
Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the Exploitation of

Task Parallelism in OpenMP

Alejandro Duran, Xavier Teruel, Roger Ferrer

Computer Sciences Department

Barcelona Supercomputing Center

Jordi Girona, 31, Barcelona, Spain.

{alex.duran,xavier.teruel,roger.ferrer}@bsc.es

Xavier Martorell, Eduard Ayguadé

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Jordi Girona, 1-3, Barcelona, Spain.

{xavim,eduard}@ac.upc.edu

Abstract—Traditional parallel applications have exploited
regular parallelism, based on parallel loops. Only a few
applications exploit sections parallelism. With the release of
the new OpenMP specification (3.0), this programming model
supports tasking. Parallel tasks allow the exploitation of irreg-
ular parallelism, but there is a lack of benchmarks exploiting
tasks in OpenMP.

With the current (and projected) multicore architectures
that offer many more alternatives to execute parallel applica-
tions than traditional SMP machines, this kind of parallelism
is increasingly important. And so, the need to have some set
of benchmarks to evaluate it.

In this paper, we motivate the need of having such a bench-
marks suite, for irregular and/or recursive task parallelism.
We present our proposal, the Barcelona OpenMP Tasks Suite
(BOTS), with a set of applications exploiting regular and
irregular parallelism, based on tasks.

We present an overall evaluation of the BOTS benchmarks
in an Altix system and we discuss some of the different
experiments that can be done with the different compilation
and runtime alternatives of the benchmarks.

Keywords-OpenMP, benchmark suite, task parallelism

I. INTRODUCTION AND MOTIVATION

Multicore processors, both in homogeneous and heteroge-

neous environments, pose new challenges in the evaluation

of application performance and programmer productivity.

The increased density of processing cores radically changes

resource availability, communication costs, data placement

and locality management. Such changes allow to execute

applications with a much diversity schemes and scheduling

options than before.

New architectural features are available in such environ-

ments. Their use can be of high complexity. For this reason,

most of traditional compilation environments fail to obtain

high performance on such environments. By now, exploita-

tion of such features results in complex programming and

large time investments from programmers.

Parallel to the development of multicore processors, the

latest OpenMP specification (3.0)[1] introduced a new ex-

ecution model for task parallelism to address the needs to

express parallelism in irregular applications, which seems to

reduce the complexity of programming multicores.

We think that we are facing a great opportunity to develop

new schemes supporting irregular parallelism, and different

ways to execute applications. For these reasons, a new set

of benchmarks is needed to evaluate all alternatives that

programmers will be able to exploit with new advanced

features provided by the programming model.

This paper presents a collection of applications, the

Barcelona OpenMP Tasks Suite (BOTS), that makes use of

the new task parallelism in OpenMP. Our aim is to provide

a basic set of applications that will allow researchers and

vendors alike to evaluate OpenMP implementations, and that

can be easily ported to other programming models. And an

additional goal is for the OpenMP community to have a set

of examples using the tasking model.

II. RELATED WORK

There are a number of OpenMP benchmark suites in the

literature, including OpenMP microbenchmarks, kernels and

applications, namely EPCC microbenchmarks[2], the LLNL

OpenMP Performance Suite[3], the OpenMP Source code

Repository (OmpSCR)[4], PARSEC[5], NAS[6], [7], [8],

and SPEComp[9] benchmarks.

The EPCC microbenchmarks[2] are designed to measure

the overhead of OpenMP directives and clauses on different

platforms. There is a microbenchmark for each one of the

features of OpenMP, from parallel support and synchroniza-

tion to loop scheduling. They have been used in a number of

publications to evaluate different OpenMP implementations.

A similar approach is taken by The LLNL OpenMP

Performance Suite[3], which also includes a set of mi-

crobenchmarks to evaluate the overhead of the directives

and clauses.

The OmpSCR[4] contains a total of 12 benchmarks,

ranging from computing PI and QuickSort, to a molec-

ular dynamics application. The PARSEC[5], [10] bench-

mark suite includes 4 benchmarks (out of 12) parallelized

with OpenMP, including body tracking, simlarity search,

and an association rule mining application. The NAS

benchmarks[7] are a collection of 7 kernels (EP, IS, MG,

CG, DC, FT, UA) and 3 applications (BT, SP, and LU). Most

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.64

124

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.64

124

of them are written in Fortran, and include versions in MPI

and OpenMP. There is a version written in C with OpenMP

from the OMNI Compiler Project[11]. SPEComp[9], dis-

tributed by the Standard Performance Evaluation Corpora-

tion, includes 9 Fortran applications, and 2 C applications,

parallelized with OpenMP constructs.

OpenMP applications in OmpSCR, PARSEC, NAS, and

SPEComp suites are mostly regular, and parallelism is

exploited based on loops, with only a pair of applications

exploiting parallelism based on sections (sort in OmpSCR,

and galgel in SPEComp), and none in PARSEC and the NAS

benchmarks.

Exploiting tasking in OpenMP has been evaluated in sev-

eral proposals. Intel Task Queues[12] used a set of 4 bench-

marks written using this style of programming: Strassen[13],

FFT, Queens and Multisort. The last 3 originated from the

Cilk benchmarks[14]. The current task definition has been

evaluated with some of these benchmarks, which have been

rewritten to adopt the new syntax[15], [16], [17], [18].

Other interesting benchmark suites include SPARK [19]

and Lonestar [20].

SPARK contains a number of sparse algorithms based

on techniques like finite elements, direct solvers and eigen-

value problems, nonlinear systems of equations, differential

algebraic equations, and finite differences. It targets the

evaluation of the computing power of a given architecture.

Finally, Lonestar contains a collection of widely–used

real–world sequential applications that exhibit irregular be-

haviour, but contain a significant amount of amorphous

data parallelism. They are intended to serve as examples

of data–parallel programs to which a programmer might

apply various parallelization techniques. Some examples

are clustering algorithms, Barnes-Hut N-Body simulations,

mesh refinement, and survey propagation.

III. SUITE OVERVIEW

The OpenMP definition of the tasking model leaves a

lot of freedom to vendors in how this model should be

implemeted. For example, it places few restrictions on

task scheduling or it does not specify whether or not task

switching should be supported. Our aim was to provide

a collection of benchmarks that would allow vendors to

test the impact of different implementation decisions in a

multicore architecture.

A. Methodology

While a few of the benchmarks are in-house develop-

ments, most of them are versions of publicly available

benchmarks from either the Cilk project[14], the Application

Kernel Matrix project[21] or the Olden suite [22], which we

have ported to OpenMP in a coherent benchmark framework.

1 #pragma omp task i f (c o n d i t i o n)

2 work () ;

Figure 1. Cut-off implemented with an if clause

1 i f (c o n d i t i o n)

2 #pragma omp task

3 work () ;

4 e l s e

5 w o r k s e q u e n t i a l () ;

Figure 2. Manually implemented task cut-off

Multiple versions: Because at this point the different

trade-offs of the OpenMP tasking model are still not clear

and depend very much on the quality of the implementation,

we have developed different versions of each benchmark

with different characteristics:

• All benchmarks come with versions with tied and

untied1 tasks that allow to experiment how the im-

plementation behaves with both kinds of tasks.

• Many of the benchmarks create a very large number

of small tasks. Because of this, we have developed

three different versions of those benchmarks in which

controlling the amount of parallelism is important:

– one that does not limit task creation and puts all

the burden on the implementation. This would be

the ideal from the programmmer perspectite be-

cause, potentially, the implementation could limit

task creation by itself. It remains to be seen how

effective implementions will be doing that.

– another where the application controls task cre-

ation by means of an if clause on the task direc-

tive (see Figure 1). The exact condition varies from

benchmark to benchmark but it usually dependent

on the depth in a recursion path.

– another where the application controls task cre-

ation manually by calling a function with task

directives or without them based on the same

condition as in the previous version (see Figure 2).

• Some benchmarks allow for either multiple generators

(i.e., tasks under a for/sections construct) or a

single generator (i.e., tasks under a single con-

struct). In those cases, versions of the same benchmarks

under both approaches have been developed to evaluate

the support for both.

Handling indeterminism: It is common that task par-

allelism by its irregular nature presents some kind of in-

determinism in its execution (e.g. pruning in search al-

gorithms). Because indeterminism does not fit well with

benchmarking, applications with indeterminism are usually

avoided. We think it is important to incorporate this kind

1tied impose certain restrictions on scheduling (e.g. no thread switch-
ing), while untied have no restrictions.

125125

of applications in our suite as they represent legitimate uses

of task parallelism. In these cases, we have tried to keep

the indeterminism under control by slightly modifiying the

application behavior. Because the approaches are different,

we comment each case individually in the next section.

Self-verification: Self-verification is another important

characteristic in any benchmark as it allows to test whether

implementations or specific optimizations implement the

correct semantics. As such, all benchmarks come with one

of the three following verification methods:

• In those cases where possible, benchmarks apply some

validation method to the output.

• In some other, we have included validation data in the

input data so the benchmark can validate its output

against it.

• When not possible to apply any of the two previous

methods, a serial version of the benchmark is also exe-

cuted when the user requests a validation and the result

is compared against that from the parallel execution.

Input sets: For each application in the suite we have

defined a set of different data inputs to test the applications

under different scenarios:

test The test class is very small. Such input should

be used only to quickly check that benchmarks

work.

small The small input data set is designed so that

neither the overall memory requirements go over

1 Gb., nor the serial execution time is greater

than one minute in our reference platform2.

medium The medium data set is designed so that neither

the overall memory memory requirements go

over 4 Gb., nor the serial execution time is over

ten minutes in our reference platform.

large The large input data set contains the inputs with

larger memory requirements (up to 10 Gb.) and

larger serial execution times (up to half-hour).

B. Applications

A short description of the benchmarks3 that form the

Barcelona OpenMP Tasks Suite follows:

Alignment: aligns all protein sequences from an input

file against every other sequence using the Myers and

Miller[23] algorithm. The alignments are scored and the

best score for each pair is provided as a result. The scoring

method is a full dynamic programming algorithm. It uses

a weight matrix to score mismatches, and assigns penalties

for opening and extending gaps. The output is the best score

for each pair of them.

In this application, we parallelized the outer loop with an

omp for worksharing with tasks created inside this parallel

loop. This allows the implementation to break the iterations

2An SGI Altix 4700 system.
3This list may grow as we are still exploring new benchmarks.

when number of threads is large compared to the number

of iterations and when there is imbalance. To be able to

use untied tasks we moved several global variables in the

original version,used as temporal space, to local variables.

FFT: computes the one-dimensional Fast Fourier

Transform of a vector of n complex values using the Cooley-

Tukey [24] algorithm. This is a divide and conquer algorithm

that recursively breaks down a Discrete Fourier Transform

(DFT) into many smaller DFT’s. In each of the divisions

multiple tasks are generated.

Fibonacci: computes the nth fibonacci number using

a recursive paralellization. While not representative of an

efficient fibonacci computation it is still useful because it is

a simple test case of a deep tree composed of very fine grain

tasks. It comes with versions that use a cut-off based on the

depth of the tree (i.e after a certain level it will not generate

more tasks) to avoid the creation of very fine grained tasks.

Floorplan: kernel computes the optimal floorplan dis-

tribution of a number of cells. The algorithm gets an input

file with cell’s description and it returns the minimum

area size which includes all cells. This minimum area is

found through a recursive branch and bound search. We

hierarchically generate tasks for each branch of the solution

space. The state of the algorithm needs to be copied into

each newly created task so they can proceed. This implies

that additional synchronizations have been introduced in the

code to maintain the parent state alive.

The application comes with a pruning mechanism to re-

duce the search space. This pruning is very irregular and very

aggressive and, as a result the tree is heavily unbalanced.

The pruning is based on the best result found up to that

moment which generates a source of indeterminism. Because

all nodes of the tree have roughly the same computational

load, we compute the total number of nodes visited to

find a solution. With this metric different versions and

optimizations can be evaluated as the number of nodes per

second should increase if the comptutation is more eficient

(e.g., with more threads) even if it takes more time to find

a solution due to the indeterminism.

As Fibonacci, Floorplan comes with versions that have a

cut-off based on the depth of the tree to avoid creating fine

grain tasks.

Health: simulates de Columbian Health Care

System[25]. It uses multilevel lists where each element in

the structure represents a village with a list of potential

patients and one hospital. The hospital has several double-

linked lists representing the possible status of a patient

inside it (waiting, in assessment, in treatment or waiting for

reallocation). At each timestep all patients are simulated

according with several probabilities (of getting sick, needing

a convalescence treatment, or being reallocated to an upper

level hospital). A task is created for each village being

simulated. Once the lower levels have been simulated

synchronization occurs. Health comes with a cut-off

126126

Application Origin Domain Computation structure # of task directives tasks inside omp... nested tasks Application cut-off

Alignment AKM Dynamic programming Iterative 1 for no none

FFT Cilk Spectral method At leafs 41 single yes none

Fib - Integer At each node 2 single yes depth-based

Floorplan AKM Optimization At each node 1 single yes depth-based

Health Oden Simulation At each node 1 single yes depth-based

NQueens Cilk Search At each node 1 single yes depth-based

Sort Cilk Integer sorting At leafs 9 single yes none

SparseLU - Sparse linear algebra Iterative 4 single/for no none

Strassen Cilk Dense linear algebra At each node 8 single yes depth-based

Table I
BOTS APPLICATIONS SUMMARY

mechanism based on the village level in the hierarchy.

The probabilities in the different steps of the simulation

represent a source of indeterminism. To avoid it we have

used, instead of a single seed for random numbers, one seed

for each village. This way all the probabilities inside each

village (which are computed by a single task) will be the

same across different executions and not affected by other

tasks.

N Queens: computes all solutions of the n-queens

problem, whose objective is to find a placement for n queens

on an n x n chessboard such that none of the queens

attack any other. It uses a backtracking search algorithm

with pruning. A task is created for each step of the solution.

As, in Floorplan, the parent state needs to be copied to the

children tasks which introduces additional synchronizations.

NQueens prunes those branches that will not find a correct

answer. This generates some degree of unbalance in the

tree. The pruning introduces some indeterminism, but not

as much as in Floorplan because it does not depend on any

current solution, in the number of nodes to be visited. To

avoid it, instead of just finding one solution to the problem,

this kernel will find all possible solutions. This guarantees

that the application has always the same computational load.

To count all the solutions found by different tasks one

approach is to surround the accumulation with a critical

directive but this would cause a lot of contention. To avoid

it, we used threadprivate variables. In this way, all

threads can acumulate the solutions they find. Each thread

reduces the variable, within a critical directive, to the

global variable at the end of the parallel region.

Sort: sorts a random permutation of n 32-bit numbers

with a fast parallel sorting variation [26] of the ordinary

mergesort. First, it divides an array of elements in two

halves, sorting each half recursively, and then merging the

sorted halves with a parallel divide-and-conquer method

rather than the conventional serial merge. Tasks are used

for each split and merge. When the array is too small, a

serial quicksort is used so increase the task granularity. To

avoid the overhead of quicksort, an insertion sort is used for

very small arrays (below a threshold of 20 elements).

SparseLU: computes an LU matrix factorization over

sparse matrices. A first level matrix is composed by pointers

to small submatrices that may not be allocated. Due to the

sparseness of the matrix, a lot of imbalance exists. Matrix

size and submatrix size can be set at execution time. While

a dynamic schedule can reduce the imbalance, a soultion

with tasks paralellism seems to obtain better results[17]. In

each of the sparseLU phases, a task is created for each block

of the matrix that is not empty.

We developed two different versions of the benchmark,

one that generates all the tasks from inside a single

worksharing and another that uses a omp for worksharing

to allow multiple threads to create the tasks for each phase.

Strassen: algorithm uses hierarchical decomposition

of a matrix for multiplication of large dense matrices[13].

Decomposition is done by dividing each dimension of the

matrix into two sections of equal size. For each descompo-

sition a task is created. To avoid the creation of many small

tasks, we developed versions with depth based cut-offs.

Summary: Table I briefly summarizes the applications

that we have presented, while Table II shows some char-

acteristics of the different benchmarks when executed with

the medium input class. These numbers were collected from

a serial execution in our reference system of a specially

profiled version where the compiler added additional code to

obtain this information4. Most columns are self-explicative

but some require some clarification: Captured environment

refers to the amount of data that is copied from parent

tasks to their children upon creation (i.e. firstprivate

variables or memcpy from the parent memory by a child

task). Non-private writes refer to writes that do not reference

a task private variables and, thus, can be affected by locality

decisions. Table II shows the percentage of writes which are

non-private and the average number of arithmetic operations

between two of such writes.

From this profiling we can see that the benchmarks have

different characteristics. Some applications have a large

4Note that this information is not obtained from performance counters,
but from actual operations which are independent of the architecture.

127127

Average per task

Application Input
Serial

time

Memory

size

Number of

potential

tasks

Arithmetic

operations
Taskwaits

Captured

environ-

ment size

(in bytes)

of

Writes to

captured

environ-

ment

% of

writes

to non-

private

data

Operations

per write

Arithmetic

operations per

non-private

write

Alignment 100 proteins 44.4 s 4.7GB 4950 ≃ 14 M 0.00 16 0.00 0.03% 1.88 7 K

FFT 128M floats 98.73 s 3 GB ≃ 10 M ≃ 2K 0.18 37.22 0.00 3.49% 1.40 40.11

Fib 50 140 s 3.2 MB ≃ 40 G 2.50 0.50 4 0.00 100 % 2.50 2.50

Floorplan 20 shapes 37.38s 3 MB ≃ 67 M 90.78 0.15 ≃ 5 Kb 5.00 74.10% 1.53 2.06

Health 4 levels with 38

cities each

137 s 4 GB ≃ 17 M 293.72 0.03 8.00 0.00 12.33% 1.74 14.13

NQueens 14x14 board 73 s 3 MB ≃ 377 M 463.70 0.07 42.32 1.07 0% 4.75 -

Sort 128M integers 39.17 s 2 GB ≃ 2 M ≃ 8 K 0.45 39.91 0.00 25.13% 1.30 5.18

SparseLU 7500x7500

sparse matrix of

100x100 blocks

770 s 120 MB 39480 ≃ 11 M 0.00 11.71 0.00 49.46% 5.95 12.03

Strassen 8192x8192 ma-

trix

486.94 s 4GB ≃ 1 M ≃ 800 K 0.14 37.71 0.00 8.36% 2.63 31.49

Table II
APPLICATION CHARACTERISTICS WITH THE MEDIUM INPUT SETS

amount of very fine-grained tasks (e.g., Fib, NQueens,

Floorplan) where the challenge is exploiting the available

parallelism while reducing the associated overheads. In other

cases, there are relatively few coarse tasks (e.g., Alignment,

sparseLU) and the challenge for the implementation is to

avoid load balance situations.

We can also see that many are memory-bound applications

(i.e., low Operations per write) but that in many of the

benchmarks most memory accesses are to the private mem-

ory of the task (low % of writes to non-private memory).

This indicates that careful allocation of the private memory

with respect to where the task is executed (including data

migration if the task migrates from one thread to another)

may yield important improvements (see for example Align-

ment for the difference between Operations per write and

Operations per non-private write).

Another important characteristic is that is profiled is the

amount of data that is communicated from the parent to

its child tasks at creation. We can see that except in one

case (i.e., Floorplan)) the amount of communication is rather

small (i.e., under 45 bytes on average). This seems to suggest

that implementations that pre-allocate small memory areas

associated with tasks descriptors might avoid to allocate in

most case any data related to firstprivate and thus

reducing the creation overheads.

Finally, we can see that in some applications (e.g., Fib,

Floorplan and SparseLU shared access dominate the mem-

ory operations. Not all of them are necessarily shared with

multiple task. For example, in Fib all shared access are

writes to the parent task stack (in OpenMP tasks results

are returned through shared variables). Trying to allocate

in parent and child tasks in the same processor (a common

technique) should provide benefits in this cases. In other

cases, being able to improve shared data reuse between

different task (e.g., task A writes some shared data that will

be used by task B) remains a challenge because the runtime

does not have enough information.

IV. EVALUATION EXAMPLE

In this section, we show the kind of evaluation and

experiments that we think can be conducted with the suite

that we have presented. Because of space limitations we

have chosen a small subset of aspects that can be analyzed

through the suite.

All the benchmarks were executed on a SGI Altix 4700

with 128 processors running on a cpuset of 32 processors

to avoid interferences with other applications. The compiler

used is the Intel C Compiler version 11.0. In all the cases we

have used the optimization −O3 level. We have executed all

the different versions of each application with the medium

input set previously described in Table II. We computed all

the speed-ups using the serial time as the baseline except

for the Floorplan application where the speed-up represents

the improvement in nodes executed per second instead of

execution time5.

In the following sections, we show some examples of pos-

sible evaluation with BOTS. First, a general evaluation of the

benchmarks. Then, a study of different cut-off mechanisms

and of the differences among the use of tied and untied

tasks. We show the results obtained and we discuss how

such aspects can impact the OpenMP programming model

implementation. Other interesting aspects to study with our

benchmark suite are finally discussed in Section IV-D.

A. Overall evaluation

Figure 3 shows the speed-up of the best version for each of

the applications (in parenthesis, we indicate which is the best

5Even so, we have observed that the execution time scales very similarly.

128128

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

S
p

e
e

d

of threads

alignmena (untied)t
fft (untied)
floorplan (manual-untied)
health (manual-tied)
nqueens (manual-untied)
sort (untied)
sparselu (for-tied)
strassen (nocutoff-tied)

Figure 3. Benchmark suite results as base code.

version). These results give an idea of the performance be-

havior for each application. We have applications (NQueens

or SparseLU) which have an almost linear speed-up and

other applications (Strassen, Health or FFT) which quickly

reach a saturation phase.

B. Cut-off mechanism comparison

Due to the recursive nature of some benchmarks (see

Section III-B) we can group cut-off mechanisms into two

groups: first, we include cut-off mechanisms which are

based on the task depth (i.e. the recursion level). Such kind

of cut-off is usually implemented in the application itself.

Our benchmark suite implements, when possible, these cut-

off mechanisms. In the second group, we can find cut-off

mechanisms based on the total number of tasks already

created, the number of tasks ready to be executed, etc.

Such pruning mechanisms can be easily implemented in the

OpenMP runtime itself.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32

S
p

e
e

d
-u

p

of threads

with if clause cut-off
with manual cut-off
with no cut-off

Figure 4. Queens benchmark using different cut-off mechanisms.

Figure 4 shows the speed-ups obtained using these differ-

ent cut-offs for the NQueens benchmark:

• manual cut-off: prunes the generation of tasks in the

application code itself. Compiler and runtime are not

aware of the possibility of creating a task or not.

• pragma if cut-off: uses the OpenMP clause if , as a part

of the task creation directive task. When the condition

evaluates to false the task will not be created. But, the

runtime still has to do some management in order to

keep consistency (e.g. task hierarchy and dependence

in order to execute properly a taskwait).

• no-cutoff: the application does not provide a cut-off and

only the one implemented by the runtime (if any) is in

use. The Intel Compiler uses a cut-off based on the

number of tasks.

We can see in the results that, with the Intel Compiler,

programming a manual cut-off is more effective than using

an if clause, or relying on their runtime cut-off. Being a

very new compiler these results were expected. Hopefully,

as the task implementations mature these differences will

disappear, thus reducing the burden on the programmer.

C. Tied vs. untied tasks

The OpenMP programming model specifies that tasks

can be labeled with the untied clause, establishing two

different kinds of tasks: tied and untied. A tied task is a

task that, when it is suspended, can be resumed only by the

same thread that suspended it, whereas untied tasks can

be resumed by any thread. Tiedness of a task does not only

imply which thread can resume a task but it also implies

some task scheduling constraints which can also impact on

the application performance.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32

S
p

e
e

d
-u

p

of threads

alignment tied
alignment untied
nqueens tied
nqueens untied

Figure 5. Benchmark suite results using tied and untied tasks.

The suite comes with versions for all applications with

tied and untied tasks to compare their behavior. Figure 5

shows the results obtained using tied and untied tasks

129129

with the Alignment and NQueens benchmarks. Results are

similar with both versions. Although a deeper analysis will

be needed, the results suggest two main hypothesis:

• The Intel Compiler does not implement thread switch-

ing and thus untied tasks cannot benefit from this fea-

ture which should avoid imbalances. This is particularly

evident in the Alignment benchmark which has been

reported to scale nicely[27].

• Task scheduling constraints do not seem to impact

significantly the performance results (at most there

is a 4% difference between the versions). The other

applications show a similar behavior.

D. Other opportunities for analysis

The Intel Compiler does not implement mechanisms that

allow the user choose among different task scheduling

policies but other OpenMP compilers exist[28], [16] that

have such capabilities. One interesting study is to find

how task scheduling policies (and how they can mantain

locality across tasks) can affect the performance results of

the benchmarks of the suite.

In previous sections, we have discussed how implement-

ing a cut-off mechanism can affect application performance

but we have not discussed, due to space limitations, how

the different cut-off values (i.e., at which point in the

recursion we cut) relate with the creation of parallelism and

the overall performance. Choosing a low cut-off value can

restrict parallelism opportunities but choosing a high cut-off

value can saturate the system with a large amount of tasks

which have no thread available to execute them. The right

choice depends many times of the input data set. Comparing

the application behaviour using different cut-off values or

testing runtime features which allow to modify dynamically

the cut-off mechanism[27] can also be interesting analyses.

The quality of implementations for different task gen-

eration schemes (e.g., in the SparseLU benchmark, which

can use a single or multiple generator scheme), taskwait

constructs, or other task related implementation details could

also be analyzed with our benchmark suite proposal.

V. CONCLUSIONS AND FUTURE WORK

We have presented BOTS (Barcelona OpenMP Task

Suite), built with the double motivation of coping with the

great characteristics of the multicore processors, and offer

a set of benchmarks to evaluate OpenMP tasking. We think

that BOTS will help implementors and programmers to have

a better understanding of the OpenMP tasking model, and

its performance implications.

Each of these benchmarks comes also with different

versions to test different aspects of the tasking model.

For example they can be used to evaluate task scheduling

alternatives, tiedness. . . Also, a number of input sets are

provided, so that benchmarks can be used as tests, or really

stress the processors and memory system in your machine.

It is interesting to note that we have tried to select

benchmarks with diverse characteristics. In this paper, we

have highlighted the differences, and we have shown their

evaluation on an SGI Altix machine, with up to 32 proces-

sors and we report some of their characteristics per task (e.g.,

operations, memory writes. . .). Their evaluation also shows

that there is plenty of work to do at all levels (architecture,

compiler, runtime system, programming model) to improve

certain benchmarks given that their current scalability is very

limited. This suite can be used to obtain useful data of the

strenghts and weaknesses of an OpenMP implementation,

that can help developers to improve it.

Currently, we are working to add new benchmarks to the

suite to cover more problem domains and scenarios. We

are, as well, planning to do a full cross-vendor evaluation

to find which is the current state of the OpenMP tasking

implementations.

ACKNOWLEDGMENTS

This research was supported by the Spanish Ministry of

Science and Innovation (contracts no. TIN2007-60625 and

CSD2007-00050), the European Commission in the context

of the SARC project (contract no. 27648), the HiPEAC

Network of Excellence (contract no. IST-004408), the IBM

CAS Program and the Mare Incognito project under the

BSC-IBM collaboration agreement.

REFERENCES

[1] O. ARB, “OpenMP Application Program Interface, v. 3.0,”
May 2008.

[2] J. M. Bull, “Measuring Synchronization and Scheduling Over-
heads in OpenMP,” in First European Workshop on OpenMP,
September 1999.

[3] “LLNL OpenMP Performance Suite
Description,” 2001. [Online]. Available:
https://computation.llnl.gov/casc/RTS Report/openmp perf.html

[4] A. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez, “The
OpenMP Source Code Repository,” Euromicro Conference on
Parallel, Distributed, and Network-Based Processing, vol. 0,
pp. 244–250, 2005.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations,” in Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, 2008,
pp. 72–81.

[6] H. Jin, M. Frumkin, and J. Yan, “The OpenMP
Implementation of NAS Parallel Benchmarks and
Its Performance,” NASA Ames Research Center,
Technical Report NAS-99-011, 1999. [Online]. Available:
citeseer.ist.psu.edu/408248.html

130130

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS Parallel Benchmarks,”
The International Journal of Supercomputer Applications,
vol. 5, no. 3, pp. 63–73, Fall 1991. [Online]. Available:
citeseer.nj.nec.com/bailey95nas.html

[8] H. Jin and R. F. V. der Wijngaart, “Performance Characteris-
tics of the Multi-zone NAS Parallel Benchmarks,” J. Parallel
Distrib. Comput., vol. 66, no. 5, pp. 674–685, 2006.

[9] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B.
Jones, and B. Parady, “SPEComp: A New Benchmark Suite
for Measuring Parallel Computer Performance,” Lecture
Notes in Computer Science, vol. 2104, pp. 1 – 10, 2001.
[Online]. Available: citeseer.nj.nec.com/aslot01specomp.html

[10] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A
Quantitative Comparison of Two Multithreaded Benchmark
Suites on Chip-Multiprocessors,” IEEE International Sympo-
sium on Workload Characterization 2008, pp. 47–56, 2008.

[11] K. Kusano, S. Satoh, and M. Sato, “Performance Evaluation
of the Omni OpenMP Compiler,” in Prooceedings of the Third
International Symposium on High Performance Computing,
2000, pp. 403–414.

[12] S. Shah, G. Haab, P. Petersen, and J. Throop, “Flexible Con-
trol Structures for Parallellism in OpenMP,” in 1st European
Workshop on OpenMP, September 1999.

[13] P. C. Fischer and R. L. Probert, “Efficient Procedures for
Using Matrix Algorithms,” in Proceedings of the 2nd Collo-
quium on Automata, Languages and Programming. Springer-
Verlag, 1974, pp. 413–427.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Imple-
mentation of the Cilk-5 Multithreaded Language,” in Proceed-
ings of the ACM SIGPLAN 1998 conference on Programming
Language Design and Implementation, 1998, pp. 212–223.

[15] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, E. Su, P. Unnikrishnan, and G. Zhang, “A
Proposal for Task Parallelism in OpenMP,” in Proceedings of
the 3rd International Workshop on OpenMP, Beijing, China,
June 2007.

[16] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguadé,
“Support for OpenMP Tasks in Nanos v4,” in CAS Conference
2007, October 2007.

[17] E. Ayguadé, A. Duran, J. Hoeflinger, F. Massaioli, and
X. Teruel, “An Experimental Evaluation of the New OpenMP
Tasking Model,” in Proceedings of the 20th International
Workshop on Languages and Compilers for Parallel Com-
puting, October 2007.

[18] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of
OpenMP Task Scheduling Strategies,” in Proceedings of the
4th International Workshop on OpenMP, 2008.

[19] H. L. van der Spek, E. M. Bakker, and H. A. Wijshoff, “Char-
acterizing the performance penalties induced by irregular code
using pointer structures and indirection arrays on the intel
core 2 architecture,” in Computing Frontiers 2009, May 2009.

[20] M. Burtscher, P. Carribault, M. Kulkarni, K. Pingali, C. Cas-
caval, and C. von Praun, “Lonestar benchmark suite,”
http://iss.ices.utexas.edu/lonestar/, 2009.

[21] B. Chamberlain, J. Feo, J. Lewis, and D. Mizell, “An Appli-
cation Kernel Matrix for Studying the Productivity of Parallel
Programming Languages,” in W3S Workshop - 26th Interna-
tional Conference on Software Engineering, May 2004, pp.
37–41.

[22] M. C. and A. Rogers, “Software Caching and Computation
Migration in Olden,” 1995.

[23] G. Myers and S. Selznick and Z. Zhang and W. Miller, “Pro-
gressive Multiple Alignment with Constraints,” in RECOMB
’97: Proceedings of the first annual international conference
on Computational molecular biology, New York, NY, USA,
1997, pp. 220–225.

[24] J. Cooley and J. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of
Computation, vol. 19, pp. 297–301, 1965.

[25] S. R. Das and R. M. Fujimoto, “A Performance Study of the
Cancelback Protocol for Time Warp,” SIGSIM Simul. Dig.,
vol. 23, no. 1, pp. 135–142, 1993.

[26] S. G. Akl and N. Santoro, “Optimal Parallel Merging and
Sorting Without Memory Conflicts,” IEEE Transactions on
Computers, vol. 36, no. 11, pp. 1367–1369, 1987.

[27] A. Duran, J. Corbalán, and E. Ayguadé, “An Adaptive Cut-off
for Task Parallelism,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press, 2008.

[28] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé,
and J. Labarta, “Nanos Mercurium: a Research Compiler
for OpenMP,” in Proceedings of the European Workshop on
OpenMP 2004, October 2004.

131131

