. The method applies a high order compact spatial discretization on
a nodal grid. Time integration uses a Crank-Nicolson discretization which is efficiently solved
using a Peaceman-Rachford ADI 2.3.4 [19] decomposition.

A system of linear equations is constructed around the derivative and the function value to
achieve a third order central difference while using only compact stencils. In matrix notation a
CFD application can be written as:

PU′ = QU (3.1)

where U is the matrix of function over the N ×N lattice grid, U′ is the nodal approximations
to the derivative values on same grid and P, Q are N × N stencil matrices implementing the
implicit third order CFD explained above.

P =

2 4 0 . . . 0
1 4 1 0 . . . 0

...
0 . . . 0 1 4 1
0 . . . 0 0 4 2

 ,Q =
1

h

−5 4 1 0 0 . . . 0
−3 0 3 0 0 . . . 0

...
0 . . . 0 0 −3 0 3
0 . . . 0 1 −4 5

 (3.2)

The apparent complexity of 3.1 is offset by the fact that we already have the values at ∂Ω
due to the Dirichlet condition imposed so the inner systems defined by P,Q are tridiagonal
and easily solvable using the Thomas Algorithm. With this scheme we can achieve a high
convergence rate so less iterations are needed.

The derivative approximations are computed along each direction (Ux for x axis and Uy

for y axis).
UxPT ≈ UQT ,PUy ≈ QU (3.3)

Applying the Dirichlet condition to ∂Ω in 2.1 we can find which values are fixed by the boundary
condition:

−1

k

∂u

∂t
= ∇ · v ≈ vx + wy (3.4)

ρ
∂v

∂t
= (

∂u

∂x
,
∂u

∂y
) ≈ (ux, uy) (3.5)

From 3.5 we can see that the first and last column of V and the first and last row of W are fixed
by the boundary condition so V̄ will be an (N − 2)×N matrix and W̄ will be an N × (N − 2).
From 3.4 we can see that we only need to compute the internal values of Vx,Wy and they
effectively are (N − 2)× (N − 2) matrices.

12 Parallelization of Finite Difference Methods

We define the (N−2)×(N−2) P̄ matrix and the (N−2)×N Q̄ matrix which are reductions
of the P,Q matrices where redundant equations have been removed. Thus, the rest of the
system has the following form:

V̄xP̄T ≈ V̄Q̄T , P̄W̄y ≈ Q̄W̄ (3.6)

Then Córdova et al introduce the operators:

A1

uv
w

 =

−vx−ux
0

 (3.7)

A2

uv
w

 =

−wy0
−uy

 (3.8)

(3.9)

along with their discrete versions

A1h

 Ū
V
W

 = −

VQ̄T (P̄T)−1

. . .
UQT (PT)−1

. . .
0

 (3.10)

A2h

 Ū
V
W

 = −

P̄−1Q̄W

. . .
0
. . .

P−1QU

 (3.11)

Note that only rows i = 2...N − 1 are computed for Wy and only columns j = 2...N − 1 are
computed for Vx.

Then we use the following Crank-Nicolson time discretization:(
I − ∆t

2
A1h −

∆t

2
A2h

)
Um+1

CN =

(
I +

∆t

2
A1h +

∆t

2
A2h

)
Um

CN (3.12)

where Um
CN is a new vector holding the nodal discretization

[
Ū,V,W

]T
at time t = m∆t.

The ADI Peaceman-Rachford algorithm is used to get a two stage solution where each stage
involves solving along one direction:

(
I − ∆t

2
A1h

) Ũ

Ṽ

W̃

 =

(
I − ∆t

2
A2h

) Ū
V
W

m (3.13)

(
I − ∆t

2
A2h

)U
V
W

m+1

=

(
I − ∆t

2
A1h

) Ũ

Ṽ

W̃

 (3.14)

Parallelization of Finite Difference Methods 13

The first stage involves two coupled sets of linear systems:
ŨP̄T +

∆t

2
ṼQ̄T = ŪmP̄T − ∆t

2

(
P̄−1Q̄WmP̄T

)
ṼPT +

∆t

2
ŨQT = VmPT

(3.15)

Now, by using the following known terms at t = m∆t

A = ŪmP̄T − ∆t

2

(
P̄−1Q̄WmP̄T

)
B = VmPT

system 3.15 can be rewritten as

[
Ũ Ṽ

] P̄T ∆t

2
QT

∆t

2
Q̄T PT

 =
[
A B

]
(3.16)

and solved through Block Thomas Algorithm exploiting P tridiagonality:
Ũk+1P̄

T = A− ∆t

2
ṼkQ̄T

Ṽk+1P
T = B− ∆t

2
Ũk+1QT

, Ṽ0 = Vm (3.17)

until ||Ũi
k+1 − Ũi

k|| < εu and ||Ṽi
k+1 − Ṽi

k|| < εv.

Note that this is slightly different to the version proposed in [1]. Córdoba et al solve the
system row by row whereas in the above description we solve all the systems in one step (i.e.:
A,B are full matrices whereas in the original paper the row vectors ai,bi are used).

This has no impact to the solution, the row systems are decoupled so the operations implied
are exactly the same, but note that this is crucial to achieve the complete parallelization of the
algorithm.

No matrix inversion is needed as the solved systems are always tridiagonal. The same process
is performed to the second stage of the Peaceman-Rachford decomposition to obtain Wm+1 and
Um+1.

P̄Um+1

k+1 = C− ∆t

2
Q̄Wm+1

k

PTWm+1
k+1 = D− ∆t

2
QTUm+1

k+1

, Wm+1
0 = Wm (3.18)

C = P̄Ũ− ∆t

2

(
P̄ṼQ̄T (P̄T)−1

)
D = PW̃

14 Parallelization of Finite Difference Methods

3.1.1 Physical parameters

We will now modify the presented equations to incorporate the physical parameters k and ρ by
redefining the spatial continuous operators A1 and A2 in 3.7.

A1

uv
w

 =

−kvx
−1

ρ
ux

0

 (3.19)

A2

uv
w

 =

−kwy

0

−1

ρ
uy

 (3.20)

(3.21)

along with their discrete versions

A1h

 Ū
V
W

 = −

kVQ̄T (P̄T)−1

. . .
1

ρ
UQT (PT)−1

. . .
0

 (3.22)

A2h

 Ū
V
W

 = −

kP̄−1Q̄W

. . .
0
. . .

1

ρ
P−1QU

 (3.23)

The following Crank-Nicholson time discretization and the Peaceman-Rachford decomposition
remain without any change 3.12 and 3.13.

In the light of a more general media, the first stage of the PR-ADI algorithm 3.16 becomes:
ŨP̄T +

∆t

2
kṼQ̄T = ŪmP̄T − ∆t

2
k
(
P̄−1Q̄WmP̄T

)
ṼPT +

∆t

2

1

ρ
ŨQT = VmPT

(3.24)

For an easy parametrization, we assume that ρ = 1 so the wave speed is just given by k, i.e.
c2 = k given that c2 = k/ρ. A further simplification is introduced to solve problems with
harmonic solutions such as in [1, equation 20] with periods λ and T . In this case, c2 = (λ/T)2.

3.2 Algorithm

The algorithm of the nodal method described in the previous section given in Algorithm 1.
For clarity, the two steps of the Alternate Direction Implicit method are broken down into two
procedures given in Algorithm 2. The pseudocode given here solves the whole set of simultaneous

Parallelization of Finite Difference Methods 15

tridiagonal systems in one step, as opposed to the original work, were row–by–row and column–
by–column solution is used. The algorithms are the same except for the Algorithm 2 which
solves one column/row at a time in the original work.

The algorithm employs the following constants:

� N : Number of nodal points used along each axis for the [0, 1]× [0, 1] region.

� cflmax: Stability time step factor. The more oscillatory the solution is, the smaller the
time step needs to be. Low values of cflmax produce finer time steps (cflmax = 0.915 is
used in this work as found stable in [1]).

� ε: Required tolerance for tridiagonal system solution (ε = 1e− 5 is used in this work).

� kmax: Maximum number of iterations for convergence of ADI solver (k = 12 is used in
this work).

The following indexing notations are used:

� X̄: refers to the reduced form of matrix X according to the method description.

� : refers to every element along the dimension where it is used.

� :̄ refers to elements n = 2, ..., (N − 1) along the dimension where it is used.

3.3 Complexity analysis

In this section we will study the complexity of the nodal method as a function of the grid
density N . N is not the only complexity factor for this algorithm. Problems whose solution
is hard will require not only a finer grid (which is included in the analysis) but also a smaller
cflmax. Complexity is proportional to cflmax as it linearly increases the outer loop iteration
count, so we will only consider solving a fixed complexity problem with variable sized grids.

There are two additional sequential loops: 1.15 and 1.20. This is not readily apparent in
the fully vectorized version as solving is accomplished in a parallel fashion, but for sequential
implementations, row–by–row and column–by–column solving is used, so N iterations are per-
formed. For complexity analysis we will only consider the fully vectorized version as the number
of operations is effectively the same1 To simplify the complexity analysis we will consider every
matrix ∈ RN×N , N � 1 =⇒ (N − 2) ≈ N.

1The fully vectorized version performs 1 operation on an N × N matrix while the sequential code performs
N operations on N sized vectors. All the operations used in this work are decoupled in the sense that both
implementations have equal complexity aside from parallelization or hardware considerations such as cache per-
formance.

16 Parallelization of Finite Difference Methods

Algorithm 1 The Nodal method

Require: Uo ∈ RN×N ,∆t > 0
Ensure: U ∈ RN×N ,V ∈ RN×N ,W ∈ RN×N

1: procedure Nodal(Uo, cflmax)
2: ∆t← cflmax

N−1

3: U0 ← Uo . Initial Values
4: Ũ← 0
5: V0 ← 0
6: W0 ← 0
7: P̄← P(̄:, :̄) . Reduced Matrices
8: Q̄← Q(̄:, :)
9: H← P̄ \ Q̄ . Precompute value

10: for m ∈ 0 . . . tend
∆t do

11: F← HW(:, :̄)P̄T . ADI first stage
12: Ṽ← Vm

13: W̃←Wm

14: W̃(:, :̄)←Wm(:, :̄)− ∆t
2 P \QUm(̄:, :̄)

15:

(
˜̄U, ˜̄V

)
←NodalRowSolver(Um,Vm,Fm)

16: G← P̄Ṽ(̄:, :)HT . ADI second stage
17: Vm+1 ← Ṽ
18: Wm+1 ← W̃
19: Vm+1(̄:, :)← Ṽ(̄:, :)− ∆t

2 Ũ(̄:, :̄)QT /PT

20:
(
Ūm+1,W̄m+1

)
←NodalColumnSolver(Ũ,W̃,G)

21: t← t+ ∆t
22: end for
23: return U,V,W
24: end procedure

Parallelization of Finite Difference Methods 17

Algorithm 2 Nodal ADI Solver

Require: U ∈ RN×N ,V ∈ RN×N ,F ∈ R(N−2)×(N−2), k > 0, ε > 0
Ensure: Ũ ∈ RN×N , Ṽ ∈ RN×N

1: procedure NodalRowSolver(U,V,F)
2: A← U(̄:, :̄)P̄T − ∆t

2 λ
2A(1 . . . N − 2, :)

3: B← V(̄:, :)PT

4: Uk ← U(̄:, :̄)
5: Vk ← V(̄:, :)
6: do . Thomas Algorithm Tridiagonal Solve
7: Uk+1 ← A− ∆

2 λ
2
(
VkQ̄

T
)
/P̄T

8: Vk+1 ← B− ∆
2

(
Uk+1Q

T
)
/PT

9: test← ||Uk+1 −Uk||+ ||Vk+1 −Vk||
10: Uk ← Uk+1

11: Vk ← Vk+1

12: k ← k + 1
13: while test > ε & k < kmax . Tolerance/non-converging stop criteria
14: return Ũ← Uk, Ṽ← Vk

15: end procedure
Require: U ∈ RN×N ,W ∈ RN×N ,G ∈ R(N−2)×(N−2), k > 0, ε > 0
Ensure: Um+1 ∈ RN×N ,Wm+1 ∈ RN×N
16: procedure NodalColumnSolver(U,W,G)
17: C← P̄U(̄:, :̄)− ∆t

2 λ
2G(:, 1 . . . N − 2)

18: D← PW(:, :̄)
19: Uk ← U(̄:, :̄)
20: Wk ←W(:, :̄)
21: do . Thomas Algorithm Tridiagonal Solve
22: Uk+1 ← P̄ \

(
C− ∆

2 λ
2Q̄Wk

)
23: Wk+1 ← P \

(
D− ∆

2 QUk+1

)
24: test← ||Uk+1 −Uk||+ ||Wk+1 −Wk||
25: Uk ← Uk+1

26: Wk ←Wk+1

27: k ← k + 1
28: while test > ε & k < kmax . Tolerance/non-converging stop criteria
29: return Um+1 ← Uk,W

m+1 ←Wk

30: end procedure

18 Parallelization of Finite Difference Methods

3.3.1 Operations

The operations considered in this analysis will be:

Operation Type Cost Order

Assignment Dense Matrix T= N2

Addition/Substraction Full Matrix T+ N2

Scale Full Matrix Tλ N2

Product
Dense × Dense T× N3

Dense × Sparse T×s BN2

System Solve2 Dense × Tridiagonal Tss N2

Norm Dense Tn N2

3.3.2 Analysis

The nodal method is composed of three nested iterations:

� The outer iteration performs the time stepping. Finer grids require smaller time steps
(see 1.2). Its iteration count is I∆t = cflmax

N−1 .

� We have two sequential inner loops on each of the ADI solver stages in 2.6 and 2.21. As we
will show later, the iteration count of the loops (from now on IADI) is roughly constant
with N . For worst-case analysis IADI is limited to kmax.

Section Loop Count T= T+ Tλ T× T×s Tss Tn

Initialization 1 6 1

Pre row solver I∆t 4 1 1 1 2 1

Row solver – Pre I∆t 4 1 1 2 1

Row solver – Loop I∆t · IADI 4 4 2 2 2 2

Row solver – Post I∆t 2

Pre column solver I∆t 4 1 1 1 2 1

Column solver – Pre I∆t 4 1 1 2

Column solver – Loop I∆t · IADI 4 4 2 2 2 2

Column solver – Post I∆t 2

Tinit = 6T= + Tss

Tstep = I∆t (20T= + 4T+ + 4Tλ + 2T× + 8T×s + 2Tss)

TADI = I∆tIADI (8T= + 8T+ + 4Tλ + 4T×s + 4Tss + 4Tn)

Tnodal = Tinit + Tstep + TADI

I∆tT× ∈ O(N4) =⇒ Tstep ∈ O(N4)

I∆tIADI(T=, T+, Tλ, T×s, Tss, Tn) ∈ O(N3) =⇒ TADI ∈ O(N3)

Tstep ∈ O(N4), TADI ∈ O(N3) =⇒ Tnodal ∈ O(N4)

2For simplicity, we assume right–divide operator cost is equal to left–divide operator cost.

Parallelization of Finite Difference Methods 19

In practice Tnodal is nonetheless O(N3) due to the constant factor being much higher for TADI
than Tstep for most of the N useful range.

The asymptotic complexity of the method is defined by the cost of the dense-by-dense matrix
multiplication at 11. The constant factor is low for this operation, so it will only dominate the
total complexity for high N.

20 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 21

Chapter 4

The Mimetic method

4.1 Description

The mimetic method we refer in this work is the one by Córdoba et al [1]. Spatial differen-
tiation uses the explicit fourth-order compact mimetic operators designed on staggered grids,
which are well suited for the discretization of the pressure-velocity formulation of the wave equa-
tion 2.1. As in the nodal method, time integration is carried out by the implicit Crank-Nicolson
scheme that is efficiently solved by using the Peaceman-Rachford ADI (2.3.4) decomposition.

Mimetic operators are a special family of finite differences that preserve or “mimic” certain
mathematical properties satisfied by the continuous gradient and divergence differential oper-
ators. In this work, we are interested in the discrete Divergence D and Gradient G proposed
by [12] on 1D staggered grids that were later reformulated on compact forms in [20].The second
order accurate mimetic Divergence and Gradient correspond to

hD2 =

−1 1

−1 1
. . .

. . .

−1 1
−1 1

 ∈ RN×(N+1), (4.1)

hG2 =

−8

3 3 −1
3

0 −1 1
. . .

. . .

−1 1 0
−1

3 −3 8
3

 ∈ RN×(N+1) (4.2)

where sub indexes denote the nominal accuracy. Fourth order D and G can be constructed by
taking the product of the second order versions with auxiliary operators RD4 and RG4

1045

1142

492

2291
− 418

2371

328

6821
− 25

15576
0 . . .

− 1

24

13

12
− 1

24
0 0 0 . . .

0 − 1

24

13

12
− 1

24
0 0 . . .

︸ ︷︷ ︸

R4
D

,

503

399
−1234

2003

551

1217
− 719

7198

25

9768
0 . . .

− 2

35

941

840
− 29

420

1

168
0 0 . . .

0 − 1

24

13

12
− 1

24
0 0 . . .

︸ ︷︷ ︸

R4
G

.

(4.3)

22 Parallelization of Finite Difference Methods

The mimetic method in [1] uses the fourth–order operators D4 and G4 given by

G4 = R4
GG2, (4.4)

D4 = R4
DD2 (4.5)

Actually, R4
D and D2 are differentiation matrices with a smaller bandwidth than the original

operator D4, so compact differentiation is achieved by successive application of the reduced
operators. Similarly, the application of R4

G and G2 replaces the differentiation by means of G4.

One important difference between the mimetic and the nodal methods used by Córdoba et
al is the grid distribution of discrete wavefields 4.1. The discretization of u field correspond to
(N + 1)× (N + 1) grid evaluations, and values are located at the center of each cell, the central
point of boundary edges, and grid corners. The discretization of vector v is different for each
component: (N + 1) values of v are located along each grid column where two of these vales be-
long to border cells, while (N+1) values of w are placed in a similar fashion along each grid row.
According to the described grids, the matrix dimensions of discrete wavefields are U ∈ R(N+1)×(N+1),
V ∈ R(N+1)×N and W ∈ RN×(N+1). Due to the boundary conditions, we do not need to com-
pute the first and last row of V and the first and last column of W, those inner matrices will
be represented by V̄ ∈ R(N−1)×N and W̄ ∈ RN×(N−1), respectively.

By discretizing 2.1 with the mimetic operators in 4.4 and 4.5 we obtain the mimetic approx-
imation of the problem.

Ux = U(R4
GG2)T , Uy = (R4

GG2)U (4.6)

V̄x = V̄(R4
DD2)T , W̄y = (R4

DD2)W̄ (4.7)

Thus, the operators used for the mimetic method are explicit whereas the ones for the nodal
method are implicit and require solving an additional system of equations.

As with the nodal method, the A1h and A2h operators from 4.6 and 4.7.

A1h

 Ū
V
W

 = −

V̄
(
R4
DD2

)T
U
(
R4
GG2

)T
0

 (4.8)

A2h

 Ū
V
W

 = −

(R4
DD2)W̄

0
(R4

GG2)U

 (4.9)

Now we apply the Crank-Nicolson and Peaceman-Rachford decomposition as in 3.12 and 3.13
to obtain the intermediate approximation system:

Ũ + ∆t
2

(
ṼDT

2

)
RT
D = Ūm − ∆t

2 RD

(
D2W̄

m
)

Ṽ + ∆t
2

(
ŨGT

2

)
RT
G = Vm

W̃ = Wm − ∆t
2 RG (G2U

m)

(4.10)

To solve this system, where W̃ can be explicitly calculated, we define appropriate A and B
matrices analogous to the ones in 3.16 and then iterate as in 3.17 until Ũ and Ṽ converge up
to a sufficiently small value ε.

Parallelization of Finite Difference Methods 23

Figure 4.1: Mimetic finite difference discretization on a 2-D staggered grid.

4.2 Algorithm

The mimetic method described in the previous section algorithm is given in Algorithm 3.
For clarity, the two steps of the Alternate Direction Implicit method are broken down into two
procedures given in Algorithm 4. The pseudocode given here solves the whole set of simultaneous
systems in one step, as opposed to the original work, were row–by–row and column–by–column
solving is used. The algorithms are the same except for the Algorithm 4 which solves one
column/row at a time in the original work.

The algorithm employs the following constants:

� N : Number of nodal points along each axis used for the [0, 1]× [0, 1] region.

� cflmax: Time step factor. The more oscillatory the solution is, the smaller the time step
needs to be. Low values of cflmax produce finer time steps (cflmax = 0.915 is used in this
work).

� ε: Required tolerance for system solution (ε = 1e− 5 is used in this work).

� kmax: Maximum number of iterations for convergence of ADI solver (k = 12 is used in
this work).

The following indexing notations are used:

� X̄: refers to the reduced form of matrix X according to the method description.

� : refers to every element along the dimension where it is used.

� :̄ refers to elements n = 2...(N − 1) along the dimension where it is used.

24 Parallelization of Finite Difference Methods

Algorithm 3 The Mimetic method

Require: Uo ∈ RN×N ,∆t > 0
Ensure: U ∈ RN×N ,V ∈ RN×N ,W ∈ RN×N

1: procedure Mimetic(Uo, cflmax)
2: ∆t← cflmax

N−1

3: U0 ← Uo . Initial Values
4: Ũ← Uo

5: V0 ← 0
6: W0 ← 0
7: D4 ← R4

DG2 . Gradient operator
8: G4 ← R4

DD2 . Divergence operator
9: H← R4

DD/h
10: H1 ← R4

GG/h
11: for m ∈ 0 . . . tend

∆t do
12: Fm ← HWm(:, :̄) . ADI first stage
13: Ṽ← Vm

14: W̃←Wm

15: W̃(:, :̄)←Wm(:, :̄)− ∆t
2 H1U

m(:, :̄)

16:

(
˜̄U, ˜̄V

)
←MimeticRowSolver(Um,Vm,Fm)

17: Gm ← Ṽ(̄:, :)HT . ADI second stage
18: Vm+1 ← Ṽ
19: Wm+1 ← W̃
20: Vm+1(̄:, :)← Ṽ(̄:, :)− ∆t

2 Ũ(̄:, :̄)HT
1

21:
(
Ūm+1,W̄m+1

)
←MimeticColumnSolver(Ũ,W̃,Gm)

22: t← t+ ∆t
23: end for
24: return U,V,W
25: end procedure

Parallelization of Finite Difference Methods 25

Algorithm 4 Mimetic ADI Solver

Require: U ∈ RN×N ,V ∈ RN×N ,F ∈ R(N−2)×(N−2),H ∈ R(N−2)×(N−1),H1 ∈
R(N−1)× N , k > 0, ε > 0

Ensure: Ũ ∈ RN×N , Ṽ ∈ RN×N
1: procedure MimeticRowSolver(U,V,F)
2: A← U(̄:, :̄)− ∆t

2 λ
2F(1 . . . N − 2, :)

3: B← V(̄:, :)
4: Uk ← U(̄:, :̄)
5: Vk ← V(̄:, :)
6: do . Thomas Algorithm Tridiagonal Solve
7: Uk+1 ← A− ∆

2 λ
2VkH

T

8: Vk+1 ← B− ∆
2 Uk+1H

T
1

9: test← ||Uk+1 −Uk||+ ||Vk+1 −Vk||
10: Uk ← Uk+1

11: Vk ← Vk+1

12: k ← k + 1
13: while test > ε & k < kmax . Tolerance/non-converging stop criteria
14: return Ũ← Uk, Ṽ← Vk

15: end procedure
Require: U ∈ RN×N ,W ∈ RN×N ,G ∈ R(N−2)×(N−2), k > 0, ε > 0
Ensure: Um+1 ∈ RN×N ,Wm+1 ∈ RN×N
16: procedure MimeticColumnSolver(U,W,G)
17: C← U(̄:, :̄)− ∆t

2 λ
2G(:, 1 . . . N − 2)

18: D←W(:, :̄)
19: Uk ← U(̄:, :̄)
20: Wk ←W(:, :̄)
21: do . Thomas Algorithm Tridiagonal Solve
22: Uk+1 ← C− ∆

2 λ
2HWk

23: Wk+1 ← D− ∆
2 H1Uk

24: test← ||Uk+1 −Uk||+ ||Wk+1 −Wk||
25: Uk ← Uk+1

26: Wk ←Wk+1

27: k ← k + 1
28: while test > ε & k < kmax . Tolerance/non-converging stop criteria
29: return Um+1 ← Uk,W

m+1 ←Wk

30: end procedure

26 Parallelization of Finite Difference Methods

4.3 Complexity analysis

In this section we will study the complexity of the mimetic method as a function of the grid
density N . N is not the only complexity factor for this algorithm. Problems whose solution
is hard will require not only a finer grid (which is included in the analysis) but also a smaller
cflmax. Complexity is proportional to cflmax as it linearly increases the outer loop iteration
count, so we will only consider solving a fixed complexity problem with variable sized grids.

There are two additional sequential loops: 3.16 and 3.21. This is not readily apparent in
the fully vectorized version as solving is accomplished in a parallel fashion, but for sequential
implementations, row–by–row and column–by–column solving is used, so N iterations are per-
formed. For complexity analysis we will only consider the fully vectorized version as the number
of operations is effectively the same1 To simplify the complexity analysis we will consider every
matrix ∈ RN×N .2

4.3.1 Operations

The operations considered in this analysis will be:

Operation Type Cost Order

Assignment Dense Matrix T= N2

Addition/Substraction Full Matrix T+ N2

Scale Full Matrix Tλ N2

Product
Dense × Dense T× N3

Dense × Sparse T×s BN2

Sparse × Sparse T×ss B2N

Norm Dense Tn N2

4.3.2 Analysis

The mimetic method is composed of three nested iterations:

� The outer iteration performs the time stepping. Finer grids require smaller time steps
(see 3.2). Its iteration count is I∆t = cflmax

N−1 .

� We have two sequential inner loops on each of the ADI solver stages in 4.6 and 4.21. As we
will show later, the iteration count of the loops (from now on IADI) is roughly constant
with N . For worst-case analysis IADI is limited to kmax.

1The fully vectorized version performs 1 operation on an N × N matrix while the sequential code performs
N operations on N sized vectors. All the operations used in this work are decoupled in the sense that both
implementations have equal complexity aside from parallelization or hardware considerations such as cache per-
formance.

2N >> 1 =⇒ (N − 2) ≈ N

Parallelization of Finite Difference Methods 27

Section Loop Count T= T+ Tλ T× T×s Tss Tn

Initialization 1 8 2 2

Pre row solver I∆t 4 1 1 2

Row solver – Pre I∆t 4 1 1

Row solver – Loop I∆t · IADI 4 4 2 2 2

Row solver – Post I∆t 2

Pre column solver I∆t 4 1 1 2

Column solver – Pre I∆t 4 1 1

Column solver – Loop I∆t · IADI 4 4 2 2 2

Column solver – Post I∆t 2

Tinit = 8T= + 2Tss

Tstep = I∆t (2T= + 4T+ + 6Tλ + 4T×s)

TADI = I∆tIADI (8T= + 8T+ + 4Tλ + 4T×s + 4Tn)

Tmimetic = Tinit + Tstep + TADI

I∆tT×s ∈ O(N3) =⇒ Tstep ∈ O(N3)

I∆tIADI(T=, T+, Tλ, T×s, Tss, Tn) ∈ O(N3) =⇒ TADI ∈ O(N3)

Tstep ∈ O(N3), TADI ∈ O(N3) =⇒ Tnodal ∈ O(N3)

Comparing this result to the nodal method, a significant speedup is achieved due to the
removal of dense-by-dense matrix multiplications.

Even though this asymptotic behaviour is only observed for high values of N , the mimetic
method requires less operations to complete (no system solving) which translates in a lower
constant factor for the whole algorithm in comparison to the nodal method.

This speedup comes at a cost, as the mimetic method is expected to be less stable, and may
require more iterations when solving harder problems. This subjective difficulty is given by
the solution roughness (faster oscillating solutions will be harder to compute as the derivative
approximation between grid nodes becomes more inaccurate). Nonetheless, the effective rough-
ness of the problem may be reduced by employing a finer grid, and thus taking advantage of
the mimetic method lower complexity.

28 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 29

Chapter 5

Linear algebra libraries

In this chapter we introduce the linear algebra libraries that will be used in this work. These
are highly optimized implementations of standard algebra algorithms which have been throughly
tested and tuned for optimal performance. On this work we will rely on them whenever possible.

5.1 Basic Linear Algebra Subprograms (BLAS)

The Basic Linear Algebra Subprograms [21] are a set of FORTRAN routines that perform
basic algebra functions. The library is organized by levels:

Rank 1 Mostly vector and scalar–vector operations such as vector sum, dot product, norm,
copy, plane rotations, . . .

Rank 2 Mostly matrix–vector operations such as multiply–add, inverse multiply, vector outer
product, . . .

Rank 3 Mostly variations of matrix–matrix produdcts.

Multiple versions of each function exist, distinguished by a prefix and specialized for:

R numbers single precision (prefix s) or double precision (prefix d).

C numbers single precision (prefix c) or double precision (prefix z).

For this work only the double precision R versions are used. Single precision is not considered
for CPU implementations due to native hardware support four 64–bit double precision present
in any modern machine.

The main functions of interest for this work are:

dscal y← αx

dadxpy y← αx + y

dnrm2 ||y||2

dgemv C ← αAx + βy

dgemm C ← αop(A)op(B) + βC

where op(X) performs an optional transposition or conjugate-transposition of the operand X.

30 Parallelization of Finite Difference Methods

Several implementations exist for the BLAS library:

ATLAS The Automatically Tuned Linear Algebra Software [22] is an open–source highly op-
timized single–threaded BLAS library tuned for optimum perfomance on each supported
architecture. It will be the library of reference for this work,

openBLAS [23] An open source multi–threaded BLAS library. While tested, its performance
was almost equal to the ATLAS library.

MKL The Intel® Math Kernel Library is a proprietary library optimized for Intel® processors.
Due to their restrictive license and field of application it will not be considered for this
work.

ATLAS version 3.10.1-4 will be the library used trough this work as its performance is roughly
equal to openBLAS and is fully single-threaded. This is important because we will explore
CPU parallelism at the algorithm level, and we do not want any other multithread code in the
application.

Being a FORTRAN library has certain implications for the implementation. We will use a
FORTRAN to C interface to the library which slightly departs from certain C practices:

� Most arguments, even scalar values, are passed by reference.

� The matrix order is column-major, whereas in C is row-major. This impacts the memory
layout of the matrix coefficients. In C, advancing a memory position usually results in
obtaining the next element for the row, but in FORTRAN the next column element is the
one obtained.1.

5.2 Linear Algebra PACKage (LAPACK)

LAPACK [24] is a linear algebra library mainly focused on the resolution of simultaneous systems
of linear equations, eigenvalue and singular value problems. LAPACK builds on the BLAS
library to implement these higher level routines and is written in FORTRAN as well2. LAPACK
was originally designed to optimize memory access by grouping operations into blocks. This
architecture makes it highly amenable to modern multilayer memory hierarchies.
Our main interest in this library is the dgtsv function which solves the following equation:

AX = B (5.1)

where A is an N × N tridiagonal matrix. The system is solved by Gaussian Elimination
with partial pivoting. For well conditioned tridiagonal matrices, the routine should effectively
implement a Thomas Algorithm which is expected to run in O(N).
We will use dgtsv to implement two operations

X = A \B =⇒ AX = B (5.2)

X = B/A =⇒ XA = B (5.3)

1We will not employ double indexing for matrix memory in our code, explicit flat array indexing will be
employed instead to avoid introducing errors due to conflicting language conventions

2We will use the C interfaces of both libraries.

Parallelization of Finite Difference Methods 31

For left division, 5.2 direct application of dgtsv is adequate. For right division 5.3, one has to
transform the equation:

XA = B =⇒ ATXT = BT

X = A/B =⇒ X =
(
BT \AT

)T
Only dgtsv is needed to implement both operations. The transposition of tridiagonal matrix A
is easily accomplished by simply swapping upper and lower diagonal pointers.

5.3 CUDA BLAS (cuBLAS)

CUDA [25] is an extension of the C language to support massive parallel computation by
introducing the CUDA kernels, which are C routines that run on grids of parallel threads.
cuBLAS [26] is a proprietary implementation by NVIDIA of the BLAS library in CUDA for
use with the company GPUs. It is mostly equivalent to other BLAS implementations such as
ATLAS, but it cannot be used as such if one is to exploit the massive parallel computation
capabilities of the hardware platform.

Due to the GPU residing on a external bus without direct access to the CPU memory space,
transfers become a bottleneck involving DMA requests over a limited bandwidth bus. This is
an extremely important consideration for the very high volume of data transfers required by
massive parallel computation algorithms. This means that when using cuBLAS one has to work
with separate address spaces (CPU and GPU). To accomplish this, CUDA provides a special
primitive cudaMemcpy for transferring data between the two memory spaces.

cuBLAS operations are designed as an abstraction to eliminate the need to write special
CUDA kernels to perform parallel computing. As such, its interface is quite similar to any
other BLAS implementation and we only need to take care of moving the data between the
CPU and the GPU when needed. More details will be given in 10.

5.4 Matrix storage

The problem we are trying to solve makes heavy use of sparse matrices. Three types of matrices
are defined:

� Banded: Matrices whose non-zero elements are to be found on the main diagonal and its
upper and lower diagonals.

� Tridiagonal: Matrices where the non-zero elements are found on the main diagonal and
the immediate upper and lower diagonals.

� General Sparse: Matrices where most of the elements are zero.

In this work most of the matrices are banded or tridiagonal. Some general sparse matrices
can also be found but they are mostly banded where some bands have few non-zero elements.

32 Parallelization of Finite Difference Methods

For the sake of simplicity only banded matrices will be implemented. Tridiagonal matrices
make a special case of banded matrices which will be considered whenever there are optimization
opportunities. Banded dominant sparse matrices will be considered as banded. This will impose
a performance penalty on some situations as the bandwith of these sparse matrices will be higher
than the optimal.

The standard C/C++ matrix storage scheme is row-major : each row is stored contiguously.
The C/C++ index to memory mapping in array elements is:

(i, j)→ j + i · ld (5.4)

where ld is the leading dimension (the length of the major dimension, row length in this case).

The redundancy found in these special matrices makes the standard C/C++ dense matrix
memory layout very inefficient. The libraries used define specific storage schemes for each matrix
type:

� Dense matrix: The column-major FORTRAN matrix layout is used for general dense
matrices. Each column is stored contiguously so the index to memory becomes

(i, j)→ i+ j · ld (5.5)

note the switch between i, j in relation with 5.4.

� Banded matrix: A given N ×M banded matrix with KU upper , KL lower diagonals
is stored on a (KU +KL+ 1)×min(N,M) column-major matrix diagonal by diagonal,
starting from the uppermost non-zero one down to the lowest. Some padding is introduced
as the length of each diagonal is variable, these elements are not accessed by the library.
The layout then becomes:

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44

→
 ∗ a12 a23 a34

a11 a22 a33 a44

a21 a32 a43 ∗

which is mapped by the relation:

(i, j)→ (KU + 1 + i− j, j)→ KU + 1 + i+ j · (ld− 1) (5.6)

where ld = min(N,M).

� Tridiagonal matrix: The matrix is represented as three independent vectors, one for each
diagonal.

The banded matrix layout introduces some implementation problems when trying to modify
an element outside the band, as no storage is reserved for it. We have chosen to raise an
exception whenever such situation occurs, making these matrices mostly read-only. This is not
problematic as these matrices are defined at initialization and used as constants through the
code.

Parallelization of Finite Difference Methods 33

Chapter 6

Reference MATLAB implementation

6.1 Optimization strategies

Several attempts to optimize the base code have been performed so as to have the most optimal
baseline implementation. Success has been limited in this regard, as the original code had been
thoroughly optimized by its authors.

6.1.1 Matrix inversion

At first glance, the most obvious idea is trying to optimize away the costly matrix inversions
that seem to be required by the nodal method. The optimization attempts where:

� Precomputation of the inverse: O(n3) for inversion and multiplication by inverse.

� Cholesky or LU factorization: O(n3) for factorization and O(n2) for solving.

None of these were successful as the systems to be solved are tridiagonal and thus no inversion
was being performed in the first place. The cost of solving a tridiagonal system is O(n) which
is much better than the two other methods.

6.1.2 Optimized BLAS

Debian update-alternatives command provides an easy way to switch between different imple-
mentations of a library. We switch the BLAS implementation with:

$ update−a l t e r n a t i v e s −−c o n f i g l i b b l a s . so . 3

and the LAPACK implementation with:

$ update−a l t e r n a t i v e s −−c o n f i g l i b l a p a c k . so . 3

ATLAS and OpenBLAS implementations where tested, the results were mostly equivalent.

6.1.3 Multiprocessing

Multiprocessing seems difficult at first due to the clearly sequential nature of both algorithms.
We used the parallel package (2.2.1) for Octave [27] to distribute the computation along rows/-
columns between several processes.

At first, one process was used for each row/column. This solution performed extremely bad.
Little work is assigned to each process resulting in most of the computing power being wasted
in managing the processes and their communication.

34 Parallelization of Finite Difference Methods

A second attempt was made where only a small number of processes where used (up to 8 in
an 8 core CPU), and lists of columns/rows where assigned to each process. The results were
slightly better, but the single-threaded implementation is faster for all but the biggest grid sizes.

The results of using the parallel package were poor in general because the need of data
replication due to the use of processes instead of threads. No mechanism is available at the time
of writing for fast memory sharing/synchronization between processes in the parallel package.

6.1.4 Vectorization

The original reference MATLAB implementation in [1] computes the solution in two stages
(row-by-row and column-by-column). We call this approach vector oriented due to the fact
that most operations involve vector arithmetic.

In 1 and 3 we extend the vector oriented approach into a matrix oriented approach, were we
compute the solution across the whole grid for each step with matrix operations.

Our code is mathematically equivalent due to the separable nature of the algorithm. Most of
the time we are only proposing a change of notation (i.e. the sum of an array of vectors column
by column is equivalent to the sum of matrices composed of the same column vectors).

The only significant difference with the reference code lies in the convergence check step
controlled by the ε parameter. The reference code uses an error limit relative to a single column
whereas the matrix oriented approach error limit is relative to the whole matrix.

We add a correction factor to the converge criterion to make sure that the same ε value yields
comparable results to both approaches. For a vector/matrix with N elements:

εN > |X−Xo| =
√∑

i,j

(xij − xijo)2 =
√
Nσx (6.1)

It follows then that, assuming we want the element error standard deviation σx to be the
same for two different matrix sizes M and N , we need to compensate for the square root factor
in ε.

εM =

√
M

N
εN (6.2)

In our case N = 1×S (vector oriented) and M = S×S (matrix oriented), S being the grid
size, so the final scale factor is:

εM =

√
M

N
εN =

√
S2

S
εN =

√
SεN (6.3)

Our novel matrix oriented approach presents itself quite useful for optimization purposes.
Grouping operations can be advantageous in some situations (i.e. minimizing the number of
function calls or reusing redundant operands).

Parallelization of Finite Difference Methods 35

The effect is notable for the MATLAB implementation due to the high cost of function calls
and loops in an interpreted language. The matrix oriented implementation performs faster for
all but the higher grid sizes.

On the one hand, for small grid sizes, small vector operations are so fast that the inter-
preter becomes the bottleneck. The matrix oriented approach removes the innermost loop and
increases operation size, improving performance significantly.

On the other hand, when the grid becomes so large that the whole matrix cannot fit into the
CPU cache, the vector oriented approach becomes faster as the smaller memory footprint of
vectors minimizes cache misses.

36 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 37

Chapter 7

General application structure

7.1 Language

The language chosen for the project is C++111 for several reasons:

� While being a modern object oriented language, it has lower level features such as pointers
or dynamic memory management for a fine-grained control of the generated code.

� Highly expressive language with features such as polymorphism, template metaprogram-
ming and operator overloading together with smart pointers, lambda functions, move
semantics,. . . enable the construction of an easy readable MATLAB–like syntax.

� Seamless integration with algebra libraries (C interfaces are available) and CUDA (which
is a C++ extension).

Templates have been used to avoid code duplication in single–precision / double–precision im-
plementations. Another advantage of template usage is that classes are specialized to the used
types prior to its usage, so the object code generated is usually more efficient.

A major drawback of templates is that instances of templated classes share no link in the class
hierarchy. This is makes it hard to implement useful templated polymorphism so we have used
the Curiously Recurrent Template Pattern2 (CRTP) [28] to implement static polymorphism in
templated classes.

7.2 Architecture

The main design goals for the implementation is to provide a flexible system for testing different
parallelization strategies in a way that enables reliable performance comparison.

For this reason, we will decouple the algorithm implementation from the computational rou-
tines by abstracting them into several classes.

� The Matrix class performs all the low level matrix operations. This is an abstract class
which will be specialized depending on the optimization strategy.

� The Problem class defines the problem to solve: parameters, grid, initial values and exact
solution.

1C++14 is also available, but we will not employ any of the new features from it.
2The CRTP is a C++ idiom in which a class is derived from a class template instance which uses the derived

class as template argument

38 Parallelization of Finite Difference Methods

� The Nodal/Mimetic classes implement each of the numeric methods relaying on the Matrix
class to perform any calculation.

This architecture leads to a natural parallelization at two levels. We have already mentioned
that the algorithm can be computed in a vector oriented fashion (row–by–row and column–by–
column) or in a matrix oriented fashion where full matrices are used to solve the whole set of
systems in one step.

� The vector oriented approach lends itself nicely to parallelization as row (or column) work
is completely separable.

� The matrix oriented approach is a great opportunity to parallelize at the matrix operation
level, where the dimension of the matrices involved allows for a high levels of parallelism.

7.2.1 Matrix objects

The Matrix class is a templated interface for the any matrix implementation. It provides the
following functions:

� The constructors and the Create() method are used to set the matrix size and initialize
the values.

� Most unary operators are implemented as class methods. Some unary operators are
implemented as friend functions to improve readability such as tr(X)3 or sin(X).

� Binary operators such as product, addition,... are implemented as friend functions. The
default implementation for this operators is to use the unary form to perform the opera-
tion.

� Matrix elements can be accessed and modified through the X(i,j)4 operator. Matrix
subsetting is also possibly by range specification X(imin, imax, jmin, jmax).5

Several versions of each function have been implemented to leverage move–semantics and min-
imize memory allocation and copying, specially in constructors and assignment operators.

Two categories of Matrix objects have been implemented in this work: dense and banded
matrices5.4.

7.2.2 MatrixTester objects

The MatrixTester template class implements a lightweight unit testing module. The Matrix-
Tester performs two test types:

� Matrix derived class implementation (creation, assignment, operators,. . .).

� Interaction between Matrix classes (assignment and binary operators mixing classes).

3For the transposition operator, the tr(X) form is used to get a new matrix object whereas the X.tr() form
overwrites X contents.

4Rows and columns are 0–indexed. Reverse indexing is also possible by specifying negative indices where −n
indexes the nth–last element.

5MATLAB equivalent notation would be X(imin + 1 : imax + 1, jmin + 1 : jmax + 1).

Parallelization of Finite Difference Methods 39

7.2.3 Problem objects

The problem object is used to store the problem specific information:

� Initial and boundary conditions for solver.

� Problem-specific parameters like solution wavelength λ.

� Exact solution over solver grid and solver solution error.

7.2.4 Grid objects

They are helper objects used to define the grid for the solver. There are three types of Grid
objects:

� LinearGrid objects construct a N point equally spaced grid.

� StaggerGrid objects construct a grid on cell-center points along with boundary and edge
points such as the one used in mimetic methods 4.1.

� FunctionGrid objects apply a function over a given grid.

Similar to MATLAB, grid objects can also be used to generate meshes with the meshgrid
member function. Meshes are returned as a pair of matrices with the x, and y coordinates over
the mesh.

7.2.5 Nodal and Mimetic objects

Nodal and Mimetic classes compute the solution to the given Problem by different methods.
This objects perform the following functions:

� Generate grids with a given density.

� Initialize internal solver data structures according to some parameters.

� Solve the given problem.

7.3 Program flow

The main program flow performs a testbench of the implemented solvers over several parameters
and implementations.

� Problem: The topmost loop iterates over values of labmda (the problem wavelength). A
high lambda makes the problem more difficult for the solver, specially over coarse grids,
as the solution oscillates faster.

� Implementation: different implementations are tested: single-threaded, multi-threaded
and GPU.

� Implementation variations: floating point precision, number of threads, ...

� Solver : multiple grid sizes are tested.

40 Parallelization of Finite Difference Methods

The results are stored in a vector of test summary structs:

Listing 7.1: test summary and timing structures

struct test summary{
int n ; // Grid s i z e
std : : s t r i n g s t r a t e g y ; // S t r a t e g y d e s c r i p t i o n
std : : s t r i n g d e t a i l s ; // S t r a t e g y d e t a i l s
double lambda ; // Problem wave length
double e p s i l o n ; // S o l v e r e p s i l o n
int threads ; // Threads used
std : : s t r i n g p r e c i s i o n ; // P r e c i s i o n used
// Timings f o r each method
std : : map<std : : s t r i ng , struct timing> methods ;

} ;

struct t iming {
double use r t ime ; // User e l l a p s e d time
double wal l t ime ; // Wall e l l a p s e d time
double e r r o r [3] ; // Fina l Errors (U,V,W)
double i t e r a t i o n s [2] ; // Average i t e r a t i o n s (rows , c o l s)
int minit , maxit ; // I t e r a t i o n l i m i t used

} ;

The configuration used for this tests con be altered via the following constants:

� NLAMBDAS: The number of wavelengths to be tested.

� (epsilons,lambdas): A list with the pairs of epsilon/wavelength to be used.

� NCASOS: The number of grid sizes to be tested.

� CASOS: A list with the grid sizes that will be tested for each wavelength.

Several implementations will be used for each configuration:

� Single Threaded: vector and matrix oriented single threaded implementation,

� Multi Threaded: vector oriented multi threaded OMP implementation,

� GPU: Single and Double precision tests with min it ranging from 0 to 3.

Each implementation is selected according to:

� The underlying implementation used in the Matrix class and precision used when instan-
tiating the solver template.

� The epsilon and lambda passed to the solver constructor.

� The solver strategy (strategy single, strategy matrix, strategy matrix) passed to the solver
constructor.

� The minimum iteration count passed to the solver constructor.

Parallelization of Finite Difference Methods 41

Full information of the method, implementation strategy, precision, threading and hardware
used are stored for each run.

For each test, both user time (the CPU time used by the process) and wall time (the real
time ellapsed) are recorded. The ratio is used to compute the achieved ocupation of each
method.

The study of the number of iterations required to solve the rows/columns tridiagonal system
in the inner loop of both methods is also relevant for optimization purposes, as we will use it
to limit the number of iterations performed (as stored in minit, maxit).

Full information of each run is stored and printed to stdout in CSV format for reproducible
postprocessing. R scripts are provided for reading in the CSV results and reproduce the plots
and tables found in this document.

42 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 43

Chapter 8

C++ implementation

The C++ implementation is the base implementation for the OpenMP and CUDA ones. In
this chapter we are referring to the single threaded C++ approach and as such we won’t be
using any paralletization techniques.

8.1 Programming model

For the single threaded implementation the hardware elements to consider are CPU, memory
and cache.

8.1.1 CPU

For the CPU we are interested in computing power in GFLOPS. This will be determined by
CPU clock frequency, but also by CPU internals such as instruction set, pipeline and ability to
execute more than one instruction per cycle. In this work we will be mainly using an Intel(R)
Core(TM) i7-4770 CPU at 3.40GHz. CPU specifications can be found on table 8.1.1.

To evaluate the CPU computing power we use the MKL linux LINPACK benchmark 11.3.3.0.11.
This tests evaluates the computing power of the CPU by solving a large system of linear equa-
tion. The results are shown in table 8.1.1

This test is optimized for large arrays, as can be seen by the increasing GFLOPS performance
with system size. On the one hand the biggest system (10000 equations) requires 763 MB of
RAM and is solved in 12.062 seconds at 55.2 GFLOPS, on the other hand the smallest system
(8 equation) requires 512 bytes of RAM and only achieves 0.3 GFLOPS.

In our problem, we will be solving relatively small systems (less than 512 equations) so we
won’t be able to achieve peak performance from the libraries.

8.1.2 Memory

As the grid size becomes larger, more memory is needed to store the matrices and the memory
bandwidth will become an important performance factor. The memory clock frequency used
in this work is the fastest supported by the CPU (1600 MHz), with a theoretical peak transfer
rate of 12800 MB/s. This rate is only achievable in ideal conditions when the access pattern is
regular.

44 Parallelization of Finite Difference Methods

CPU

Release Date Q2’2013
Processor Number I7-4770
Cache Size 8 MB SmartCache
Bus Speed 5 GT/s DMI2
Instruction Set 64 bit
Instruction Set Extensions SSE4.1/4.2, AVX 2.0
Floating point speed 99.72 GFLOPS 1

Lithography 22 nm
Cores / Subprocesses 4/8
Clock frequency (base/turbo) 3.4 GHz / 3.9 GHz
Power 84 W

RAM

Memory Type DDR3
Memory Speed 1600 MHz
Memory Configuration 2× 4096 MB + 2× 2048 MB
Latency 36 cycle + 57 ns

Cache

L1 Instruction cache 32 KB, 64 B/line, 8-WAY
L1 Data cache 32 KB, 64 B/line, 8-WAY, 4-5 cycle latency
L2 cache 256 KB, 64 B/line, 8-WAY, 12 cycle latency
L3 cache 8 MB, 64 B/line, 36 cycle latency

Table 8.1: Test system specs

System Size Leading Dimension Alignment (kB) Average GFLOPS Maximal GFLOPS

8 8 4 0.2737 0.3086
64 64 4 6.0871 7.4562
128 128 4 15.7027 16.2122
256 256 4 22.3036 23.7091
512 512 4 29.4485 29.8342
1024 1024 4 33.6905 34.2111
4096 4096 4 46.5588 46.7024
10000 10000 4 55.2482 55.2852

Table 8.2: Single-threaded test system LINPACK performance

Parallelization of Finite Difference Methods 45

To evaluate this scenario at first approximation, one can assume each floating point operation
consuming on average two 64-bit operand, then the required memory bandwidth to exploit the
full computing power of a single CPU will be:

55.29 GFLOPS × 2
operand

FLO
× 8

byte

operand
= 884.64 GBPS (8.1)

This is well above the ideal maximum RAM bandwidth. To overcome this problem we need to:

� Make sure our code is optimized to exploit locality and reuse operands.

� Make sure that cache is used in an optimal way.

8.1.3 Cache

Cache is an essential part the CPU to achieve high performance computing. It becomes clear
from 8.1 that RAM bandwidth is effectively a bottleneck and cache is the most obvious solution
to it.

Cache specifications for this CPU can be found in 8.1.1. This is a three level cache, with a
segregated data/instruction L1 cache. The fastest cache level is L1, which is also the smallest
to reduce CPU cost. As cache levels grow bigger they also get slower: L2 cache is up to three
times slower than L1 and L3 cache is also three times slower than L2.

The L1 cache is 32 KB and it is able to store a full 64 × 64 double precision matrix. The
L2 cache is 256 KB and it is able to store a full 180× 180 double precision matrix. We expect
performance to drop around these values for matrix oriented implementations.

8.2 Optimization strategy

Due to hardware dependence, single-threaded CPU optimizations are very low level in nature.

Our goal in this work is to build a reusable framework to explore the performance gains of
diverse optimization techniques in acoustic PDE solvers. We want our results to be:

� Comparable in the sense of requiring a similar effort level.

� Reproducible across a range of hardware.

This rules out resorting to low level optimizations for a specific CPU as it both will require a
great deal of work (much higher than the required for parallelization) and it will make our work
much less portable.

In fact, aiming for this level of optimization can be seen as a form of reinventing the wheel,
as much of this low level work has been done by the authors of the different optimized versions
of BLAS and LAPACK libraries. More specifically, we will be using the ATLAS BLAS library,
which is an Automatically Tuned Linear Algebra Library.

46 Parallelization of Finite Difference Methods

We create two new template classes to encapsulate this functionality:

� dgMatrix : for Double precision General Matrix. A regular dense matrix of double precision
elements.

� dbMatrix : for Double precision Banded Matrix. An arbitrary banded sparse matrix of
double precision elements.

The prefix used for the matrix names is akin to the one used for standard BLAS functions: first
character for operation precision and second character for matrix storage.

Listing 8.1: Dense matrix multiplication operator (C

dgMatrix dgMatrix : : operator *(const dgMatrix& b) const {
a s s e r t (c o l s ()==b . rows ()) ;

dgMatrix r e t (rows () , b . c o l s ()) ;

cblas dgemm (b la so rde r , t ransposed , b . t ransposed () ,
rows () , b . c o l s () , c o l s () ,
1 . 0 , data . get ()+ o f f s e t () , s t r i d e () ,
b . data . get ()+b . o f f s e t () , b . s t r i d e () ,
0 , r e t . data . get ()+ r e t . o f f s e t () ,
r e t . s t r i d e ()) ;

r e turn r e t ;
}

Now that we don’t need to specifically focus on the low level aspects, we are free to look
deeper at algorithmic level optimizations which will be portable once built on the top of the
BLAS library.

The operations offloaded to the library are the ones where low level considerations are most
critical: instruction ordering will have a big impact on maximizing pipeline usage, different
memory access patterns will generate different cache hit rates, ... There are however some
relevant aspects of the algorithm that are not taken in consideration with this approach alone.

Consider the example of matrix-by-matrix product operator given in listing 8.1 performing
the operation C = AB through an underlying BLAS cblas dgemm call.

It is clear that using the dgMatrix template operator will be much readable and less error
prone than the original BLAS C call given the high number of parameters required for each call
(matrix dimensions, strides, data pointers and so on).

Memory management for object C is an important part of the operation. It is implemented in
the dgMatrix constructor. Memory deallocation is accordingly performed at destruction time.

Parallelization of Finite Difference Methods 47

However, this simple strategy is sub-optimal when C is a temporary result such as in the
expression E = D + AB where we can reuse the memory reserved for the temporary operation
C = AB in the final step E = D + C, not only saving a memory allocation call, but also
avoiding the copy of the partial result elements.

To overcome this performance pitfall without losing readability we have employed two tech-
niques2:

� Move semantics: we implement r-value aware versions of operations where the reuse of
allocated memory can be exploited.

� Shared pointers: we manage memory through the C++ standard library std::shared ptr
template, which is a multithread aware reference counted smart pointer.

An example of this is given in the listing 8.2 where the reuse of the temporary r-value is
implemented in the addition operator. We call the move constructor listed in 8.3 for ret trough
std::move operator. The move constructor will check whether the temporary is a submatrix
reference (in which case it cannot be reused as it refers to a portion of a bigger matrix) and if
possible, move the ownership of the underlying smart pointer to the instance being constructed.
This is done with a simple pointer assignment, no memory allocation or transfer is performed.

Listing 8.2: r-value version of the matrix addition operator

T operator+(const T& m,T&& b){
i f (b . i s submat r i x ())

re turn m+b ;

T r e t (std : : move(b)) ;
r e t+=(m) ;
re turn r e t ;

}

Listing 8.3: dgMatrix move constructor

dgMatrix : : dgMatrix (dgMatrix&& m) {
// Copy m a t t r s
rows =m. rows ;
c o l s =m. c o l s ;
s t r i d e =m. s t r i d e ;
o f f s e t =m. o f f s e t ;
t ransposed =m. t ransposed ;
submatr ix =m. submatr ix ;

i f (!m. i s submat r i x ()) {
// Reuse m memory when not from a submatrix
data =m. data ;
m. data =n u l l p t r ;

}
2This features are new additions to the C++11 standard.

48 Parallelization of Finite Difference Methods

e l s e {
// Al l o ca t e memory f o r new matrix and copy
data =shared ptr<double>(new double [c o l s * rows] , s td

: : d e f a u l t d e l e t e<double [] > ()) ;
memcpy(data . get () ,m. data . get () , c o l s * rows * s i z e o f (

double)) ;
}

}

Parallelization of Finite Difference Methods 49

Chapter 9

OpenMP implementation

OpenMP is an API supporting multiprocessing programming through the use of shared
memory. It supports C/C++ and FORTRAN programming languages and is available for
a wide range of architectures and operating systems (Linux, OS X, Windows, AIX, HP-UX,
Solaris, ...). We will use the OpenMP API to optimize the single threaded C/C++ algorithm
described in the previous chapter through CPU multithreading.

9.1 Programming model

OpenMP becomes a portable platform for the development of parallel software, which is easy
integrable in C/C++ software as it is implemented a series of compiler extensions mostly trough
the use of pragma directives which are implemented through calls to the OpenMP runtime
library.

9.1.1 Core elements

There are five core elements to the OpenMP computing approach:

� Parallel control structures: when using the parallel directive, the compiler will fork the
process.

� Work sharing: to distribute the work among threads, OpenMP provides directives such as
parallel for which it will assign each iteration of the loop to a thread, or the omp section
directive which marks sections of the code which will be run by only one thread.

� Data environment: in OpenMP data is shared by default between the threads. One can
use the private clause to define thread local variables.

� Data synchronization: as data is shared by default, there are several synchronization
clauses such as critical, atomic, ordered, ... to control the access to shared data.

� Runtime control: some auxiliary library functions are provided to control the behaviour
of the runtime execution. The most important ones are the omp set num threads and
omp get num threads to set and get the number of running threads. If no specific number
is given, it can also be controlled at execution time through the OMP NUM THREADS
environment variable.

9.1.2 Memory model

OpenMP distributes work between threads with a common address space in a shared memory
model. Thus, any non private variables are shared between threads with no implicit synchro-
nization mechanisms.

50 Parallelization of Finite Difference Methods

To ensure coherence and allow the communication of shared data between threads OpenMP
provides the flush directive, which serves as a sequence point at which the thread is guaranteed
to see a consistent view of memory with respect to the flush set (the explicitly defined group of
variables to be flushed at the sequence point).

OpenMP has a weak consistency memory model, that is, consistency of reads and writes is
only guaranteed relative to the synchronization points (flushes). A flush is always consistent
with another flush.

In practice, this means that even though memory is shared between threads, to update a
shared value one must flush the relevant value to ensure the change becomes visible to the
other threads. Locks can also be used to synchronize data and operations across threads.

9.2 Optimization strategy

For CPU parallelization we will be using the vector oriented approach to the problem.

When assigning each row/column vector to a thread, this approach lends itself nicely to the
parallelization as the work to be performed by each thread has no dependence on the other
ones, so no synchronization is needed.

The advantages in this case are substantial:

� The values precomputed in initialization and the common part of each iteration are per-
formed by a single thread and shared automatically.

� Most of the workload is found in the row/column computation, so we are optimizing where
it is needed most.

� No overhead is introduced by locking or synchronization mechanisms.

� Very little modification of the current code is needed for this kind implementation.

� Introducing parallelism at the algorithm level makes unnecessary the parallelization of the
lower level algebra libraries, which could be an extremely complex and costly task. We
are able to reuse the already optimized single thread libraries instead.

There is one significant drawback though, and it is that the most costly operation of the algo-
rithm in terms of complexity is performed in the single thread region, and thus not parallelized.

This is of little importance for most of the grid sizes used for our algorithm, as the operation is
fast enough to be hidden by the cost of the parallel section, but it can hinder full parallelization
of very large grids due to its larger complexity factor.

Parallelization of Finite Difference Methods 51

As has already been said, the implementation of the parallelization is extremely simple. This
is shown in listing 9.1.

Listing 9.1: Main Nodal Solver Routine

// Nodal problem s o l v e r
i n t s o l v e (problema<M>& p , enum s o l v e r s t r a t e g y s t r a t e g y){

// I n i t i a l i z e shared matr i ce s
i n i t (p . params ()) ;

// Def ine i n i t i a l c o n d i t i o n s
U = p . Uo () ;
V = p . Vo () ;
W = p .Wo() ;

M A,C;
M Uti lde , Vt i lde , Wtilde ;

Ut i lde = U ;
f o r (i n t i t e r =0; i t e r<n i t e r ; i t e r ++)
{

A = M * W (0 ,−1 ,1 ,N −2)* tr<bM>(P) ;
Vt i lde =V ;
Wtilde =W ;

Wtilde (0 ,−1 ,1 ,N −2) = W (0 ,−1 ,1 ,N −2)−dt s2 *

l d i v i d e (S , T *U (1 , N −2 ,1 ,N −2)) ;

switch (s t r a t e g y){
case s t r a t egy mat r i x :

r ow so lve r mat r i x (A, Uti lde , Vt i lde) ;
break ;

case strategy omp :
r o w s o l v e r p a r a l l e l (A, Uti lde , Vt i lde) ;
break ;

case s t r a t e g y s i n g l e :
d e f a u l t :

r o w s o l v e r s i n g l e (A, Uti lde , Vt i lde) ;
}

C = P * Vt i lde (1 , N −2 ,0 ,−1)* tr<M>(M) ;
V = Vt i lde ;
W = Wtilde ;
V (1 , N −2 ,0 ,−1) = Vt i lde (1 , N −2,0,−1)− dt s2 *

r d i v i d e (Ut i lde (1 , N −2 ,1 ,N −2)*
tr<bM>(T) , tr<bM>(S)) ;

52 Parallelization of Finite Difference Methods

switch (s t r a t e g y){
case s t r a t egy mat r i x :

co lumn so lve r matr ix (Uti lde , Wtilde ,C) ;
break ;

case strategy omp :
c o l u m n s o l v e r p a r a l l e l (Ut i lde , Wtilde ,C) ;
break ;

case s t r a t e g y s i n g l e :
d e f a u l t :

c o l u m n s o l v e r s i n g l e (Uti lde , Wtilde ,C) ;
}

}
re turn 0 ;

}

The optimization strategy to be used is defined by the enum solver strategy which has three
values:

� strategy single: where the single threaded vector approach is used.

� strategy matrix: where the matrix oriented approach is used.

� strategy omp: where the multithreaded vector approach is used.

The implementation of the single and parallel row solver is then identical with the only difference
being the omp parallel for pragma directive, used to indicate to the OpenMP library that the
workload of each iteration should be split among available threads.

The synchronization is performed implicitly at the end of the parallel for section so only one
line is needed to transform our single threaded code to a multithreaded implementation. The
other parallel solvers (column nodal, row mimetic, column nodal, ...) are implemented with
the same technique.

OpenMP automatically manages the thread creation. By the output of the ps command
we believe it is using an efficient thread pool implementation where one thread is created for
each available core and then reused when finished, limiting unnecessary thread creation and
destruction.

Listing 9.2: Single and parallel row solvers

i n t r o w s o l v e r s i n g l e (const M& A, M& Uti lde , M& Vt i lde){
f o r (unsigned i n t i =1; i<N −1; i++)

row so lve (i ,A, Uti lde , Vt i lde) ;
r e turn 0 ;

}

i n t r o w s o l v e r p a r a l l e l (const M& A, M& Uti lde , M& Vt i lde){
#pragma omp p a r a l l e l f o r

Parallelization of Finite Difference Methods 53

f o r (unsigned i n t i =1; i<N −1; i++)
row so lve (i ,A, Uti lde , Vt i lde) ;

r e turn 0 ;
}

It is worth noting that this implementation solves the problem found when we tried to apply the
same strategy to the Octave implementation 6.1.3. In that parallelization attempt we lacked
the flexibility of a shared memory multithread model, and we found that the cost of process
spawning and inter–process communication greatly defeated the optimization attempt.

This is not the case anymore, as memory is shared implicitly. The shared address space
removes the need to transfer data between threads, and the join is nicely performed by OpenMP
at the end of the parallel section.

54 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 55

Chapter 10

CUDA implementation

CUDA is an parallel computing platform and Application Programming Interface designed
for heterogeneous parallel programming. CUDA is created and maintained by NVIDIA to allow
the use of their GPUs (graphics processing unit) for general computation algorithms. Due
to wide adoption of GPUs as parallel computing platforms in several fields from science to
financials, NVIDIA developed specialized versions of their GPUs specifically for this usage, the
TESLA family.

Nonetheless, consumer GPU cards, traditionally used as hardware accelerators for video
games, have become an ubiquitous and extremely affordable solution due to the high volumes
of the consumer market. Technologies such as CUDA or their non-propietary counterparts such
as openACC or openCL have profoundly changed the industry, as resources and techniques
reserved to those with access to supercomputing infrastructure are now available at a fraction
of a price and, most importantly, providing a scalable model that goes from prototyping on
regular consumer GPUs to massive parallelization in a cluster of dedicated TESLA GPUs.

10.1 Programming model

CUDA is an heterogeneous computing environment, that is, more than one kind of processor is
involved in the computation. CUDA distinguishes between two types of processors:

� The host is the CPU and its memory.

� The device is the GPU and its memory.

This distinction is important, as the memory spaces for the host and device are separate and
thus, special attention must be paid to its management and the communication between the
two. The PCI Express (PCIe) is used to connect the CPUs and the GPUs and PCIe switches
are used in cluster environments to build a tree-like hierarchy of GPU.

Memory transfers can only be performed across a PCIe bus such as host–device or device–
device when in the same PCIe bus. Even though this architecture achieves a high throughput,
it is limited by the relatively small bandwidth of the PCIe link (6 GB/s)1.

1In real world applications there can be more than one host or device. Multihost programming is achieved
trough conventional multi-threading techniques such as the ones in the previous chapter. Multidevice program-
ming is enabled by specific CUDA functions for working with a specific device and transfer information between
them. In our application only one host and device is considered as the size of the problem is small.

56 Parallelization of Finite Difference Methods

Figure 10.1: CUDA memory hierarchy [29]

To minimize this IO bound limit, CUDA applications usually are designed around the follow-
ing structure.

1. Copy input data from CPU memory to GPU memory.

2. Load GPU program and execute, caching data on chip for performance.

3. Copy results from CPU memory to GPU memory.

Memory transfers are performed through the cudaMemcpy function, and GPU code is organized
in kernels. A kernel is a function that runs on the device, it is written in C/C++ using the

global keyword and called (launched) through a special triple angle brackets syntax:

mykernel<<<blocks , threads b lock , shared memory , stream number>>>(params) ;

Due to hardware limitations, not all threads of the kernel are executed in parallel.

� The thread runs the kernel code and has access to a thread local memory.

Parallelization of Finite Difference Methods 57

� The smallest concurrency unit is the warp which is a group of 32 threads. Usually each
processor in the device runs a warp at any given time.

� Threads are also grouped into blocks. Threads in a block may or may not run in parallel,
but they have access to a per–block shared memory and can synchronize to the other
threads in the block.

� The blocks 2 are part of a grid, which contains all the threads that will be launched.
Threads from separate blocks only can communicate through global memory.

� Newer GPUs can run different kernels at the same time. CUDA provides the stream
abstraction to accommodate more than one execution flow : kernels launched on a given
stream will be scheduled sequentially whereas kernels launched on different streams are
launched asynchronously.

The execution and memory hierarchy defined by this model emerges as it is physically impossible
to run an arbitrary large number of threads in a fully parallel way. This is the result of hardware
constraints that pose a big impact on how memory is organized, it’s latency, availability of
registers for active threads, etc...

10.2 Hardware architectures

A CUDA device is a hierarchical multiprocessing device:

1. Each CUDA platform is composed of one or more devices connected through PCIe.

2. Each device is composed of streaming multiprocessors which are Single Instruction Multiple
Data processors.

3. Each streaming multiprocessor is composed of CUDA cores that execute the same instruc-
tion for different data concurrently.

One can see that each CUDA core will run a kernel thread, several interleaved warps will
run on each streaming multiprocessor, and blocks will be assigned to one or more streaming
multiprocessors as required. The block hierarchy level plays a key role in limiting memory/reg-
ister requirements as no synchronization is possible between blocks. For this same reason, the
number of threads per block is limited to 512/1024 on most devices, whereas block count limit
is much higher.

This hierarchy means that a clever distribution of the threads through the device will be
critical in obtaining maximum parallelism as several bottlenecks emerge.

� Kernel divergence will be severely penalized, as the SIMD design implies idle cores when
the same instruction cannot be issued to all of them.

� Different levels of memory will have different speeds, thread register bank being the fastest
and global memory being the slowest.

2CUDA seamlessly allows for 1D, 2D or 3D block and grid geometries, which is useful for matrix algebra or
3D applications.

58 Parallelization of Finite Difference Methods

� A regular memory access pattern for each warp is critical to ensure maximum memory
bandwidth usage and cache performance.

� A high number of warps is required to hide the memory access latency.

� Inter–block communication is not possible.

� Very complex kernels will limit the ability to parallelize as not enough registers will be
available in the streaming multiprocessor for the full thread count.

10.2.1 Fermi

Fermi is a CUDA microarchitecture used in the NVIDIA GeForce 400/500 and TESLA. Chip
specifications can be found on table 10.2.1.

As shown in figure 10.2.1 the chip is composed of a series of SMs connected to the DRAM
trough a L2 cache.

Each SM (see 10.3) is composed of:

� A instruction cache

� A dual warp scheduler, which can issue instructions to any of the two groups of 16 threads
in the warp.

� A separate dispatch unit which can dispatch instructions even when an SFU is occupied.

� A register file

� A series of CUDA cores, composed of an FPU and an ALU.

� A series of load/store units.

� A series of SFU units, for the execution of trascendental functions.

� Unified shared memory and L1 cache.

Streaming Multiprocessors (SM) 32 CUDA cores

Host interface PCIe v2

DRAM DDR5 (up to 6GB)

Peak performance 1.5 TFlops

Global memory clock 2 GHz

DRAM bandwidth 192 GB/s

Registers per SM 32K 32 bit registers

L1 cache / shared memory 48 kB shared + 16 kB L1 or 16 kB shared / 48 kB L1

L2 cache 768 KB per chip

Table 10.1: Fermi specifications

Parallelization of Finite Difference Methods 59

Figure 10.2: Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache) [29]

60 Parallelization of Finite Difference Methods

Figure 10.3: Fermi Streaming Multiprocessor (SM) [29]

Parallelization of Finite Difference Methods 61

Streaming Multiprocessors (SM) 32 CUDA cores

Host interface PCIe v2

DRAM DDR5 (up to 6GB)

Peak performance 4.6 TFlops

Global memory clock 7 GHz

DRAM bandwidth 224 GB/s

Registers per SM 64K 32 bit registers

L1 cache / shared memory 48 kB shared + 16 kB L1 or 16 kB shared / 48 kB L1

L2 cache 2048 KB per chip

Table 10.2: Maxwell specifications

10.2.2 Maxwell

The Maxwell architecture is two generations ahead the Fermi architecture. Its block structure
is quite similar to the Fermi (see 10.4 and 10.5), but with several improvements:

� Reduced latency for the integer arithmetic instructions.

� Dedicated shared memory independent of L1 cache.

� Reduced number of CUDA cores, but higher efficiency due to improved scheduling and
occupancy.3

� Lower power consumption and higher speed clocks due to the 28 nm manufacturing pro-
cess.

The Maxwell generation targeted low cost power optimized solutions, so there are changes that
may hurt performance:

� No dedicated double precision FPU means high latency for this kind of instructions.

� Memory bus size is reduced from 192 bit to 128 bit.

10.3 Optimization strategy

It becomes evident that performance will be heavily conditioned by the ability of our code to
fully exploit the hardware resources. Due to the small grid sizes, achieving a high occupancy
will be our topmost priority.

As stated in 8.2 we won’t to rewrite the whole algorithm as a specific CUDA kernel. On
the one hand, this would achieve the best performance, as every operation could be fine tuned
resulting in highly optimized kernels.

3NVIDIA claims that a 128 core Maxwell has 90 % of the performance of the 192 previous generation core

62 Parallelization of Finite Difference Methods

Figure 10.4: GM204 Full chip block diagram [30]

Parallelization of Finite Difference Methods 63

Figure 10.5: Maxwell Streaming Multiprocessor (SM) [30]

64 Parallelization of Finite Difference Methods

On the other hand, these very specific kernels present some drawbacks:

� The higher complexity of the kernels can hurt performance due to high register or shared
memory usage, limiting achievable concurrency.

� Due to the higher resource usage, performance will be hardware dependent as different
warp schedulers or shared memory/cache availability become critical.

� The code would not be reusable with a high cost in terms of development and maintenance
time.

In practice we have found that, for large grid sizes, the occupancy of relatively simple kernels
such as the Thomas algorithm for tridiagonal systems becomes register count limited. It can
be expected then that, by aiming for the highest performance and developing overly complex
kernels, we could be degrading performance for very large problems, which are the ones that
really require the use of the GPU computing power.

For this reasons we have decided to opt for a library based implementation, using cuBLAS
and developing specific kernels only when cuBLAS is missing a required functionality.

10.4 Implementation

10.4.1 cudaEnvironment class

One of the main implementation objectives is writing a drop–in replacement for the family of
Matrix templates built over the standard linear algebra libraries.

Due to the low level considerations introduced by the CUDA API such as driver connection
and grid layout, we must find a way of transparently managing those aspects.

The cudaEnvironment class is a helper class usually instantiated once at program startup
and connected by default to the other CUDA classes trough a constant static member reference
assigned by default at object construction.4.

The environment is then internally used by all CUDA class templates when needed:

� When calling driver functions such as cudaMalloc or cudaFree.

� When calling cuBLAS functions which require a driver handler.

� When launching kernels to obtain a grid configuration.

� When switching or syncing streams.

4Although the cudaEnvironment instance usually functions as a singleton, it does not need to (i.e: when using
systems with multiple devices)

Parallelization of Finite Difference Methods 65

Aside from driver initialization and handler management, the main task of the cudaEnvi-
ronment object is to determine the optimal kernel call parameters regarding grid size. At ini-
tialization, we define a target tpb 5 parameter which tells the environment the desired number
of threads per block. Through the cudaEnvironment::assign() function, the cudaEnvironment
object returns a suggested grid configuration consisting of blocks where the given number of
threads have been distributed according to the target6.

Streams are managed through the cudaEnvironment instance in a LIFO style where one
uses cudaEnvironment::stream begin() to create and switch to a new stream and cudaEnvi-
ronment::stream end() to dispose the last created stream. Synchronization between running
streams is achieved by calling cudaEnvironment::stream sync().

This interface is very easy to use, and we do not consider the restrictiveness of the LIFO
mechanism to be a problem in most real world situations, as one will launch as many streams
as desired (which are independent by design), sync to obtain the result and then destroy them.

10.4.2 cuMatrix template class

The cuMatrix template class plays the same role as the Matrix class for the C++ implementa-
tion.

Two template classes are derived from it: cudgMatrix for dense CUDA matrices and cudbMa-
trix for sparse banded CUDA matrices. These templates can be specialized for single or double
precision and present the same programmer interface as the dgMatrix and dbMatrix template
classes respectively.

One essential difference of this templates lies in the memory management. The storage for
these template classes is always allocated in device memory for maximum speed. Explicit
conversions from dgMatrix and dbMatrix are provided for transferring data from one domain
to another 7. As in 8.2, the cuMatrix classes employ extensively the move semantics of C++11
to minimize memory transfers and optimize performance.

Access by reference to individual matrix elements is tricky as the reference is pointing to a
non–cpu address space. The template class cuElementReference is a proxy that works as an
smart reference to enable this functionality. Element–wise matrix manipulation on a foreign
address space is extremely inefficient an should be only used for debug purposes.

The calls to linear algebra libraries have been replaced by cuBLAS calls, and supplemented
with custom kernels where functionality was not available.

5By default target tpb = ENV DEFAULT TPB = 256
6This is not always possible (i.e: when there are not enough threads to fill the block) nor mandatory (the

code has no obligation to use the kernel launch parameters provided by the cudaEnvironment instance)
7This is provided for convenience. For the reasons detailed above, high performance can only be obtained

when all the data and computation is performed on the GPU

66 Parallelization of Finite Difference Methods

Figure 10.6: Visualization of the parallel reduction algorithm [31]

10.4.3 CUDA kernels

A range of kernels 8 has been written to perform simple functionality which is more less
trivial to implement in CPU, but no CUDA version is available in cuBLAS 9. The source for
this kernels is listed in C.1:

� The sin() and cos() trigonometric functions.

� Several copy functions that take into account matrix transformations such as transposi-
tions or submatrix selection.

� The scale() function to scale a matrix by an scalar.

� The linspace() function to generate a linearly spaced vector of elements.

� The dlaswp() function to perform row interchange in gaussian elimination algorithms.

10.4.4 Parallel reduction

The parallel reduction algorithm10 is the base of the norm and distance kernels. Parallelization
of the reduction process is performed in a hierarchical fashion. Each thread adds a pair of
elements. Then, half of the threads will add the partial results computed. This will be repeated
for log2N iterations, until the whole list is reduced to a single value.

Several practical considerations must be considered to achieve optimal performance: minimal
divergence, array indexing to optimize data locality, unrolling some operations, ...

One limitation of this technique is that, as the threads per block count is limited to 1024, lists
bigger than 2048 elements cannot be reduced 11. This is an important limitation for computing
matrix norms and distances, as matrices as small as 45 × 45 already reach the limit. Bigger
reductions are computed in two steps. First one reduces in parallel all the columns of the matrix

8To enhance modularity all the kernels have been included in the kernel namespace. Some of the kernels are
templates themselves for a seamless transition between single and double precision arithmetic.

9cuBLAS version might be available but it does not take into account matrix transformations becoming
inefficient for our usage.

10Our parallel reduction algorithm, listed in appendix C.2, is an adaptation of the work in [31].
11One thread is required for every pair of elements in the list.

Parallelization of Finite Difference Methods 67

to a vector in shared memory. Then the vector is reduced again to a single value. This technique
is used in the nrm2() kernel.

The reduction algorithm has been split in two parts, the first iteration is done by the caller
to allow for input data transformation, and then the recursive reduction is performed by calling
the reduce() kernel. This is the case of the norm() and dist() kernels, where the square and the
square of the difference is respectively computed in the fist iteration.

10.4.5 Banded matrix kernels

We had to implement some missing banded matrix functionality from cuBLAS. For instance,
Level 3 banded matrix by dense matrix multiply was not provided, but Level 2 banded matrix
by vector multiply was. We built the L3 operation over the L2 one by decomposing a matrix–
matrix multiply into independent matrix–vector multiply and accumulate operations.

Our first approach, using streams to overlap the vector–matrix products, obtained a very low
occupancy due to the cost of kernel launching relative to the workload of each thread. We found
that best results are obtained when the whole matrix is computed with a single launch, as the
work per thread increases and a higher number of threads are effectively launched, increasing
the opportunities to obtain better occupancy.

We had the same results with stream based distance and matrix norm computation. We
found ourselves implementing full matrix kernels as building over the provided vector oriented
kernels was extremely inefficient.

Another important operation missing from cuBLAS was the tridiagonal system solver, which
we implemented from scratch. The Thomas algorithm [32] is mostly sequential for each right–
hand side, so achieving high occupancy was tricky. More parallelizable alternatives to the
Thomas algorithm exist, but they have higher computational complexity and are only justified
with extremely large systems. In our implementation, the kernel occupancy became register
usage limited for the largest systems, implying that the solution is adequate for the range of
sizes of the problem.

10.4.6 Solver convergence

At the inner loop of both algorithms, an iterative method is used to solve a linear system of
equations. The number of steps required until convergence is limited by a constant.

This poses a problem for CUDA performance as one floating point value must be transferred
form device to host to test for convergence. This is wasteful as the PCIe bus is slow and has a
high latency.

To solve this problem we study the average number of steps until convergence. Lucky for us,
this number is small and roughly constant so we use this information to implement a minimum
number of iterations (2) until convergence is tested, saving most of the unneeded device to host
transfers.

68 Parallelization of Finite Difference Methods

Double

●●
● ●

● ●
●

●
● ●

● ●

●
●

●
● ● ●

●

● ● ● ● ●

●●
● ●

● ●
●

●
● ● ● ●

●
●

●
● ● ●

●

● ● ● ● ●

●● ● ●

● ● ●
●

● ●

● ●

●●
● ●

● ● ●
●

● ● ● ●

●● ● ●

● ● ●
●

● ● ● ●

●●
● ●

● ● ●
●

● ● ● ●

0

2

4

6

0

2

4

6

m
im

etic
nodal

8 16 32 64 128 256 512
N

(I
te

ra
tio

ns
1

+
 It

er
at

io
ns

2)
/2

Mode ● ●Matrix Vector

Lambda ● 0.1 0.25

Figure 10.7: Solver iterations until convergence

Parallelization of Finite Difference Methods 69

Chapter 11

Results

11.1 Test systems

Two systems where used for testing. System 1 (S1) mounts an Intel core-i7 CPU and a NVIDIA
Maxwell GPU, System 2 (S2) mounts an AMD Phenom-II X6 processor and a NVIDIA Fermi
GPU. Aside from S1 being newer and more powerful than S2, these systems have selected
because there are some architectural differences that may affect performance.

� S1 CPU clock speed is ≈ 20% faster than S2’s.

� S1 has 4 physical CPUs but HyperThreading technology allows to run up to 8 threads
whereas S2 has 6 physicals CPU for a total of 6 threads.

� S1 cache L1, L2 cache is half the size of the S2 L1,L2 cache. S1 L3 cache is bigger than
S2 L3 cache. S1 bus speed is 25% higher than S1.

� S1 GPU is more 2.5× more powerful than S2’s but S1 GPU lacks native double precision
floating point support.

� S1 TDP is 25% lower than S2 TDP.

Full specifications for S1 and S2 can be found in table 11.1 and 11.1 respectively.

11.2 Output

Figures 11.1,11.2,11.3,11.4,11.5,11.6,11.7,11.8 illustrate the output and error of nodal and mimetic
methods for an homogeneous problem for characteristic wavelengths of λ = 1

4 and λ = 1
8 .

For this grid size the resulting error is quite low (< 10−3) but has a different pattern for each
method. The resulting error from applying the nodal method is much noiser than the produced
by the mimetic method.

We believe this behaviour is due to the higher numerical complexity of the nodal method,
which introduces a higher rounding error due to the finite accuracy of the floating point rep-
resentation. This becomes more evident for λ = 1

8 , where the higher rate of variation of the
solution challenges the nodal method accuracy, while the mimetic method is able to stay within
a more regular error pattern.

11.3 MATLAB / Octave

The single threaded MATLAB / Octave implementation shows that both methods have a similar
complexity of approximately O(N3...4).

70 Parallelization of Finite Difference Methods

CPU

Commercial name Intel(R) Core(TM) i7-4770 CPU at 3.40GHz
Release Date Q2’2013
Processor Number I7-4770
Cache Size 8 MB SmartCache
Bus Speed 5 GT/s DMI2
Instruction Set 64 bit
Instruction Set Extensions SSE4.1/4.2, AVX 2.0
Floating point speed 99.72 GFLOPS 1

Lithography 22 nm
Cores / Subprocesses 4/8
Clock frequency (base/turbo) 3.4 GHz / 3.9 GHz
Power 84 W

RAM

Memory Type DDR3
Memory Speed 1600 MHz
Memory Configuration 2× 4096 MB + 2× 2048 MB
Latency 36 cycle + 57 ns

Cache

L1 Instruction cache 4× 32 KB, 64 B/line, 8-WAY
L1 Data cache 4× 32 KB, 64 B/line, 8-WAY, 4-5 cycle latency
L2 cache 4× 256 KB, 64 B/line, 8-WAY, 12 cycle latency
L3 cache 8 MB, 64 B/line, 36 cycle latency

GPU

Model GeForce GTX 960 (Maxwell)
Launch Date January 22, 2015
Code Name GM206
Lithography 28 nm
Bus Interface PCIe 3.0 x16
CUDA 5.2 / 1024 cores
Memory 2048 MB
Memory Bus 128bit GDDR5 @ 3505 MHz
Memory Bandwidth 112 GB/s
Processing Power (single/double) 2308/72.1 GFLOPS
TDP 120 W

Table 11.1: Test system 1 specs

Parallelization of Finite Difference Methods 71

CPU

Commercial name AMD Phenom(tm) II X6 1055T Processor at 3.40GHz
Release Date Q2’2010
Processor Number 1055T
Bus Speed 4 GT/s 2000 MHz HyperTransport
Instruction Set 64 bit
Instruction Set Extensions SSE4a, AMD-V
Floating point speed 54.34 GFLOPS
Lithography 45 nm
Cores / Subprocesses 6/6
Clock frequency (base/turbo) 2.8 GHz / 3.3 GHz
Power 95 W

RAM

Memory Type DIMM
Memory Speed 1600 MHz
Memory Configuration 2× 2048 MB
Latency 157 cycle

Cache

L1 Instruction cache 6× 64 kB 2-way set associative, 1 cycle latency
L1 Data cache 6× 64 kB 2-way set associative, 1 cycle latency
L2 cache 6× 512 kB 16-way set associative exclusive, 13 cycle latency
L3 cache Shared 6 MB 48-way set associative, 48 cycle latency

GPU

Model GeForce GTX 460 (Fermi)
Launch Date July 12, 2010
Code Name GM104
Lithography 40 nm
Bus Interface PCIe 2.0 x16
CUDA 2.1 / 336 cores
Memory 1023 MB
Memory Bus 256 bit GDDR5 @ 1800 MHz
Memory Bandwidth 115.2 GB/s
Processing Power 907.2 GFLOPS
TDP 160 W

Table 11.2: Test system 2 specs

72 Parallelization of Finite Difference Methods

Figure 11.1: Nodal output waveform: N = 64, λ = 1/4.

Figure 11.2: Nodal output error: N = 64, λ = 1/4.

Parallelization of Finite Difference Methods 73

Figure 11.3: Mimetic output waveform: N = 64, λ = 1/4.

Figure 11.4: Mimetic output error: N = 64, λ = 1/4.

74 Parallelization of Finite Difference Methods

Figure 11.5: Nodal waveform: N = 64, λ = 1/8.

Figure 11.6: Nodal output error: N = 64, λ = 1/8.

Parallelization of Finite Difference Methods 75

Figure 11.7: Mimetic waveform: N = 64, λ = 1/8.

Figure 11.8: Mimetic output error: N = 64, λ = 1/8.

76 Parallelization of Finite Difference Methods

mimetic nodal

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

1e−01

1e+00

1e+01

1e+02

1e+03

O
ctave

8 16 32 64 128 256 512 8 16 32 64 128 256 512
N

W
al

l.T
im

e

Lambda ● 0.25

Threads ● ● ● ●1 2 4 8

Figure 11.9: Octave: Method timing as function of grid size.

We see now why the parallelization of the Octave code did not work. The overhead introduced
by the parallel package is so big that it effectively flattens the slope and no practical speedup
is achieved until N > 300. This overhead increases with the number of processes, as more data
needs to be copied over. In fact, the slope is flattening to O(N2) which is the complexity of
copying a matrix. For high N, the speedup obtained is small even when using 8 threads.

For the nodal method the we have ≈ O(N3) and for the mimetic case ≈ O(N3.26). This
linear estimation is to be taken with a grain of salt as the nodal method complexity is not really
linear, being flatter for small N and getting steeper as N increases.

This effect could be related to Octave changing the compute strategy for matrices of different
sizes. Another factor at play could be cache misses, as the knee is located at the expected L1-L2
cache exhaustion range8.1.3.

Note that the complexities computed are better than the theoretical bound found. This is
due to the assumption of complexity ≈ O(N3) for matrix product when it is probably O(N2.8)2

and a more efficient implementation of quasi-banded sparse matrices.

2Using the Strassen algorithm [33]. It could be even O(N2.375477) if using the Coppersmith–Winograd algo-
rithm described in [34], although impractical for the small matrices allowed by the methods.

Parallelization of Finite Difference Methods 77

11.4 Single–threaded C++

In figure 11.10 we see how the matrix oriented dominates the vector oriented implementation.
This is expected as the matrix orientation is able to exploit row/column redundancies and
optimize at the loop level, thereby obtaining a small speedup.

However, as N increases, the matrix oriented strategy losses its lead as this relatively small
optimization becomes less important relative to the rest of the computations. This optimizations
seem to play a bigger role in the nodal method.

The complexity of the methods is now at O(N3.6) for the nodal method and O(N4) for the
mimetic method. This values are more in line with the theoretical complexity estimated in this
work, losing the edge obtained in MATLAB/Octave.

The times obtained for the C++ implementation are much lower than the reference MAT-
LAB/Octave implementation. This is most certainly due to the removal of the interpreter
overhead and compile time optimizations.

The complexity of the MATLAB/Octave code had two terms (interpreter and BLAS). In-
terpreter complexity is basically O(N) so it is effectively flattening the timing curve and thus
giving the false impression of a more efficient algorithm when times are really much better in
the C++ implementation.

The BLAS term however is essentially the same for Octave and C++ implementation so, the
speedup of C++ code will fade as N gets bigger and the BLAS library calls take all the runtime.

This figure also contains multiple wavelengths for each method which result in an overlap of
data points as no significant timing difference exists in practice.

11.5 Multi–threaded C++ (OpenMP)

In the case of multithreading we observe a relatively small speedup. It is noticeable (2× for
8 core) when compared to the vector oriented implementation, but almost no gain is obtained
compared to the matrix oriented method for small N. Sometimes the parallel version performs
worse for very small N due to the overhead of thread creation.

The (2×) gain over the matrix oriented implementation is obtained for high N as this im-
plementation converges with the vector oriented as N increases. This could be related to an
inefficient cache utilization when the matrices become large in the matrix oriented implemen-
tation.

The OpenMP implementation, being effectively a multithreaded vector oriented implemen-
tation seems to deal better with large problems. As expected, complexity is the same as in the
single thread case.

78 Parallelization of Finite Difference Methods

mimetic nodal

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

A
M

D
 X

6 1055T
IN

T
E

L i7−
4770

8 16 32 64 128 256 512 8 16 32 64 128 256 512
N

W
al

l.T
im

e

Mode ● ●Matrix Vector

Lambda ● 0.1 0.25

Figure 11.10: C++: Method timing as function of grid size.

Parallelization of Finite Difference Methods 79

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

m
im

etic
nodal

8 16 32 64 128 256 512
N

W
al

l.T
im

e

Threads ●● 1 2 4 8

Figure 11.11: OpenMP: Method timing as function of grid size.

80 Parallelization of Finite Difference Methods

●

● ● ●
● ●

● ●

●

●

●

●

●● ● ● ● ● ● ●

●
●

●
●

●● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ●

●

●
●

●

●

●● ● ● ● ● ●
●

●
●

●
●

●● ● ● ● ● ● ●
● ● ● ●

●● ●

●

● ● ● ●

●

●
●

●

●● ● ● ● ● ● ●

●
● ●

●●● ● ● ● ● ● ●
●

● ● ●

●● ● ● ● ●

●

●

●

● ●
●

●● ● ● ● ●
●

●

●
● ●

●
●● ● ● ● ● ● ●

● ● ● ●

2

4

6

8

2

4

6

8

m
im

etic
nodal

8 16 32 64 128 256 512
N

U
se

r.T
im

e/
W

al
l.T

im
e

Threads ● ● ● ●2 4 6 8

Lambda ● 0.1 0.25

Figure 11.12: Method timing complexity as function of grid size.

Figure 11.12 shows the ocuppation for the methods as a function of N and the number of
threads used 3. As expected, we see that utilization falls as we get out of the L1-L2 cache
exhaustion range.

The mimetic method, which uses computations simpler than the nodal method, seems to be
able to achieve better utilization, as its curve falls slower for high N than the nodal method.

An anomaly seems to appear near the point N=32 for the case N = 8. That point is in
fact N = 33, which is problematic to the parallelization as it is not divisible by the number of
threads used, resulting in an uneven workload and idle threads.

11.6 CUDA C++

With the CUDA implementation with had our first chance of analysing the behaviour of the
method error relative to the floating precision used.

Figure 11.13 shows a crucial difference between the mimetic and the nodal method. The
mimetic method, with it’s simpler arithmetic is able to function either with single or double

3The 6 thread data comes form an S2 test

Parallelization of Finite Difference Methods 81

mimetic nodal

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
● ●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
● ●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●

● ●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●
●

● ●

●
●

●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●

● ● ● ● ● ●

●●
● ●

●

●

● ● ● ● ● ●

1e−05

1e−02

1e+01

1e−05

1e−02

1e+01

D
ouble

S
ingle

8 16 32 64 128 256 512 8 16 32 64 128 256 512
N

E
rr

or

Details ● ●GeForce GTX 460 GeForce GTX 960

Lambda ●● 0.1 0.25

Figure 11.13: CUDA: Method error as function of grid size.

82 Parallelization of Finite Difference Methods

mimetic nodal

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

1e−01

1e+00

1e+01

1e+02

1e−01

1e+00

1e+01

1e+02

D
ouble

S
ingle

8 16 32 64 128 256 512 8 16 32 64 128 256 512
N

W
al

l.T
im

e

Details ● ●GeForce GTX 460 GeForce GTX 960

Lambda ●● 0.1 0.25

Figure 11.14: CUDA: Method timing as function of grid size.

precision, but the nodal method is able to work with double precision arithmetic.

The most probable reason behind this behaviour is that the nodal method is an implicit
method, which means that some systems must be solved at each step.

The systems to be solved are tridiagonal so we use the Thomas Algorithm. The Thomas
algorithm performs a forward substitution on the whole matrix followed by a backward substi-
tution. This is a long operation where the error at each step adds up, resulting in degraded
accuracy when single precision arithmetic is used.

In this case, floating point precision is not only relevant to the total error, but also the GPU
performance as the Fermi chipset on S2 has native floating point support which S2 is lacking.

This fact is already evident in the different level of error obtained for the same single precision
implementation of the nodal method on both GPUs.

The CUDA speedup is ≈ 20× for large N, but worse than the C++/OpenMP implementation
for N ≤ 96. This is expected, as the costs of data transfer and kernel launch are too much when

Parallelization of Finite Difference Methods 83

the problem is small. This produces flatter curves, specially for small N, as can be seen in the
non linear shapes in 11.14.

Interestingly enough, the single precision version is not faster. This is caused by the need of
more iterations for the solution to converge as the reduced accuracy induces a slower conver-
gence.

The late check of converge described in 10.4.6 proves valuable to achieve a good performance
when using small grid sizes where the cost of the convergence check time is high relative to the
light computational workload.

11.7 Compared performance

Obtained speedups relative to the reference implementation are presented in tables 11.3 for the
nodal method and 11.4 for the mimetic method.

The results for the MATLAB/Octave parallel implementation are bad. A small amount of
improvement is obtained (less than 2×) only for very high N.

The C++ implementation is best for small problems. No interpreter overhead is present and
the whole data fits into cache, resulting in impressive performance (almost 40× for N = 8). Of
the two approaches, matrix and vector oriented, the first clearly dominates the second as more
opportunities for optimization are given to the algebra libraries.

The OpenMP, being based in the inferior vector oriented approach has a performance slightly
better than the matrix oriented approach for N ≤ 128, but as soon as the L1-L2 cache is
exhausted, it becomes faster by a factor of 2×, reaching a speedup of 20× relative to the
reference implementation.

We observe different tendencies for the nodal and mimetic GPU implementations. On the
one hand, the speedup obtained with the nodal implementation seems to grow with N, probably
because the parallization achieved by the Thomas Algorithm is low for the range of sizes where
the methods are applicable.

On the other hand, the mimetic method seems to converge to a speedup of about 20×,
probably because a high GPU occupancy is achieved limiting further parallelization.

In fact, even the largest problem is relatively small for a GPU, where matrices are usually in
the range of millions of elements and we are only using hundreds of thousands at best.

To sum up, a speedup of 10 . . . 28× (nodal) and 18 . . . 50× (mimetic) relative to the reference
implementation is achievable over the whole range of grid sizes by employing the correct imple-
mentation. CPU based implementations are best for small problems and GPU based solutions
shine when the problem is large or very large.

84 Parallelization of Finite Difference Methods

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

0.1

1.0

2.0

5.0

10.0

20.0

40.0

8 16 24 33 48 64 96 128 255 320 335 384 512
N

S
pe

ed
up

Details
●

●

●

●

●

●

GeForce GTX 960

INTEL i7−4770

Octave (1 thread)

Octave (2 thread)

Octave (4 thread)

Octave (8 thread)

Config
● Matrix, MinIt=0

Matrix, MinIt=2

Vector, MinIt=0

Vector+OMP, MinIt=0

Figure 11.15: Mimetic method timings compared.

Parallelization of Finite Difference Methods 85

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

0.1

1.0

2.0

5.0

10.0

20.0

40.0

8 16 24 33 48 64 96 128 255 320 335 384 512
N

S
pe

ed
up

Details
●

●

●

●

●

●

GeForce GTX 960

INTEL i7−4770

Octave (1 thread)

Octave (2 thread)

Octave (4 thread)

Octave (8 thread)

Config
● Matrix, MinIt=0

Matrix, MinIt=2

Vector, MinIt=0

Vector+OMP, MinIt=0

Figure 11.16: Mimetic method timings compared.

86 Parallelization of Finite Difference Methods

D
eta

ils
T

h
rea

d
s

M
in

It
8

16
33

48
64

96
128

320
335

512

O
ctave

1
0

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

O
ctave

2
0

0.13
0.38

0.64
1.01

1.32
1.63

1.81
1.49

1.47
1.27

O
ctave

4
0

0.07
0.18

0.31
0.49

0.67
0.95

1.21
1.41

1.40
1.24

O
ctave

8
0

0.03
0.08

0.14
0.24

0.32
0.51

0.73
1.25

1.14
1.19

C
+

+
1

0
1
3.10

10.19
6.51

5.47
5.00

4.06
4.08

4.54
5.31

C
+

+
8

0
2
8
.3

4
2
8
.0

8
6
.4

2
1
5
.0

5
1
3
.2

0
1
0
.3

5
1
0
.3

0
10.39

10.99
C

U
D

A
25

6
0

0.48
1.12

1.87
3.30

4.29
5.65

7.10
12.53

23.80
C

U
D

A
25

6
2

0.58
1.36

2.27
3.93

4.97
6.36

7.84
1
3
.9

1
2
5
.5

7

T
ab

le
1
1.3:

S
p

eed
u

p
s

o
b

ta
in

ed
fo

r
ea

ch
im

p
lem

en
tation

of
th

e
n

o
d

al
m

eth
o
d

relative
to

O
ctav

e
referen

ce
im

p
lem

en
tation

.
O

p
tim

al
im

p
lem

en
ta

tio
n

in
b

o
ld

.

Parallelization of Finite Difference Methods 87

D
et

ai
ls

T
h

re
a
d

s
M

in
It

8
16

33
48

64
96

1
28

3
20

3
35

3
84

51
2

O
ct

av
e

1
0

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
0
0

1.
0
0

1.
0
0

1
.0

0
1
.0

0
O

ct
av

e
2

0
0.

10
0.

19
0.

34
0.

45
0.

55
0.

71
0.

8
6

1.
1
8

1.
1
8

0
.9

7
0
.9

2
O

ct
av

e
4

0
0.

06
0.

12
0.

23
0.

32
0.

41
0.

58
0.

7
6

1.
4
1

1.
4
2

1
.1

9
1
.2

5
O

ct
av

e
8

0
0.

03
0.

06
0.

10
0.

15
0.

19
0.

28
0.

3
9

0.
9
6

0.
9
8

0
.9

1
1
.1

0
C

+
+

1
0

24
.6

2
19

.5
0

14
.4

5
11

.5
8

8.
96

6.
79

6.
1
7

3.
5
5

3
.1

4
2.

57
C

+
+

8
0

5
0
.3

5
4
4
.8

3
3
2
.7

2
2
0
.5

6
1
7
.7

4
13

.8
9

12
.5

3
8
.1

1
7
.3

4
5.

9
2

C
U

D
A

2
56

0
0
.7

6
1.

88
4.

49
6.

98
6.

39
13

.1
9

1
0.

1
3

13
.8

0
14

.6
3

16
.4

6
C

U
D

A
2
56

2
1
.0

4
2.

51
7.

44
9.

83
10

.4
9

1
8
.5

4
1
8
.9

9
1
9
.5

9
1
9
.8

8
2
0
.7

7

T
ab

le
11

.4
:

S
p

ee
d

u
p

s
o
b

ta
in

ed
fo

r
ea

ch
im

p
le

m
en

ta
ti

on
of

th
e

m
im

et
ic

m
et

h
o
d

re
la

ti
v
e

to
O

ct
av

e
re

fe
re

n
ce

im
p

le
m

en
ta

ti
o
n

.
O

p
ti

m
al

im
p

le
m

en
ta

ti
on

in
b

ol
d

.

88 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 89

Chapter 12

Conclusions

The nodal method uses implicit differential operators which means higher numerical stability
at the cost of a higher running time. For small N the limiting factor is the number of operations
required, specially for system solving. For high N a single dense-by-dense matrix multiplication
becomes the main cost due to its high complexity compared to the other operations.

The mimetic method uses explicit differential operators which means lower running time at
the cost of a lower numerical stability. This method does not require linear system solving nor
dense-by-dense matrix multiplication, which makes it very fast. Due to constant factor and
asymptotic complexity being lower for the mimetic method than the one for the nodal method,
one could use a denser grid to improve numerical complexity when needed.

In our test cases, using well behaved solutions, the mimetic method is more stable numerically
than the nodal method. The mimetic method supports single precision arithmetic (which the
nodal method does not); this is due to a lower operation count producing a lower rounding
error.

To perform optimally, both methods require some fine-tuning of the cflmax parameter and
the solver convergence iteration limit.

The reference MATLAB implementation was hard to optimize, being the main optimization
an algorithmical one. We derived a matrix oriented approach from the vector oriented approach
(rows/columns) in the original code. This allowed for a reduction of loops and better utilization
of the MATLAB code.

Our main efforts with the C++ implementation were focused on:

� Build an expressive and algebra friendly C++ dialect to make the development easier and
at the same time allow for multiple algebra implementations under the hood.

� Decouple the physical problem from the algebra/optimization, thus allowing for a much
more readable, testable and less error prone code.

� Ensure correctness by building an automated test system for our algebra implementation.

Some C++11 features such as shared pointers and move semantics where essential in achieving
expressivity without losing performance.

90 Parallelization of Finite Difference Methods

The resulting C++ code was much faster than the MATLAB one, however the complexity
was higher (but more inline with the theoretical estimation). This could be attributed to the
higher constant factor of MATLAB operations hiding the cost of the most complex ones, a cost
which is revealed when this constant factor drops, as is the case of our C++ implementation.

When we began with the optimization, the first problem found was that the matrix size
for the methods (8–384) is quite small for a modern computer, making it hard to achieve high
perfomance with standard linear algebra libraries, which are optimized for much larger problems.

The matrix/vector approaches are the building foundations for our subsequent parallelization
attempts as they allow for parallelization at fine (matrix element) or coarse (whole vector)
levels. This idea is crucial as it allows us to adapt to the different levels of parallelism provided
by different architectures (multi–CPU vs GPU).

The OpenMP implementation was almost trivial to develop from the vector oriented approach
as vectors decouple and no synchronization is needed between threads. This solution works best
for small/medium sized problems, but performance drops with small systems when N is not a
multiple of the available CPUs, as some CPUs become idle for a significant amount of time.

cuBlas was used for most CUDA algebra implementation, except for some missing or perfor-
mance critical kernels1. Keeping matrices in GPU memory and minimizing transfers between
host and device was essential in obtaining good performance. The usage of streams was prob-
lematic due to the launch time being too high in relation to the kernel working time. In any
case GPU occupation was not very high due to the small size of the matrices used in this work.
The check for convergence in the ADI solver stage was a performance limiting factor as it re-
quired several small device–host DMA transfers. As the number of iterations until convergence
is roughly constant, we minimized this bottleneck by delaying the convergence check until a
fixed number of iterations is performed.

Our results show that the OpenMP implementation is better for small N whereas the CUDA
implementation is faster for higher N. Switching between implementations depending on the
required N would yield the best performance overall.

1See appendix C

Parallelization of Finite Difference Methods 91

Appendix A

Matrix naming

Due to the imposibility of using a consistent nomenclature for reduced matrices (i.e.: X̄) in
C/C++ or MATLAB code, some matrix renaming has been introduced. The text in this work
attempts to be consistent with published work whenever possible.

A.1 The Nodal method

Attached Code This work

P P̄

Q Q̄

S P

T Q

A F

C G

ai rows of A

bi rows of B

cj columns of C

dj columns of D

M H

A.2 The Mimetic method

Attached Code This work

A F

C G

ai rows of A

bi rows of B

cj columns of C

dj columns of D

M H

M1 H1

92 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 93

Appendix B

MATLAB sources1

B.1 Description

The MATLAB implementation described in this chapter is used as a reference to assess the
validity of all the other implementations.

B.2 The Nodal method

Initialization of common constants is performed in lines 8-14 of .

� tfin: Simulation end time.

� epsilon: Precision required for convergence in the simultaneous tridiagonal solver.

� cflmax: Used with the grid size to determine the coarseness of the time step (heuristically
tuned for the method).

� lamb: Wavelength of the solution.

� casos: List of grid sizes to test.

The for loop in Lines 16-121 performs the computation for each grid size given in casos.

1. 26-39 Computes the method matrices P,Q,M,S,T.

2. 41-50 Compute the grid which will be used along with the exact problem solution for error
calculation.

3. 52-102 The for loop solves the acoustic problem for one time step:

(a) 53-56 Update of the intermediate matrices A, Ṽ,W̃.

(b) 58-76 The for loop solves the first stage of the algorithm row by row.

(c) 78-81 Update of the matrices C,V,W using the intermediate result from the previous
step.

(d) 83-101 The for loop solves the first stage of the algorithm column by column.

(e) 104-120 The error is computed and various stats are printed.

4. 123-127 The result from the last computation is plotted along with the solution error.

1Code has been adapted for enhance printability. Original file available on digital accompanying material.

94 Parallelization of Finite Difference Methods

1 % UNIVERSIDAD CENTRAL DE VENEZUELA
2 % POSTGRADO EN CIENCIAS DE LA COMPUTACION
3 % TUTOR: Dr . OTILIO ROJAS
4 % ESTUDIANTE: LUIS JOAQUIN CORDOVA DIAZ
5 %%% Estudio convergenc ia Compacto nodal 2D un c f l v a r i o s
6 %%% casos = [8 16 33 48 64 96 128 320 335]
7
8 t f i n = 5/ sqrt (2) ;
9 e p s i l o n = 1e−5;

10 dosp i = 2*pi ;
11 casos = [8 64 16 33 48 64 96 128 320 3 3 5] ;
12 s = length (ca sos) ;
13 cf lmax =0.915;
14 lamb =0.25;
15
16 for caso = 1 : s
17 N = casos (caso) ;
18 h = 1/(N−1);
19 dt=cflmax *h ;
20 dts2 = .5* dt ;
21 n i t e r = round(t f i n /dt) ;
22 r = (2 :N−1);
23
24 unos = ones (N−2 ,1) ;
25 dts2 lamb2 = dts2 * lamb* lamb ;
26 P = spdiags ([unos 4*unos unos] , [−1 0 1] ,N−2,N−2)/3;
27 Q = spdiags ([−unos unos] , [0 2] ,N−2,N)/h ;
28 M = P\Q;
29
30 T = spdiags ([−unos unos] , [−2 0] ,N,N−2);
31 T(1 , 1 : 2) = [4 1] / 3 ;
32 T(N,N−3:N−2) = [−1 −4]/3;
33 T = T/h ;
34
35 unos = ones (N, 1) ;
36 S = spdiags ([unos 4*unos unos] , [−1 0 1] ,N,N) ;
37 S (1 , 1 : 2) = [2 4] ;
38 S(N,N−1:N) = [4 2] ;
39 S = S /3 ;
40
41 x = linspace (0 , 1 ,N) ;
42 y = x ’ ;
43 V = zeros (N,N) ;
44 W = V;
45 Ut i lde = V;
46

Parallelization of Finite Difference Methods 95

47
48 U = sin (dosp i /lamb*y)* sin (dosp i /lamb*x) ;
49 % SOLUCION DE LA U EXACTA
50 Uexacta = U*cos (sqrt (2)* dosp i * t f i n) ;
51 t s t a r t = cputime ;
52 for n = 1 : n i t e r
53 A = M*W(: , r)*P ’ ;
54 Vt i lde = V;
55 Wtilde = W;
56 Wtilde (: , r) = W(: , r)−dts2 *(S\T*U(r , r)) ;
57 % RESOLUCION DE LA PRIMERA ETAPA FILA POR FILA
58 for i = r
59 a i = U(i , r)*P’−dts2 lamb2 *A(i −1 , :) ;
60 b i = V(i , :) * S ’ ;
61 u v i e j o = U(i , r) ;
62 v v i e j o = V(i , :) ;
63
64 t e s t = 1 ;
65 k = 0 ;
66 while (t e s t > e p s i l o n) && (k < 12)
67 unuevo = (ai−dts2 lamb2 * v v i e j o *Q’) /P ’ ;
68 vnuevo = (bi−dts2 *unuevo*T’) / S ’ ;
69 t e s t = norm ([unuevo−u v i e j o vnuevo−v v i e j o]) ;
70 u v i e j o = unuevo ;
71 v v i e j o = vnuevo ;
72 k = k+1;
73 end
74 Ut i lde (i , r) = unuevo ;
75 Vt i lde (i , :) = vnuevo ;
76 end % FIN DE LA PRIMERA ETAPA
77
78 C = P* Vt i lde (r , :) *M’ ;
79 V = Vt i lde ;
80 W = Wtilde ;
81 V(r , :) = Vt i lde (r , :)− dts2 * Ut i lde (r , r)*T’ / S ’ ;
82 % RESOLUCION DE LA SEGUNDA ETAPA COLUMNA POR COLUMNA
83 for j = r
84 c j = P* Ut i lde (r , j)−dts2 lamb2 *C(: , j −1);
85 dj = S*Wtilde (: , j) ;
86 u v i e j o = Ut i lde (r , j) ;
87 wvie jo = Wtilde (: , j) ;
88
89 t e s t = 1 ;
90 k = 0 ;
91 while (t e s t > e p s i l o n) && (k < 12)
92 unuevo = P\(c j−dts2 lamb2 *Q*wvie jo) ;

96 Parallelization of Finite Difference Methods

93 wnuevo = S\(dj−dts2 *T*unuevo) ;
94 t e s t = norm ([unuevo−u v i e j o ; wnuevo−wvie jo]) ;
95 u v i e j o = unuevo ;
96 wvie jo = wnuevo ;
97 k = k+1;
98 end
99 U(r , j) = unuevo ;

100 W(: , j) = wnuevo ;
101 end % FIN DE LA SEGUNDA ETAPA
102 end
103
104 E = U−Uexacta ;
105 errornuevo = h*norm(E, ’ f r o ’) ;
106 t e l ap s ed = cputime−t s t a r t ;
107 i f caso == 1
108 disp ([’ORDEN OBSERVADO CUANDO c f l =0 .91 . . e r r o r e s para U ’ , . . .
109 ’−−−>t f i n = 7/ s q r t (2)−−−> e p s i l o n=1e−5 ’])
110 disp ([’ N h e r r o r ’ , . . .
111 ’ orden Tiempo ’])
112 fpr intf (’ %16.1 f %16.3 f %19.2e−−−−−−−−−−−−−−−−%11.3e \n ’ , . . .
113 N, h , errornuevo , t e l ap s ed)
114 else
115 orden = log2 (e r r o r v i e j o / errornuevo) ;
116 fpr intf (’ %16.1 f %16.3 f %19.2 e %15.3 f %11.3 e\n ’ , . . .
117 N, h , errornuevo , orden , t e l ap s ed)
118
119 end
120 e r r o r v i e j o = errornuevo ;
121 end
122
123 figure , surf (x , y ,U) , xlabel x , ylabel y , zlabel U(x , y) ,
124 t i t l e (’ONDA CALCULADA’)
125
126 figure , surf (x , y ,E) , xlabel x , ylabel y , zlabel E(x , y) ,
127 t i t l e ERROR

B.3 The Mimetic method

For the mimetic method, the computation of the matrices RD,RG of 4th order and size N is
performed in the matriz RD(N) and matriz RG(N) functions.

The structure of the code is very similar to the one presented in the previous section, the
main difference lies in the way the updates are performed.

Initialization of common constants is performed in lines 7-13 of B.3.

Parallelization of Finite Difference Methods 97

� tfin: Simulation end time.

� epsilon: Precision required for convergence in the simultaneous tridiagonal solver.

� cflmax: Used with the grid size to determine the coarseness of the time step (heuristically
tuned for the method).

� lamb: Wavelength of the solution.

� casos: List of grid sizes to test.

The for loop in Lines 14-118 performs the computation for each grid size given in casos.

1. 22-34 Computes the method matrices G,RG,M1,D,RD and M.

2. 36-49 Compute the grid which will be used along with the exact problem solution for error
calculation.

3. 51-118 The for loop solves the acoustic problem for one time step:

(a) 52-55 Update of the intermediate matrices A, Ṽ,W̃.

(b) 58-73 The for loop solves the first stage of the algorithm row by row.

(c) 75-77 Update of the matrices C,V,W using the intermediate result from the previous
step.

(d) 80-97 The for loop solves the first stage of the algorithm column by column.

(e) 99-117 The error is computed and various stats are printed.

4. 120-124 The result from the last computation is plotted along with the solution error.

1 % UNIVERSIDAD CENTRAL DE VENEZUELA
2 % POSTGRADO EN CIENCIAS DE LA COMPUTACION
3 % TUTOR: Dr . OTILIO ROJAS
4 % ESTUDIANTE: LUIS JOAQUIN CORDOVA DIAZ
5 %%% Compacto Mimetico 2D .m
6
7 t f i n = 5/ sqrt (2) ;
8 e p s i l o n = 1e−5;
9 dosp i = 2*pi ;

10 casos = [8 16 33 48 64 96 128 320 3 3 5] ;
11 s s = length (ca sos) ;
12 cf lmax =0.815;
13 lamb =.25;
14 for caso = 1 : s s
15 N = casos (caso) ;
16 h = 1/(N−1);
17 dt=cflmax *h ;
18 n i t e r = round(t f i n /dt) ;
19 dts2 = .5* dt ;
20 dts2 lamb2 = dts2 * lamb* lamb ;

98 Parallelization of Finite Difference Methods

21
22 unoss=ones (N, 1) ;
23 G=spdiags ([− unoss unoss] , [0 1] ,N,N+1);
24 G(1 ,1:3)=[−8/3 3 −1/3];
25 G(N,N−1:N+1)=[1/3 −3 8 / 3] ;
26
27 RG=matriz RG (N−1);
28 M1=RG*G/h ;
29
30 unos=ones (N−1 ,1) ;
31 D = spdiags ([−unos unos] , [0 1] ,N−1,N) ;
32
33 RD = matriz RD (N−1);
34 M = RD*D/h ;
35
36 xu=[0 linspace (h/2,1−h/2 ,N−1) 1] ;
37 yu=xu ’ ;
38 xv=linspace (0 , 1 ,N) ;
39 yw=xv ’ ;
40
41 U = sin (dosp i /lamb*yu)* sin (dosp i /lamb*xu) ;
42 Ut i lde=U;
43 % SOLUCION EXACTA DE LA U
44 Uexacta = U*cos (sqrt (2)* dosp i * t f i n) ;
45 V=zeros (N+1,N) ;
46 W=zeros (N,N+1);
47 s=−(1/lamb/sqrt (2))* sin (sqrt (2)* dosp i * t f i n)/ sqrt (2) ;
48 Vexacta=s * sin (dosp i /lamb*yu)* cos (dosp i /lamb*xv) ;
49 Wexacta=s *cos (dosp i /lamb*yw)* sin (dosp i /lamb*xu) ;
50 t s t a r t = cputime ;
51 for n = 1 : n i t e r
52 A = M*W(: , 2 :N) ;
53 Vt i lde = V;
54 Wtilde = W;
55 Wtilde (: , 2 :N) = W(: , 2 :N)−dts2 *M1*U(: , 2 :N) ;
56 % RESOLUCION DE LA PRIMERA ETAPA FILA POR FILA
57 for i = 2 :N
58 a i = U(i , 2 :N)−dts2 lamb2 *A(i −1 , :) ;
59 b i = V(i , :) ;
60 u v i e j o = U(i , 2 :N) ;
61 v v i e j o = V(i , :) ;
62 t e s t = 1 ; k = 0 ;
63 while (t e s t > e p s i l o n) && (k < 12)
64 unuevo = ai−dts2 lamb2 * v v i e j o *M’ ;
65 vnuevo = bi−dts2 * [0 unuevo 0]*M1’ ;
66 t e s t = norm ([unuevo−u v i e j o vnuevo−v v i e j o]) ;

Parallelization of Finite Difference Methods 99

67 u v i e j o = unuevo ;
68 v v i e j o = vnuevo ;
69 k = k+1;
70 end
71 Ut i lde (i , 2 :N) = unuevo ;
72 Vt i lde (i , :) = vnuevo ;
73 end % FIN DE LA PRIMERA ETAPA
74
75 C = Vt i lde (2 :N, :) *M’ ;
76 V = Vt i lde ;
77 W = Wtilde ;
78 % RESOLUCION DE LA SEGUNDA ETAPA COLUMNA POR COLUMNA
79 V(2 :N, :) = Vt i lde (2 :N, :)− dts2 * Ut i lde (2 :N, :) *M1’ ;
80 for j = 2 :N
81 c j = Ut i lde (2 :N, j)−dts2 lamb2 *C(: , j −1);
82 dj = Wtilde (: , j) ;
83 u v i e j o = Ut i lde (2 :N, j) ; wvie jo = Wtilde (: , j) ; t e s t = 1 ; k = 0 ;
84 while (t e s t > e p s i l o n) && (k < 12)
85 unuevo = cj−dts2 lamb2 *M*wvie jo ;
86 wnuevo = dj−dts2 *M1* [0 ; unuevo ; 0] ;
87 t e s t = norm ([unuevo−u v i e j o ; wnuevo−wvie jo]) ;
88 u v i e j o = unuevo ;
89 wvie jo = wnuevo ;
90 k = k+1;
91 end
92 U(2 :N, j)=unuevo ;
93 W(: , j)=wvie jo ;
94 end
95 E = U−Uexacta ; errornuevo = h*norm(E, ’ f r o ’) ;
96 % FIN DE LA SEGUNDA ETAPA
97 end
98
99 t e l ap s ed = cputime−t s t a r t ;

100 i f caso == 1
101 disp ([’−−− ’ , . . .
102 ’−−−−−−−−−−−−−−−−−−−−−− ’])
103 disp ([’ Compact mimetic ORDEN OBSERVADO CUANDO ’ , . . .
104 ’ c f l max = 0 . 8 1 5 . . . e r r o r e s para ’ , . . .
105 ’U−−−>t f i n =7/ s q r t (2)−−−> e p s i l o n=1e−5 ’])
106 disp ([’−−− ’ , . . .
107 ’−−−−−−−−−−−−−−−−−−−− ’])
108 disp ([’ N h ’ , . . .
109 ’ e r r o r orden Tiempo ’])
110 fpr intf (’ %16.1 f %16.3 f %19.2 e −−−−−−−−−%11.3e \n ’ , . . .
111 N, h , errornuevo , t e l ap s ed)
112 else

100 Parallelization of Finite Difference Methods

113 orden = log2 (e r r o r v i e j o / errornuevo) ;
114 fpr intf (’ %16.1 f %16.3 f %19.2 e %15.3 f %11.3 e\n ’ ,
115 N, h , errornuevo , orden , t e l ap s ed)
116 end
117 e r r o r v i e j o = errornuevo ;
118 end
119
120 figure , surf (xu , yu ,U) , xlabel x , ylabel y , zlabel U(xu , yu)
121 t i t l e (’ONDA CALCULADA U ’)
122
123 figure , surf (xu , yu ,E) , xlabel x , ylabel y , zlabel E(x , y)
124 t i t l e (’ERROR sobre U ’)

B.3.1 matriz RG.m

1 %%
2 % Joaquin Cordova (Nov − 2013) ; O t i l i o Rojas (Nov 16 − 2013)
3 % B u i l d i n g the Mimetic RG and RD: 4−4 Order
4 %%
5 % N: Number o f i n t e r v a l s (i t shou ld be at l e a s t 10) . . .
6
7 function [RG] = matriz RG (N)
8 %%%%%%%%%%%%%%%% MATRIZ CONVERGENCIA
9 %%%%%%%%%%%%%%%% RG: G 4th order = RG*G 2nd order

10 e=ones (N+1 ,1) ;
11 RG = spdiags ([−1/24* e 13/12* e −1/24*e] , −1 :1 ,N+1,N+1);
12 RG(1 , 1 : 5) = [17958/14245 −8776/14245 154787/341880 . . .
13 −3415/34188 25/9768] ;
14 RG(2 , 1 : 4) = [−2/35 941/840 −29/420 1 / 1 6 8] ;
15 RG(N+1,N−3:N+1) = f l i p l r (RG(1 , 1 : 5)) ;
16 RG(N,N−2:N+1) = f l i p l r (RG(2 , 1 : 4)) ;
17 f u l l (RG) ;

B.3.2 matriz RD.m

1 %%%
2 % Joaquin Cordova (Nov − 2013) ; O t i l i o Rojas (Nov 16 − 2013)
3 % B u i l d i n g the Mimetic RG and RD: 4−4 Order
4 %%%
5 % N: Number o f i n t e r v a l s (i t shou ld be at l e a s t 10) . . .
6
7 function [RD] = matriz RD (N)
8 %%%%%%%%%%%%%%%%% MATRIZ DIVERGENCIA RD:
9 %%%%%%%%%%%%%%%%% D 4th order = RD*D 2nd order

10 e=ones (N, 1) ;
11 RD = spdiags ([−1/24* e 13/12* e −1/24*e] , −1 :1 ,N,N) ;
12 RD(1 , 1) = 4751/5192;

Parallelization of Finite Difference Methods 101

13 RD(1 , 2) = RD(1 ,1)−909/1298;
14 RD(1 , 3) = RD(1 ,2)−6091/15576;
15 RD(1 , 4) = RD(1 ,3)+ 1165/5192;
16 RD(1 , 5) = RD(1 ,4)−129/2596;
17 RD(1 , 6) = RD(1 ,5)+25/15576;
18 RD(1 , 6) = 0 . ;
19 %%% Component RD(1 ,6) i s p r a c t i c a l l y 0 .
20 RD(N,N−5:N) = f l i p l r (RD(1 , 1 : 6)) ;

102 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 103

Appendix C

CUDA kernels

C.1 Basic matrix operations

/* Compute s i n (x)
** ld : s t r i d e (x)
** o f f s e t : o f f s e t (x)
** n : rows (x)
** m: c o l s (x)
*/
template<c l a s s T>

g l o b a l void s i n (T *x , i n t ld , i n t o f f s e t , i n t n , i n t m)
{

i n t c = blockDim . x* blockIdx . x + threadIdx . x ;
i n t r = blockDim . y* blockIdx . y + threadIdx . y ;

i f (r<n && c<m)
x [o f f s e t+r+(c* ld)] = : : s i n (x [o f f s e t+r+(c* ld)]) ;

}

/* Compute cos (x)
** ld : s t r i d e (x)
** o f f s e t : o f f s e t (x)
** n : rows (x)
** m: c o l s (x) */
template<c l a s s T>

g l o b a l void cos (T *x , i n t ld , i n t o f f s e t , i n t n , i n t m){
i n t c = blockDim . x* blockIdx . x + threadIdx . x ;
i n t r = blockDim . y* blockIdx . y + threadIdx . y ;

i f (r<n && c<m)
x [o f f s e t+r+(c* ld)] = : : cos (x [o f f s e t+r+(c* ld)]) ;

}

/* F i l l matrix x with s t r i d e : ld , o f f s e t : o f f s e t and s i z e : n x m
** with value : va lue */
template<c l a s s T>

g l o b a l void f i l l (T *x , i n t ld , i n t o f f s e t , i n t n , i n t m, T value){
i n t c = blockDim . x* blockIdx . x + threadIdx . x ;

104 Parallelization of Finite Difference Methods

i n t r = blockDim . y* blockIdx . y + threadIdx . y ;

i f (r<n && c<m)
x [o f f s e t+r+(c* ld)]= value ;

}

/* F i l l d iag d iagona l o f a matrix x with s t r i d e : ld , o f f s e t : o f f s e t and
** s i z e : n x m with value : va lue */
template<c l a s s T>

g l o b a l void d f i l l (T *x , i n t ld , i n t o f f s e t , i n t n , i n t m,
T value , i n t diag){

i n t c = blockDim . x* blockIdx . x + threadIdx . x ;
i n t r = blockDim . y* blockIdx . y + threadIdx . y ;

i f (r<n && c<m && (diag==(c−r)))
x [o f f s e t+r+(c* ld)]= value ;

}

/* Copy matrix y (s t r i d e : ldy , o f f s e t : o f f s e t y , rows : ny , c o l s :my) over
** matrix x (s t r i d e : ldx , o f f s e t : o f f s e t x , rows : nx , c o l s :mx)
** without t r a n s p o s i t i o n */
template<c l a s s T>

g l o b a l void copy nn (T *x , i n t ldx , i n t o f f s e t x , i n t nx , i n t mx,
const T *y , i n t ldy , i n t o f f s e t y){

i n t cx = blockDim . x* blockIdx . x + threadIdx . x ;
i n t rx = blockDim . y* blockIdx . y + threadIdx . y ;

i f (rx<nx && cx<mx)
x [o f f s e t x+rx+(cx* ldx)]=y [o f f s e t y+rx+(cx* ldy)] ;

}

/* Copy matrix y (s t r i d e : ldy , o f f s e t : o f f s e t y , rows : ny , c o l s :my) over
** matrix x (s t r i d e : ldx , o f f s e t : o f f s e t x , rows : nx , c o l s :mx)
** with t r a n s p o s i t i o n */
template<c l a s s T>

g l o b a l void copy tn (T *x , i n t ldx , i n t o f f s e t x , i n t nx , i n t mx,
const T *y , i n t ldy , i n t o f f s e t y){

i n t cx = blockDim . x* blockIdx . x + threadIdx . x ;
i n t rx = blockDim . y* blockIdx . y + threadIdx . y ;

i f (rx<nx && cx<mx)
x [o f f s e t x+rx+(cx* ldx)]=y [o f f s e t y+cx+(rx* ldy)] ;

}

// x = alpha * x (s t r i d e : ld , o f f s e t : o f f s e t , rows : n , c o l s :m)
template<c l a s s T>

Parallelization of Finite Difference Methods 105

g l o b a l void s c a l e (T *x , i n t ld , i n t o f f s e t ,
i n t n , i n t m, T alpha){

i n t c = blockDim . x* blockIdx . x + threadIdx . x ;
i n t r = blockDim . y* blockIdx . y + threadIdx . y ;

i f (r<n && c<m)
x [o f f s e t+r+(c* ld)]*= alpha ;

}

/* Construct a vec to r
** x (s t r i d e : ld , o f f s e t : o f f s e t , rows : n , c o l s :m)= s t a r t : i nc : end */
template<c l a s s T>

g l o b a l void l i n s p a c e (T *x , i n t ld , i n t o f f s e t ,
i n t n , i n t m, T s ta r t ,T inc){

i n t c = blockDim . x* blockIdx . x + threadIdx . x ;
i n t r = blockDim . y* blockIdx . y + threadIdx . y ;

i f (r<n && c<m){
i n t pos = c + r *m;
T va l=s t a r t+inc *pos ;
x [o f f s e t+r+(c* ld)]= va l ;

}
}

C.2 Reduction

// Compute g odata [b lock . x]= sum(s data [n]) n = 0 . . . sz−1
// blockDim . x must be power o f two
template<c l a s s T> f o r c e i n l i n e d e v i c e
void reduce (i n t i ,T * sdata , T * g odata , i n t sz , i n t dim){

// each thread loads one element from g l o b a l to shared mem
// unsigned i n t t i d = threadIdx . x ;

// do reduct i on in shared mem
f o r (unsigned i n t s=dim /2 ; s>0; s>>=1) {

i f (i< s) {
sdata [i] += sdata [i + s] ;

}
sync th r ead s () ;

}

// wr i t e r e s u l t f o r t h i s b lock to g l o b a l mem
i f (threadIdx . x == 0)

g odata [b lockIdx . x] = sdata [0] ;
}

// Compute g odata [b lock . x] = | | g idata1−g ida ta2 | |

106 Parallelization of Finite Difference Methods

// sz : vec to r s i z e
template<c l a s s T>

g l o b a l void d i s t (T * g idata1 , T * g idata2 ,T * g odata ,
i n t szx , i n t szy){

extern s h a r e d i n t shared data [] ;

/* This conver s i on i s needed to avoid r e d e c l a r a t i o n as
** d i f f e r e n t type o f shared ob j e c t */
T* sdata=(T*) shared data ;
T val1 , va l2 =0;
// each thread loads one element from g l o b a l to shared mem
unsigned i n t i = blockIdx . x*(szy) + threadIdx . x ;

// Blocks = Columns = szx
// Threads = Rows = szy

va l1 = (g ida ta1 [i]− g ida ta2 [i]) ;
i n t next=i+blockDim . x ;
i f (threadIdx . x+blockDim . x<szy){

va l2=(g ida ta1 [next]− g ida ta2 [next]) ;
}
sdata [threadIdx . x]= val1 * va l1+val2 * va l2 ;

s ync th r ead s () ;
reduce (threadIdx . x , sdata , g odata , szx , blockDim . x) ;

s ync th r ead s () ;
// wr i t e r e s u l t f o r t h i s b lock to g l o b a l mem
i f (threadIdx . x == 0)

g odata [b lockIdx . x] = s q r t (g odata [b lockIdx . x]) ;
}

C.3 Banded matrix multiplication

/* Perform transposed banded−matrix * dense−matrix mult ip ly
** y := alpha *A*x + beta *y t rans :=0
** y := alpha *A*x + beta *y t rans !=0
** A = m x n (kl , ku , lda)
** X = n x o (ldx , incx)
** Y = m x o (ldy , incy)
*/
template<typename T>
void g l o b a l algMM(i n t trans , i n t m, i n t n , i n t o , i n t kl , i n t ku ,

T alpha ,T* A, i n t lda , T* X, i n t ldx , i n t incx ,
T beta , T* Y, i n t ldy , i n t incy){

/* Get l i n e a r (i , j) indexes */

Parallelization of Finite Difference Methods 107

i n t i y = blockIdx . y*blockDim . y + threadIdx . y ;
i n t j y = blockIdx . x*blockDim . x + threadIdx . x ;

// F i l t e r out o f matrix threads
i n t idx a , idx x , d , step ,bw ;
i f (! t rans){

i f (i y>=m | | j y>=o)
return ;

i n t i a , j a min , j a max ;
i a=i y ;
/* Limit columns by non−zero d i agona l s */
j a min=i a−k l ;
j a max=i a+ku ;

/* Limit columns by matrix s i z e */
i f (j a min <0)

j a min =0;
i f (j a max>= n)

j a max = n−1;

bw=j a max−j a min ;

d = j a min−i a ;

i dx a = (ku−d) + j a min * lda ;
s tep=lda −1;

idx x = j a min * incx + j y * ldx ;
}
e l s e {

i f (i y>=n | | j y>=o)
return ;

i n t j a , i a min , i a max ;
j a = i y ;
i a min=j a−ku ;
i a max=j a+k l ;

i f (i a min <0)
i a min =0;

i f (i a max>= m)
i a max = m−1;

bw=i a max−i a min ;

108 Parallelization of Finite Difference Methods

d = j a−i a min ;

idx a = (ku−d) + j a * lda ;
s tep =1;

idx x = i a min * incx + j y * ldx ;
}

/* Perform element−wise m u l t i p l i c a t i o n */
T r e t =0;

T* a=&A[idx a] ;
T* x=&X[idx x] ;

// Tr id iagona l matrix opt imiza t i on
#pragma u n r o l l 3
f o r (; bw>=0;bw−−){

r e t += (* a)* (* x) ;
a+=step ;
x+=incx ;

}

i n t idx y= i y * incy + j y * ldy ;
/* Perform mult ip ly−add r e s u l t update */
i f (beta !=0)

Y[idx y]= alpha * r e t + beta * Y[idx y] ;
e l s e

Y[idx y]= alpha * r e t ;
}

C.4 Thomas algorithm

/* P a r a l l e l t r i d i a g o n a l systems s o l v e r (AX=B) by Thomas Algorithm
** N: order o f matrix A
** NRHS: number o f r i g h t hand s i d e s (columns o f B)
** DU: A upper d iagona l
** D: A main d iagona l
** DL: A lower d iagona l
** B: Dense matrix
** X: So lu t i on
** No p a r t i a l−p ivo t ing i s performed so s t a b i l i t y i s only guaranteed
** when matrix i s d i a g on a l l y dominant or symmetric p o s i t i v e d e f i n i t e
*/
template<typename T>
void g l o b a l algTSM (i n t N, i n t NRHS, T* A, i n t t r a ,

T* B, i n t ldb , i n t incb , T* X,T* tmp){

Parallelization of Finite Difference Methods 109

/* Each thread r e q u i r e s N* s i z e o f (T)
shared memory f o r i n t e r n a l s t o rage */
/* One thread per r i g h t hand s i d e */
i n t rhs = blockIdx . x*blockDim . x + threadIdx . x ;

i f (rhs>=NRHS)
return ;

// c ’ [n−1] , d ’ [n−1]
T* c pr ime=&tmp [rhs *N] ;
T cp , dp ;

// F r i e n d l i e r names f o r input v a r i a b l e s
T* x=&X[idx dense (0 , rhs ,N, 1)] ;
T* b=&A[1] ;
T* a=&A[−1] ;
T* c=&A [3] ;
i f (t r a){

a=&A [0] ;
c=&A [2] ;

}
T* d=&B[idx dense (0 , rhs , ldb , incb)] ;

/* Forward pass */
// Compute c ’ [i] and d ’ [i]
cp = c [0] / b [0] ;
dp = d [0] / b [0] ;
// c ’ [i −1] <− c ’ [i] / d ’ [i −1] <− d ’ [i]
c pr ime [0]= cp ;
x [0] = dp ;
f o r (i n t i =1; i<N−1; i ++){

// Avanzar punteros
a+=3; b+=3; c+=3; d+=incb ;
T denom = (*b)−((*a)* cp) ;
// d ’ [i] = (d [i] − d ’ [i −1]*a [i]) / (b [i] − c ’ [i −1]*a [i])
dp = ((*d)−((*a)*dp))/ denom ;
// c ’ [i] = c [i] / (b [i] − c ’ [i −1]*a [i])
cp = (* c)/denom ;
// Store c ’ [i] and d ’ [i]
c pr ime [i]=cp ;
x [i] = dp ;
// c ’ [i −1] <− c ’ [i] / d ’ [i −1] <− d ’ [i]
// cp n 1=cp ;
// dp n 1=dp ;

}

110 Parallelization of Finite Difference Methods

a+=3; b+=3; c+=3; d+=incb ;
T denom = (*b)−((*a)* cp) ;
// d ’ [i] = (d [i] − d ’ [i −1]*a [i]) / (b [i] − c ’ [i −1]*a [i])
dp = ((*d)−((*a)*dp))/ denom ;

/* // c ’ [i] = c [i] / (b [i] − c ’ [i −1]*a [i])
cp = (* c)/denom ;
// Store c ’ [i] and d ’ [i]
c pr ime [i]=cp ;*/
x [N−1] = dp ;

/* Back s u b s t i t u t i o n */
//x [N−1] = d p ; // I m p l i c i t as d i s tempora l ly s to r ed in x
f o r (i n t i=N−2; i>=0; i−−){

// x [i] = d ’ [i] − c ’ [i]* x [i +1]
x [i] −= c prime [i]* x [i +1] ;

}
}

Parallelization of Finite Difference Methods 111

References

[1] L. Córdova, O. Rojas, B. Otero, and J. Castillo, “Compact finite difference modeling
of 2-d acoustic wave propagation,” Journal of Computational and Applied Mathematics,
vol. 295, pp. 83 – 91, 2016. {VIII} Pan-American Workshop in Applied and Computational
Mathematics.

[2] S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” Journal of
Computational Physics, vol. 103, no. 1, pp. 16 – 42, 1992.

[3] M. A. Dablain, “The application of high order differencing to the scalar wave equation,”
GEOPHYSICS, vol. 51, no. 1, pp. 54–66, 1986.

[4] R. M. Alford, K. R. Kelly, and D. M. Boore, “Accuracy of finite-difference modeling of the
acoustic wave equation,” Geophysics, vol. 39, no. 6, pp. 834–842, 1974.

[5] J. Virieux, “Sh-wave propagation in heterogeneous media; velocity-stress finite-difference
method,” Geophysics, vol. 49, no. 11, pp. 1933–1942, 1984.

[6] J. T. Etgen and M. J. O’Brien, “Computational methods for large-scale 3d acoustic finite-
difference modeling: A tutorial,” Geophysics, vol. 72, no. 5, pp. SM223–SM230, 2007.

[7] L. Di Bartolo, C. Dors, and W. J. Mansur, “A new family of finite-difference schemes to
solve the heterogeneous acoustic wave equation,” Geophysics, vol. 77, no. 5, pp. T187–T199,
2012.

[8] S.-L. Chang and Y. Liu, “A truncated implicit high-order finite-difference scheme combined
with boundary conditions,” Applied Geophysics, vol. 10, no. 1, pp. 53–62, 2013.

[9] C. A. Pérez Solano, D. Donno, and H. Chauris, “Finite-difference strategy for elastic wave
modelling on curved staggered grids,” Computational Geosciences, vol. 20, no. 1, pp. 245–
264, 2016.

[10] C. Gelis, D. Leparoux, J. Virieux, A. Bitri, S. Operto, and G. Grandjean, “Numerical
modeling of surface waves over shallow cavities,” Journal of Environmental and Engineering
Geophysics, vol. 10, no. 2, pp. 111–121, 2005.

[11] M. Abouali and J. E. Castillo, “High-order compact castillo-grone’ s mimetic operators,”
techreport, Computational Sciences Research Center, 2012.

[12] J. E. Castillo and R. D. Grone, “A matrix analysis approach to higher-order approximations
for divergence and gradients satisfying a global conservation law,” SIAM Journal on Matrix
Analysis and Applications, vol. 25, no. 1, pp. 128–142, 2003.

[13] C. Grossmann, H.-G. Roos, and M. Stynes, Numerical treatment of partial differential
equations. Universitext, Berlin, Heidelberg, New York: Springer, 2007.

[14] P. Roache, Computational fluid dynamics. Albuquerque, N.M: Hermosa Publishers, 1976.

112 Parallelization of Finite Difference Methods

[15] R. Sheppard, Pricing Equity Derivatives under Stochastic Volatility: A Partial Differential
Equation Approach. 2007.

[16] J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type,” Advances in Computational
Mathematics, vol. 6, no. 1, pp. 207–226, 1996.

[17] D. W. Peaceman and J. H. H. Rachford, “The numerical solution of parabolic and elliptic
differential equations,” Journal of the Society for Industrial and Applied Mathematics,
vol. 3, no. 1, pp. 28–41, 1955.

[18] H. D. Vries, “A comparative study of {ADI} splitting methods for parabolic equations in
two space dimensions,” Journal of Computational and Applied Mathematics, vol. 10, no. 2,
pp. 179 – 193, 1984.

[19] J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Second Edi-
tion. Society for Industrial and Applied Mathematics, 2004.

[20] J. Castillo, J. Hyman, M. Shashkov, and S. Steinberg, “Fourth- and sixth-order conserva-
tive finite difference approximations of the divergence and gradient,” Applied Numerical
Mathematics, vol. 37, no. 1–2, pp. 171 – 187, 2001.

[21] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra sub-
programs for fortran usage,” ACM Trans. Math. Softw., vol. 5, pp. 308–323, Sept. 1979.

[22] R. C. Whaley and J. Dongarra, “Automatically Tuned Linear Algebra Software,” in Ninth
SIAM Conference on Parallel Processing for Scientific Computing, 1999. CD-ROM Pro-
ceedings.

[23] Z. Y. Zhang Xianyi, Wang Qian, “Model-driven level 3 blas performance optimization on
loongson 3a processor,” 2012 IEEE 18th International Conference on Parallel and Dis-
tributed Systems (ICPADS), dec 2012.

[24] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide.
Philadelphia, PA: Society for Industrial and Applied Mathematics, third ed., 1999.

[25] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
cuda,” Queue, vol. 6, pp. 40–53, Mar. 2008.

[26] nVidia, CUBLAS Library User Guide. nVidia, v5.0 ed., Oct. 2012.

[27] J. W. Eaton et al., “Gnu octave.”

[28] J. O. Coplien, “Curiously recurring template patterns,” C++ Rep., vol. 7, pp. 24–27, Feb.
1995.

[29] NVIDIA, “Nvidia’s next generation cuda compute architecture: Fermi.”

[30] NVIDIA, “Nvidia geforce gtx 980: Featuring maxwell, the most advanced gpu ever made.”

[31] M. Harris, “Optimizing parallel reduction in cuda,” 2014.

Parallelization of Finite Difference Methods 113

[32] C. De Boor, Elementary numerical analysis :. New York :: McGraw-Hill,, 2nd ed. / ed.,
1972. Title page imprint: London.

[33] S. Skiena, The Algorithm Design Manual: Software. The Algorithm Design Manual,
TELOS–the Electronic Library of Science, 1998.

[34] D. Coppersmith and S. Winograd, “Computational algebraic complexity editorial matrix
multiplication via arithmetic progressions,” Journal of Symbolic Computation, vol. 9, no. 3,
pp. 251 – 280, 1990.

114 Parallelization of Finite Difference Methods

Parallelization of Finite Difference Methods 115

List of Figures

2.1 Implicit Method Stencil . 7
2.2 1D Crank-Nicholson Stencil . 8
2.3 Staggered grid example . 9

4.1 Mimetic finite difference discretization on a 2-D staggered grid. 23

10.1 CUDA memory hierarchy [29] . 56
10.2 Fermi chip block diagram . 59
10.3 Fermi Streaming Multiprocessor (SM) [29] . 60
10.4 GM204 Full chip block diagram [30] . 62
10.5 Maxwell Streaming Multiprocessor (SM) [30] . 63
10.6 hierachical reduction . 66
10.7 Octave total error . 68

11.1 Nodal output waveform: N = 64, λ = 1/4. 72
11.2 Nodal output error: N = 64, λ = 1/4. 72
11.3 Mimetic output waveform: N = 64, λ = 1/4. 73
11.4 Mimetic output error: N = 64, λ = 1/4. 73
11.5 Nodal waveform: N = 64, λ = 1/8. 74
11.6 Nodal output error: N = 64, λ = 1/8. 74
11.7 Mimetic waveform: N = 64, λ = 1/8. 75
11.8 Mimetic output error: N = 64, λ = 1/8. 75
11.9 Octave execution time . 76
11.10Octave execution time . 78
11.11Multi-Threaded time . 79
11.12Multi-Threaded time complexity . 80
11.13Octave total error . 81
11.14Multi-Threaded time . 82
11.15Octave total error . 84
11.16Octave total error . 85

	Collaborations
	Thanks
	Abstract
	Resum
	Resumen
	1 Introduction
	1.1 Project context
	1.2 Objectives
	1.3 Document structure

	2 Theoretical background
	2.1 Acoustic wave propagation
	2.2 Boundary conditions
	2.3 A review of finite difference methods
	2.3.1 Finite differences on nodal grids
	2.3.2 Stencils
	2.3.3 Popular methods for parabolic problems
	2.3.4 Alternating Direction Implicit (ADI) method
	2.3.5 Staggered grids

	3 The Nodal method
	3.1 Description
	3.1.1 Physical parameters

	3.2 Algorithm
	3.3 Complexity analysis
	3.3.1 Operations
	3.3.2 Analysis

	4 The Mimetic method
	4.1 Description
	4.2 Algorithm
	4.3 Complexity analysis
	4.3.1 Operations
	4.3.2 Analysis

	5 Linear algebra libraries
	5.1 Basic Linear Algebra Subprograms (BLAS)
	5.2 Linear Algebra PACKage (LAPACK)
	5.3 CUDA BLAS (cuBLAS)
	5.4 Matrix storage

	6 Reference MATLAB implementation
	6.1 Optimization strategies
	6.1.1 Matrix inversion
	6.1.2 Optimized BLAS
	6.1.3 Multiprocessing
	6.1.4 Vectorization

	7 General application structure
	7.1 Language
	7.2 Architecture
	7.2.1 Matrix objects
	7.2.2 MatrixTester objects
	7.2.3 Problem objects
	7.2.4 Grid objects
	7.2.5 Nodal and Mimetic objects

	7.3 Program flow

	8 C++ implementation
	8.1 Programming model
	8.1.1 CPU
	8.1.2 Memory
	8.1.3 Cache

	8.2 Optimization strategy

	9 OpenMP implementation
	9.1 Programming model
	9.1.1 Core elements
	9.1.2 Memory model

	9.2 Optimization strategy

	10 CUDA implementation
	10.1 Programming model
	10.2 Hardware architectures
	10.2.1 Fermi
	10.2.2 Maxwell

	10.3 Optimization strategy
	10.4 Implementation
	10.4.1 cudaEnvironment class
	10.4.2 cuMatrix template class
	10.4.3 CUDA kernels
	10.4.4 Parallel reduction
	10.4.5 Banded matrix kernels
	10.4.6 Solver convergence

	11 Results
	11.1 Test systems
	11.2 Output
	11.3 MATLAB / Octave
	11.4 Single–threaded C++
	11.5 Multi–threaded C++ (OpenMP)
	11.6 CUDA C++
	11.7 Compared performance

	12 Conclusions
	A Matrix naming
	A.1 The Nodal method
	A.2 The Mimetic method

	B MATLAB sources
	B.1 Description
	B.2 The Nodal method
	B.3 The Mimetic method
	B.3.1 matriz_RG.m
	B.3.2 matriz_RD.m

	C CUDA kernels
	C.1 Basic matrix operations
	C.2 Reduction
	C.3 Banded matrix multiplication
	C.4 Thomas algorithm

	References
	List of Figures

