A Case Study on Pruning General Ontologies for the
Development of Conceptual Schemas
Conesa, J.

Research Report LSI-04-18-R

Departament de Lienguatges i Sistemes Informdtics

UNIVERSITAT POLITECNICA DE CATALUNYA

A Case Study on Pruning General Ontologies for the
Development of Conceptual Schemas

Jordi Conesa

Universitat Politécnica de Catalunya
Dept. Llenguatges i Sistemes Informatics
Jordi Girona 1-3, 08034 Barcelona

jconesa@lsi.upc.es

Abstract. In general, conceptual schemas (CS) are created from scratch, even
though several approaches allow the designer to reuse the knowledge included
in ontologies. In particular we have defined an approach to create the static CS
of an information system (IS) by the refinement of a general ontology. In such a
case, a pruning phase is needed in our approach since these ontologies contain
too many elements to be usable for humans. The objective of the pruning
activity is to remove irrelevant elements from the extended ontology. In this
document we describe the algorithms used in the pruning activity and we
develop a case study to proof and validate this activity. In this case study we
have used the public version of Cyc Ontology as base ontology. For practical
reasons we find it convenient to use UML as an ontology language, even
though we believe our results apply to any similar language.

1. Motivation

In the general case, most of Conceptual Schemas (CS) are created from scratch. Our
approach is based in a new way to create these Conceptual Schemas reusing the
knowledge defined in ontologies. We use a general ontology as basis, because this
kind of ontology is general enough to not contradict the knowledge required by the
information system. A general ontology can be a top-level ontology, a domain
ontology, a task ontology, or a combination of them.

The definition of our approach was done in [1], where we identified and characterized
three necessary activities required to develop a CS from a general ontology, called
refinement, pruning and refactoring. After this, a deeper case study was executed to
proof the usability and validity of our method [2]. However, several changes have
been made since our first work was presented. In particular, the pruning activity has
been fully redefined [3], so a new case study is needed to validate it.

In this report we describe the implementation of the pruning activity of our method.
Note that the theory of the pruning activity is defined in [3], and is not repeated in the
present document. We validate our pruning activity by means of a case study in which
we create a CS for an organization directory information system. Although we follow
the case study through the three activities of the method, we concentrate in pruning
activity.

The next section presents the requirements of the case study. In section 3 we describe
the ontology we have selected as general ontology, and explain its translation to UML.
At the end of section 3 we refine the general ontology so that it includes all the
necessary concepts for the IS. Then, in section 4, the process of pruning the extended
ontology are presented, using several examples and figures to illustrate it. In section 5
the pruned ontology is presented, and we describe also the evolution of the ontology
through pruning activity. Section 6 shows the execution of the refactoring activity and
presents the final conceptual schema of this case study. Finally, section 7 summarizes
the main aspects of the implementation of the pruning activity.

2. Organization Directory: a Case Study

In this section we present a case study about an organization directory.

The Organization Directory IS (ODIS) needs to know which people works in an
organization, the workplace that they occupy, their category in the company, their
telephon numbers and so on.

2.1 The System Requirements

The information system must store information about an organization, and the people
that works in it.

e Information about the organization: general information about the
organization, all its departments and its organizational structure. This
structure is hierarchical, with some departments reporting directly to the
organization itself.

e Information about the people that work in the organization: general
information about the people, and concretely the position a given person
occupies in the organization, the localization of his! workplaces, and how
to contact with him at the workplace (address, phone number, fax number,
and so on).

In addition, the information system must provide the following query operations:
Context System::1listOfWorkers():
Set (Tupletype (name, fax, phone, address, postalCode))
This query must return information about all the workers of the organization.
In particular, it must return their name, phone number, fax number, address,
and postal code of his workplace.
Context System::listWorkersOfDepartment (dep: Department) :
Set (Tupletype (name, fax,phone, adress, postalCode))
This query must return information about all the people that work directly in
the department dep. Like in the previous operation we are interested in the
name of the workers, and for each worker in his phone number, fax number,
address, and postal code of his workplace.

! Throughout this document we use he for “he or she” and his for “his or her”

Context System::listWorkersOfDepartmentAndSubordinates (dep:Department)
Set (Tupletype (name, fax, phone, adress, postalCode))

This query must return information about all the people that work either for
the department dep, or in any of its sub departments. For each worker we are
interested in the same information than in the previous operations.

3. Previous steps to the pruning activity

The first step in the creation of conceptual schemas from general ontologies is the
selection of the general ontology (Og) that we want to use as basis. When the ontology
is not written in UML language, it must be translated to it. After this, the designer
must refine the ontology to include those elements that are necessary for the IS but are
not in the Og. As a result of this refinement the extended ontology (Ox) will be
created.

In the next subsection we explain the general ontology we use as basis, and why.
This base ontology is not written in UML, then subsection 3.2 describes how we have
translated this ontology into UML. In subsection 3.3 we refine the general ontology
with the knowledge needed for the IS not included in Og. Finally in subsection 3.4 the
Ox obtained after the refinement phase is presented.

3.1 The choice of the General Ontology (Og)

Selecting the general ontology (Og) is a critical decision in our approach, because the
quality of its result depends greatly on this choice. In this case study we used
OpenCyc [4] as general ontology.

OpenCyc is the public version of Cyc Ontology [5, 6]. It contains about 3000
concepts and more than 10° axioms, all of them created and designed by hand, to
create a large representation of the consensus knowledge of the world. An axiom in
Cyc is a well-formed formula inserted into Cyc knowledge base. If we take into
account that a formula in Cyc could be either a predicate, a logical connective, or a
quantifier, we can say that almost all the Cyc assertions are axioms. The Cyc Ontology
has also an inference engine, and provides tools to query, navigate and extend the
ontology from several ways.

The main reasons of this choice have been that OpenCyc is probably the largest
ontology in use and it provides an environment to query, navigate and extend the
ontology. It has also an API that allows accessing to the ontology from a program,
which can be written in Java or Lisp.

3.2 Translation of Og into UML

In order to bring our approach closer to the designers we use UML [7] as ontology
language. This assumption will facilitate the refinement of the Og to the designer,
which could be practically impossible without the use of graphic and usable tools [8].
CASE tools provide usable and graphical facilities to refine UML ontologies, but

there is a lack of similar tools for the refinement of ontologies written in other
ontology languages.

When an ontology written in another language is selected as Og, a translation to
UML must be done. In our case study it has been necessary to create a program that
rewrites OpenCyc ontology into UML language. UML is a graphical language, but
since the release of XMI [9] it has also a representation in XML. XMI is an standard
that allows to represent UML models in XML format, which can be imported by
several tools.

We have created a program written in Java to do this translation. This program
reads the OpenCyc ontology using its API, and generates a XMI file that contains the
whole ontology. There are several differences between CycL, which is the ontology
language used in OpenCyc, and UML. In some facets UML is less expressive than
Cyc language, therefore the resultant ontology is not exactly the same as the original,
but enough good to validate our pruning activity. The resultant ontology consist of the
following elements:

e A set of classes.

e A set of N-ary associations. Note that the cardinality constraints of their
association ends are extracted from OpenCyc as well.

e A set of attributes: in OpenCyc attributes are modeled using associations
between a class and a DataType. To convert these kind of associations to
attributes, our program detects binary associations, whose ends include
one DataType.

e A set of DataTypes. OpenCyc uses classes to define the DataTypes, so in
our program we detect when a class in OpenCyc plays the role of a
DataType. This has not been an easy task, because OpenCyc does not
make a distinction between classes and data types. After a deep study of
the class taxonomy defined in OpenCyc, we have assumed that a data type
in OpenCyc is a class whose direct or indirect supertypes include either
IDString or Tuple.

e A set of generalization/specialization relationships between classes, data
types and associations.

For the sake of simplicity, several constructions have not been exported to UML,
these constructions are:

e Fordward/backward rules: these rules are used in OpenCyc to find out
new information, and could be translated to UML as integrity constraints
or derivation rules.

® Microtheories: The knowledge in OpenCyc is structured in Microtheories,
which are equivalent to domains in conceptual modeling.

e Other constructions can be modeled to UML, but we have not translated
them because of their difficultly translation. For example, instanceOf
relationship, general integrity constraints, and so on.

After executing the translation program a XMI file has been created. This file
contains a UML model with the following elements:
2,696 Classes.
255 DataTypes.
265 Atributtes.
1,444 Associations.

The source code of this program can be downloaded from
http://www.lsi.upc.es/~jconesa/Publicacions.html. The XMI file that represents the
UML version of OpenCyc can also be downloaded from the same site.

3.3 Refining Og

Once the Og has been selected and translated to UML (if necessary), the designer is
able to refine the Og to extend the ontology with the necessary elements for the IS, but
not included in Og. As a result of this refinement activity we will obtain the Extended
Ontology (Ox).

In order to refine easily the Og and taking into account the great number of
concepts that contains, we need a high-grade usability tool with facilities to import
models written in XMI. We used Poseidon CASE tool? to refine the general ontology.
This is a commercial CASE tool based in the open source tool ArgoUML3. We have
chosen Poseidon because it is fully compliant with the version 1.4 of the UML
metamodel, is more usable than its freeware companion (4ArgoUML), and
imports/exports UML models to XMI format (in fact it uses XMI as a native format to
store its models).

In order to detect the refinement operations of this case study, we have analyzed the
requirements of our IS to determine the knowledge the IS needs to know, and which
part of these knowledge not included in Og. For this reason we have formalized the
requirements of the Organization Directory IS, which can be found in appendix A
(page 21).

Once the UML version of OpenCyc has been imported into Poseidon, the
requirements have been studied and the refinement operations have been found out.
We have done the following refinements:

1. Create name attribute: although OpenCyc has a way to specify the name
of tangible things (person, organization, ...), we think its representation is
unnatural. For simplicity reasons, we have created a name attribute in the
Agent concept.

2. Create workingPointOfContact association*: this association represents
the contact location were an Agent can be found at work, and it is an
specialization of pointsOfContact, which is defined between Agent and
ContactLocation (note that an Agent can be a Person or an Organization).

2 hitp://www.gentleware.com/

3 http://argouml.tigris.org/

4 Although the general convention is naming relationship types beginning with a capital letter,
OpenCyc does not follow this convention. In this document we use OpenCyc convention to
establish a total correspondence between the ontology information base and our results

We suppose a given person has only one workplace, so we must enforce
the cardinality of the Workplace association end to one.

3. Redefine hasworkers association: this association represents an Agent
(worker) that works for another Agent (work). In our case study only
Organizations can play the role of work, and the role of workers must be
played by the instances of class Person, so we need to redefine the
association to indicate this. On the other hand, persons have to work at
least for one organization, so the cardinality of work must be redefined to
1.*.

4. Redefine phoneNumberText attribute: we are only interested in
workplaces phone numbers. We want to store only one phone number per
person, then we redefine the cardinality of the attribute at the level of the
Workplace class.

5. Create Department class, and hasDepartments association: These
elements appear in OpenCyc documentation, but unfortunately their are
not included in the information base of the ontology; as a consequence we
have created them as they were described in the documentation. That is
the class Department as an specialization of Organization, and the
hasDepartments association defined between Organization, with a
cardinality defined to 1, and Department.

6. Creation of the integrity constraints: We use class operations with an IC
stereotype to define integrity constraints [10]. As well as the integrity
constraints already defined in OpenCyc, the information base must satisfy
the following ones:

1. OneOrganization: In CS of figure 3.1, organization class
contains all its direct instances plus the instances of its child
(Department). The OD IS only deals with one organization, so
only one direct instance of organization can exist in the IS.

2. NoCycles: One department cannot be subordinated to itself.

3. WorkersHavePosition: All the workers must work in a position of
the department where their work.

4. UniqueName: The name of tangible entities in the IS (Person,
Organization and Department) must be unique.

We show a detailed view of these constraints in the following lines:

Context Organization::oneOrganization() : TruthValue
Body: Organization.allInstances()=>size() =
Department.allInstances () ?size() + 1

Context Organization::noCycles () : TruthValue
Body: let allDepartments = self.allSubordinateDepartments () in
allDepartments—2>size () = allDepartments—2asSet () 2>size()
Context Person::workersHavePosition() : TruthValue

Body: self.organization>forAll (org| self.work>includes (org))

Context Agent::uniqueName () :TruthValue
Body: Agent.allInstances()=>isUnique (name)

Additional Operations
—— Returns all the subdepartments of an Organization. Note that a
—— department is an organization, so we can apply this operation to
-— it
Context Organization
Def oper: allSubordinateDepartments () :Bag (Organization)
Body: sub.allSubordinateDepartments () 2union (self)

ContactLocation
dd| Text:Address-LocationDesignatoi0..1]
<< Col >>+faxNumberText:PhoneNumber*]
+phoneNumberText:PhoneNumber*]
<< Col >>+postalCodeOfAddressPostalCode[0..1]
<<Col Toxt: 0..1]

PhysicalContactLocation

\ << Col>>

Workplace

‘ <<Cal, redefines>>-phoneNumberText:PhoneNumber

f

—<]‘ workingPointOfContact

<<Col, news>

pointsOfContact

worksWith

* [Fwork hasWorkers

+worker E

Agent

+income:MonetaryFlowRate[*]
+taxIDNumber:IDString[0..1]

<< Col, new >>-name:CharacterString
<<IC, new>>+UniqueName():TruthValue employees
<<Col >> ‘
o P <<Col >>
+super | <<IC, new >>+oneOrganization():TruthValue +work +worker Person
<<IC, new >>+noCycles():TruthValue T asWork +nameSuffixCharacterString[’]
<<IC, new >>+workersHavePosition():TruthValue asWorkers i i ityNumbel[0..1]

<<Col, redefi

+ ity
+itleOfPerson-StringCharacterString]

positionOfPersoninOrg

boss
hasDx

<<Col, new>>

PersonTypeByPositioninOrg

Figure 3.1: The relevant fragment of Ox

3.4 The Extended Ontology (Ox)

The volume of the Ox obtained after refining the Og is:
e 2,697 Classes (+1 new).

255 Data Types.

266 Attributes (+1 new, +1 redefined).

1,446 associations (+2 new, +1 redefined).

4 class operation (+4 new).

The relevant fragment of Ox can be seen in figure 3.1 Note that we have used a
stereotype called new to mark the elements added in the refinement phase.

4. The pruning activity

Normally, an extended ontology Oy is too large to be usable for humans. The
objective of the pruning activity is then to remove the irrelevant elements from the
extended ontology. At the end of this phase the pruned ontology (Op) will be
obtained.

We have developed a program written in java that given a XMI model as input,
generates automatically a minimum Op that fulfils the specifications of the
Organization Directory IS. The output of this program is also an XMI file.

In the next subsection we will see how to detect the required elements to do our
pruning activity. Subsection 4.2 describes the execution of the pruning of irrelevant
concepts phase and its results. Then, in subsection 4.3 we will see how the
unnecessary super types are deleted from the ontology, and the result after those
deletions. Finally we describe the deletion of the unnecessary generalization paths
from the Ox.

Concept Operation where it is referred into
Department oneOrganization, newDepartment, changeSuper
¢ | Organization WorkersHavePosition, oneOrganization, noCycles,
S AllDependentsDepartments, initializeOrganization,
= changeSuper
é‘ Person NewPerson, personAssigment, listOfWorkers,
k= listWorkersOfDepartmentAndSubordinates
WorkPlace personAssigment, initializeOrganization, newDepartment,
newPerson, workplaceReassignement
name uniqueName, initializeOrganization,
" newDepartment, newPerson, listOfWorkers,
9 listWorkersOfDepartment
5 faxNumberText InitializeOrganization, newDepartment,
£ |streetAdressText newPerson, listOfWorkers, listWorkersOfDepartment,
< phoneNumberText listWorkersOfDepartmentAndSubordinates
postalCodeAdress
hasWorkers workersHavePosition, newPerson, personAssigment,
2 worksAlsoln, workplaceReassigment,
e listWorkersOfDepartment,
= listWorkersOfDepartmentAndSubordinates
-§* hasDepartments AllDependentsDepartments, newDepartment, changeSuper
g workingPointOfContact | InitializeOrganization, newDepartment,
-% newPerson, workplaceReassigment, listOfWorkers,
° listWorkersOfDepartment,
22 listWorkersOfDepartmentAndSubordinates
positionOfPersonInOrg | PersonAssigment

Table 4.1: Rationale of how the Col elements for the Organization Directory IS have been
selected

4.1 Identifying the Concepts of Direct Interest

In order to automate the pruning activity we need to identify the concepts of direct
interest (Col). Remember that Col can be obtained either by a study of functional
requirements of the IS, or by an explicit selection by the designer. In our case study
we used the second option to select the Col elements.

We have formalized, in appendix A, the IS requirements by system operations, then
for each operation we have underlined the (Col) elements. We have not selected here
a complete Col set, but a sufficient one to allow the pruning algorithm to calculate the
complete set from it.

We used a stereotype called <<Col>> to mark the elements of direct interest in the
ontology (see figure 3.1). Table 4.1 shows those elements and the operations where
they have been selected

4.2 Pruning Irrelevant concepts and constraints

The algorithm used to delete the irrelevant concepts and constraints is composed by
four steps:

1. Selection of Col: In this step the algorithm selects the elements marked
with Col stereotype. When the selected concept is an association all its
participants are selected as well. On the other hand, if the concept is an
attribute the algorithm selects its owner class and its data type. Table 4.2
shows the elements selected in this step.

2. Calculating G(Col): we need to identify the concepts that are parents of
the concepts of Col. To this end we create G(Col), which is the set that
contains the Col concepts and all their parents. In table 4.2 we can see the
result of this step.

3. Deleting the irrelevant concepts: The concepts not contained into G(Col)
are deleted.

4. Deleting the irrelevant constraints: In this step all the constraints that
contain an element inexistent in G(Col) must be deleted. To do this we
have calculated for each integrity constraint the function CC(ic), which
returns the set of the elements that appear in the integrity constraint ic.

We can see in table 4.3 the constrained elements of the constraints
defined among concepts of G(Col). These constraints may be:

e Cardinality constraints defined for the concepts of G(Col)

e Redefinitions of hasWorkers and phoneNumberText

e General constraints defined in the refinement phase
None of these constraints have been deleted in this step, because all of
their constrained elements are included into G(Col).

Col

Entity Types (7)

Organization, Workplace, Person, ContactLocation,
PersonTypeByPositionInOrg, Agent, Department

Data Types (4)

PhoneNumber, PostalCode, StreetAddress,
CharacterString

Relationship Types (4)

positionOfPersonInOrganization, workingPointOfContact,
hasDepartments, hasWorkers

Attributes (5)

phoneNumberText, streetAddressText,
postalCodeOfAddress, faxNumberText, name

G(Col)

Entity Types (89)

Individual, Thing, Agent-Generic, SomethingExisting,
TemporalThing, PartiallyIntangibleIndividual, Place,
Partiallylntangible, SpatialThing, SpatialThing-Localized,
CompositeTangibleAndIntangibleObject, InanimateThing,
PartiallyTangible, TwoOrHigherDimensionalThing,
PhysicalContactLocation, HumanShelterConstruction,
HumanOccupationConstruct, ConstructionArtifact,
Artifact-NonAgentive, Artifact-Generic, Artifact,
InanimateThing-NonNatural, HumanScaleObject, Animal,
SolidTangibleProduct, PartiallyTangibleProduct, Product,
SolidTangibleThing, HumanlyOccupiedSpatialObject,
ContainerProduct, PhysicalDevice, Container,
ComplexPhysicalObject, ContainerShapedObject,
CavityOrContainer, HexalateralObject,
TopAndBottomSidedObject, BilateralObject,
FrontAndBackSidedObject, LeftAndRightSidedObject,
ShelterConstruction, MultilndividualAgent, SocialBeing,
IntelligentAgent, InformationStore, LegalAgent,
Omnivore, Heterotroph, Organism-Whole, ObjectType
BiologicalLivingObject, OrganicStuff, ViviparousAnimal,
NaturalTangibleStuff, PerceptualAgent, IndividualAgent,
AnimalBLO,EukaryoticOrganism, Primate, SubLAtom,
TerrestrialOrganism, Eutheria, Mammal, Homeotherm,
AirBreathingVertebrate, Vertebrate, ChordataPhylum,
MulticellularOrganism, IDObject, SubLListOrAtom,
HumanOccupationConstructResident, HomoGenus,
HominidaeFamily, SubLExpression, MathematicalObject,
StructuredinformationSource, MathematicalThing,
MathematicalOrComputational Thing, Intangible,
IntangibleIndividual, AbstractinformationStructure,
AbstractInformational Thing, ExistingObjectType,
TemporalStuffType, StuffType, FirstOrderCollection,
Collection, SetOrCollection, FixedOrderCollection

Data Types (4)

ContactInfoString, IDString, List, Tuple

Relationship Types (17)

pointsOfContact, temporallyIntersects, temporallyOverlaps,
temporalBoundsIntersect, temporallyRelated, hasWorkers,
hasAgents, affiliatedWith, superiors, ableToControl,
ableToAffect, positiveVestedInterest, vestedInterest,
awareOf, influencesAgent, receivesServicesFrom,
worksWith

Table 4.2: The Col and G(Col) for the IS Organization Directory

10

The number of elements deleted in this step grouped by its type is:
e 2,601 Entity Types.

247 Data Types.

261 Attributes.

1,425 associations.

0 general Integrity Constraints.

CC(uniqueName) Agent, name

Person, hasWorkers,

CCworkersHavePosition) positionOfPersonInOrganization

General
Constraints

CC(oneOrganization) Organization, Department
CC(noCycles) Organization, hasDepartments
N L w CC(hasWorkers) hasWorkers, Agent
@ A .§ PhoneNumberText, ContactLocation,
g < 2 CC(phoneNumberText) PhoneNumber
° CC(work) hasWorkers, Organization, Person
CC(super) hasDepartments, Organization, Department

workingPointOfContact, WorkPlace, Agent
CC(WorkingPointOfContact-

Workplace)

Cardinality
Constraints

Table 4.3: Constrained elements

Finally, the volume of the ontology obtained after the previous deletions (O,) is:
® 96 Entity Types.

8 Data Types.

6 Attributes.

21 Associations.

4 general Integrity Constraints.

4.3 Pruning unnecessary parents

At this stage, the necessary elements for the IS are the elements included in Col, and
in CC(0O,) (see table 4.3). Note that not all the parents of Col elements are necessary
for the IS, in this step these unnecessary parents will be deleted.

We have developed a recursive algorithm to delete all the elements without
necessary parents. We can see in figure 4.1 the ontology obtained after the application
of this algorithm. We can see also in table 4.4 the elements deleted in this step.

The volume of the ontology obtained after the removal of unnecessary parents is:

e 23 Entity Types.
6 Data Types.
6 Attributes.
5 Associations.
4 general Integrity Constraints.

11

Entity Types (73)

Thing, Individual, TemporalThing, SomethingExisting, SubLExpression, Product,
SpatialThing, PartiallyIntangible, PartiallyIntangibleIndividual, Agent-Generic,
Multilndividual Agent, TwoOrHigherDimensional Thing, BilateralObject,
LeftAndRightSidedObject, IndividualAgent, SubLListOrAtom, SubLAtom, IDObject,
FrontAndBackSidedObject, Spatial Thing-Localized, Place, CavityOrContainer,
Artifact-Generic, Artifact-NonAgentive, InformationStore, IntelligentAgent,
Intangible, IntangibleIndividual, MathematicalOrComputational Thing,
Mathematical Thing, SetOrCollection, MathematicalObject, Collection,
FixedOrderCollection, FirstOrderCollection, ObjectType,

StuffType, TemporalStuffType, ExistingObjectType, AbstractInformationalThing,
AbstractInformationStructure, PartiallyTangible, InanimateThing,
HumanlyOccupiedSpatialObject, CompositeTangibleAndIntangibleObject,
InanimateThing-NonNatural, Artifact, OrganicStuff, ComplexPhysicalObject,
ContainerShapedObject, Container, Natural TangibleStuff, BiologicalLivingObject,
AnimalBLO, Organism-Whole, EukaryoticOrganism, Heterotroph,
PartiallyTangibleProduct, Omnivore, MulticellularOrganism, HumanScaleObject,
TerrestrialOrganism, TopAndBottomSidedObject, HexalateralObject,
SolidTangibleThing, SolidTangibleProduct, PhysicalDevice, ContainerProduct,
ConstructionArtifact, ShelterConstruction, HumanOccupationConstruct,
HumanShelterConstruction, StructuredInformationSource

Data
Types(2)

Tuple, List

Relationship

Types (16)

awareOf, temporallyRelated, temporalBoundsIntersect, temporallyIntersects,
temporallyOverlaps, ableToAffect, influencesAgent, pointsOfContact, vestedInterest,
affiliatedWith, positiveVestedInterest, receivesServicesFrom, worksWith, superiors,
has Agents, ableToControl

Table 4.4: Unnecessary parents removed from the ontology

12

ContactLocation
<<Col >>+faxNumberText :PhoneNumber [*]
<<Col >>+postalCodeOfAddress :PostalCode[0..1]
<<Col >>+streetAddressText :StreetAddress [0..1]
5

PhysicalContactLocation
z

<< DataType >>
(CharacterString
Z
<<Col>>
Workplace <<DataType >>|
[<<redefines , Col >>-phoneNumberText :PhoneNumber IDString
1
<<DataType >>
workingPointOfContact
<<Col, neve> Ccntacﬂlosmng
Aoent ok [\ |
gen <<DataType >>| <<DataType >>| <<DataType >>
<<new, Col >>-name:CharacterString | pasworkers PhoneNumber PostalCode StreetAddress
<<new,,IC>>+UniqueName ():
“workey
SocialBeing| [PerceptualAgent
x
‘c hyium| “] ViviparousAni i F 7 W

HominidaeFamily|

<<Col>>

super LegalAgent|
! |<<new, IC >>+oneOrganization():
<<new, IC>>+noCycles():

<<new, IC>>+workersHavePostion(): | - hasWorkers
x w— <G el

hasDepartments.
positionOfPersoninOrg

PersonTypeByPositioninOrg

<<Col.news>

<<new,Col>>|
Department

Figure 4.1: The resultant ontology after the deletion of unnecessary parents

13

4.4 Pruning unnecessary generalization paths

Once all the unnecessary parents have been deleted, the remaining elements of the
ontology exist either because they are necessary, or they participate in a specialization
path between two necessary elements.

Usually, in large ontologies there are different generalization paths between the
same elements, and some of these paths can be removed from the ontology without
losing information. In this step these unnecessary generalization paths are deleted to
obtain the final Op. Note that the ends of those unnecessary paths cannot be deleted,
because they can participate in other generalization paths. Although the definition of
this phase [3] only deals with generalization paths composed by more than one
generalization relationship, we extended the algorithm to deal with generalization
paths composed only by one generalization relationship. This has been necessary
because OpenCyc defines explicitly generalizations that are duplicated with other
generalization paths, we suppose for inference cost improvements. Taking this direct
relationships into account a smaller Op can be obtained. We can see an example of this
duplicated relationships in the generalization between Mammal and Vertebrate of
figure 4.2, which can be derived from Mammal IsA AirBreathingVertebrate IsA
Vertebrate generalization path.

“) —>

Animal

[ChordataPhylum | [Homeotherm | ChordataPhylum
JaN A
Vertebrate

A

AirBreathingVertebrate|

A

Figure 4.2: Detecting and deleting the unnecessary duplicated path between Mammal and
Animal

We now illustrate the deletion of unnecessary generalization paths by means of
examples taken from the case study. In the first example (figure 4.2) three
generalization paths have been detected between Mammal and Animal: 1) Mammal iSA
AirBreathingVertebrate ISA Vertebrate ISA ChordatePhylum ISA Animal, 2)
Mammal iSA Vertebrate ISA ChordatePhylum ISA Animal, and 3) Mammal isA
Homeotherm ISA Animal. Note that vertebrate, participates in more than two
generalization/specialization paths (path 1 and path 2), so only path 3 can be deleted.
In our second example (figure 4.3), which continue from the previous one, two
generalization paths are detected between Mammal and Vertebrate: 1) Mammal isA
AirBreathingVertebrate ISA Vertebrate, and 2) Mammal ISA Vertebrate. In this

14

case both paths satisfy the unnecessary condition, so we can delete any of them. But in
order to obtain a smaller pruned ontology the algorithm deletes the longest path (the

first one).

ChordataPhylum
A
Vertebrate

A

Path 1
AirBreathingVertebrate|

A

Path 2

A
A

ChordataPhylum

A

Vertebrate

Mammal

P

()

Person

Figure 4.3: Detecting and deleting the unnecessary duplicated path between Mammal and
Vertebrate

In table 4.4 we can see the unnecessary paths detected and deleted in this case
study. We also emphathize in figure 4.4 all the concepts deleted in this step.

Path

Concepts to delete

1 | Mammal /s4 Homeotherm /sA Animal

Homeotherm

Vertebrate /s4 ChordataPhylum /s4
Animal

N

ChordataPhylum

Mammal /s4 AirBreathingVertebrate
Is4 Vertebrate

AirBreathingVertebrate

Organization /s4 Agent

Person Is4 Agent

Person Is4 Animal

Person IsA ViviparousAnimal Is4
Animal

N (SN s| W

ViviparousAnimal

Person IsA4
8 | HumanOccupationConstructResident
Is4 Animal

HumanOccupationConstructResident

Person Is4A HomoGenus /s4
HominidaeFamily /s4 Primate

Homogenus, HominidaeFamily

10 | Person /sA Primate Is4 Eutheria IsA
Mammal /s4 Vertebrate IsA Animal IsA4
PerceptualAgent Is4 Agent

Primate, Eutheria, Mammal,
Vertebrate, Animal, Perceptual Agent

Table 4.4: Unnecessary paths deleted

15

+super

ContactLocation

<< Col >>+faxNumberText :PhoneNumber [*]
<<Col >>+postalCodeOfAddress :PostalCode[0..1]
<<Col >>+streetAddressText :StreetAddress [0..1]

PhysicalContactLocation
z

<<Col>>
Workplace

defines , Col >>-pl Text :Phot

‘workingPointOfContact
<<Col, news>

‘ Elements to Delete

<< DataType >>
(CharacterString

T

l<<DataType >>|

IDString
i

<<DataType >>
ContactinfoString

z

otk [\ |
Agent <<DataType >»| |<<DataType>>| |<<DataType >>
<<new, Col >>-name:CharacterString | pasworkers PhoneNumber PostalCode StreetAddress
<<new, IC>>+UniqueName ():
+workep
\SocialBeing‘ ‘PerceptualAgenl‘
5
A 1 vl

HominidaeFamily

<<Col>>

hasDepartments

<<Col.news>

<<new, IC>>+oneOrganization():
<<new, IC>>+noCycles():
<<new, IC>>+workersHavePosition():

LegalAgent|

hasWorkers

|

work

<<Cal, redaiined>>.

positionOfPersoninOrg

PersonTypeByPositioninOrg

Figure 4.4: Elements to delete in the process of pruning unnecessary generalization

paths

16

5. The Pruned Ontology: Results

After the execution of the previous steps the Op is obtained. We can see the pruned
ontology in figure 5.1, and we can follow its evolution through the pruning activity in
table 5.1.

Some elements of Op are not included into Col set, for example SocialBeing,
LegalAgent, PhysicalContactLocation, IDString and ContactlnfoString. The pruning
activity has been unable to remove those elements, because they are necessary to
maintain the generalization paths between Col elements. For instance, SocialBeing
and LegalAgent maintains the generalization path between Agent and Person, and
Agent and Organization respectively.

The redefined elements have not been deleted in the pruning activity, because their
deletion implies the modification of the elements which redefine them, and as we said
before, modifications are not allowed in pruning activity. The responsibility to delete
those elements relies in the refactoring activity.

Col Ox After irrelevant After unnecessary Op
elements deletion parents deletion

Entity Types 7 2,697 96 23 10

Data Types 4 255 6 6

Associations 4 1,446 21 5 5

Attributes 5 266 6 6

General 4 4 4 4
Constraints

Table 5.1: Evolution of the pruned ontology through the pruning activity

l Agent workingPointOfContact
.<<Co| >>-name:CharacterStrings 1 ContactLocation
‘ <<Col>>+faxNumberText:PhoneNumber*]
<<Col>>+postalCodeOfAddress:PostalCodel0..1]
<<Col>>+streetAddressText:StreetAddress[0..1]
hasWorkers -phoneNumberText:PhoneNumber*]
r

PhysicalContactLocation|

oy

+Super
1

<<IC >>+oneOrganization():
<<IC >>+noCycles():
<<IC >>+workersHavePosition():

| Workplace |

|<<redefines, Col >>-phoneNumberTextPhoneNumber|

<< DataType >>
CharacterString|
7
<<DataType >>|
IDString
7
<<DataType>>
ContactinfoString
Z

<<DataType >>
StreetAddress

hasWorkers

+worker
hasDepartments <<redefines>>

positionOfPersoninOrg

+sub_|Dep:

[

PersonTypeByPositioninOrg|

<<DataType >>
PhoneNumber

<<DataType >>|
PostalCode

Figure 5.1: Pruned ontology for the Organization Directory IS

17

6. The Conceptual Schema

In this case study some unnecessary elements (SocialBeing, LegalAgent,
PhysicalContactLocation, IDString and ContactinfoString) exist into Op because they
are included in necessary generalization paths. The Op can be restructured changing
those elements (and all their generalizations/specializations links) by direct
generalization/specialization links. For instance, SocialBeing and LegalAgent can be
substituted by two generalization links, one between Person and Agent, and the other
between Organization and Agent. The responsible of doing these improvements in our
method is the refactoring activity, which is fully defined in [1]. This activity uses
refactoring operations [11, 12] to improve the quality of the pruned ontology. In this
case study our refactoring activity has detected and executed the above improvements
automatically.

On the other hand, several manual refactoring operations have been also executed
to delete the redefined eclements (poneNumberText attribute and hasWorkers
association). The objective of those manual refactorings is to maintain in the final CS
only the elements that redefines the redefined elements, because they will not be used
in the Organization Directory IS.

We can see the result of the refactoring activity in figure 6.1. Its volume is:

e 6 Entity Types.

¢ 4 Data types.
® 4 associations.
e 5 attributes
{ T WorkPlace
n b

Agel workingPaintOfContact +axNumberText:PhoneNumber|’]
‘rnamE' - | +postalCodeOfAddress:PostalCode]0..1]
‘<<IC >>+UniqueName(): +streetAddressText :StreetAddress[0..1]

-phoneNumberText :PhoneNumber

<<DataType >>
CharacterString

o

<< IC >>+oneQrganization (): ! Person ‘ ‘ ‘
<<IC>>+noCycles (): fwork

+worker

<<DataType >>
PhoneNumber

<<DataType >>
StreetAddress

<<DataType >>
PostalCode

<<IC >>+workersHavePosition ():

hasDepartments positionOfPersoninOrg

Department

‘ PersonTypeByPositioninOrg

Figure 6.1: Final conceptual schema

7. Implementation

We have developed a prototype that implements our pruning activity, which can be
downloaded from http://www.lsi.upc.es/~jconesa/Publicacions.html.

This program takes an input ontology (the extended ontology), and creates an output
ontology (the pruned ontology), which is the result of pruning the irrelevant or
unnecessary elements of the input ontology. We use XMI to specify those ontologies.

18

In order to automate the pruning activity we need to identify the concepts of direct
interest (Col). Remember that Col can be obtained either by a study of functional
requirements of the IS, or selected by-hand. In order to simplify the code of our
prototype we used the second approach. In particular, we suppose that the concepts of
direct interest to the IS are marked with a stereotype called Col. The program then
reads those elements, creates the complete set of Col, and the set G(Col). Once those
elements have been obtained, the program executes automatically all the phases of the
pruning algorithm described in [3] to generate the pruned ontology.

The ontologies created by this approach can be edited with any tool that imports
conceptual schemas in version 1.2 of XMI format.

Our prototype uses NSUML][13] to represent UML schemas in memory. This tool is
composed by a set of classes written in Java, that allow the designer to read and write
UML models using the XMI format. In addition, this tool stores the models in memory
and allows the programmer to execute operations at metamodel level.

In order to allow to the reader of this document the possibility to test our prototype,
the ontologies of this case study can be downloaded from the same page than the
source.

Acknowledgments

I would like to thank Jordi Cabot, Anna Queralt, Xavier de Palol and Ruth Raventos
for helpful discussions and comments on previous drafts of this document.

This work has been partly supported by the Ministerio de Ciencia y Tecnologia and
FEDER under project TIC2002-00744.

References

[1] J. Conesa, X. d. Palol, and A. Olivé, "Building Conceptual Schemas by
Refining General Ontologies," in DEXA'03, vol. 2736, LNCS, V.i.r. M. W.
R. O. Stepankova, Ed.: Springer, 2003, pp. 693 -- 702,

[2] J. Conesa and X. d. Palol, 4 Case Study on Building Conceptual Schemas by
Refining General Ontologies: UPC, 2003.

[3] J. Conesa and A. Olivé, "Pruning Ontologies in the Development of
Conceptual Schemas of Information Systems (Submited for publication),"
2004,

[4] OpenCyc, "OpenCyc, the public version of Cyc,"http://www.opencyc.com/

[5] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, "CYC:
Toward Programs With Common Sense," Communications of the {ACM},
vol. 33, pp. 30--49, 1990.

[6] Cyc, "Cyc Ontology,"http://www.cyc.com

[7] OMG, Unified Modeling Language Specification, Version 1.4: OMG,
September, 2001.

19

[8] M. Bouzeghoub, Z. Kekad, and E. M\'etais, "CASE tools: Computer Support
for Conceptual Modeling," in Advanced Database Technology and Design,
M. Piattini and O. Diaz, Eds.: Artech House, 2000, pp. 439--483.

[9] OMG, XML Metadata Interchange (XMI), version 2.0: OMG, 2003.

[10] A. Olivé, "Integrity Constraints Definition in Object-Oriented Conceptual
Modeling Languages," in ER'03, LNCS: Springer, 2003.

[11] M. Fowler, Refactoring: Improving the Design of Existing Code: Addison-
Wesley, 1999.

[12] W. F. Opdyke, "Refactoring Object-Oriented Frameworks

Ph.D. thesis.," University of Illinois 1992.

[13] "Novosoft Metadata Framework NSUML,"http://nsuml.sourceforge.net/

20

Appendix A: The System requirements

In this section we formalize the system requirements by means of system operations. The additional
operations are operations used to simplify the readability of the requirements.

A.1 System Operations

—— Create the organization of the IS
Context System::InitializeOrganization(name:CharacterString, phone: PhoneNumber,
fax: PhoneNumber,
address:Address-LocationDesigner, pc:PostalCode)
post: org.oclIsNew() and org.oclIsTypeOf (Organization) and org.name=name and
wPlace.oclIsNew () and wPlace.oclIsTypeOf (WorkPlace) and
wPlace=org.Workplace and wPlace.phoneNumberText=phone and
wPlace.streetAddress=address and wPlace.faxNumberText=fax and
wPlace.postalCodeOfAddress=pc

—— Create a new department
Context System::newDepartment (name:CharacterString, super:0rganization,
phone:PhoneNumber, fax:PhoneNumber,
address:Address-LocationDesigner, pc:PostalCode)
post: dep.oclIsNew() and dep.oclIsKindOf (Department) and dep.name=name and
dep.super=super and wPlace.oclIsNew() and wPlace.oclIsTypeOf (WorkPlace) and
wPlace=dep.Workplace and wPlace.phoneNumberText=phone and
wPlace.streetAddress=address and wPlace.faxNumberText=fax and
wPlace.postalCodeOfAddress=pc

-- Create a new person
Context System::newPerson(name:CharacterString, work:0rganization,
phone:PhoneNumber, fax:PhoneNumber, address:Address-—
LocationDesigner, pc:PostalCode)
post: per.oclIsNew() and per.oclIsKindOf (Person) and per.name=name and
per.work=work and wPlace.oclIsNew() and wPlace.oclIsTypeOf (WorkPlace) and
wPlace=per.Workplace and wPlace.phoneNumberText=phone and
wPlace.streetAddress=address and wPlace.faxNumberText=fax and

wPlace.postalCodeOfAddress=pc

—— Assign a Person to an Organization or department in a workplace
Context System::personAssigment (person:Person, workplace:0Organization,
position:PersonTypeByPositionInOrganization)
pre: person.work=2>includes (workplace)
post: person.PersonTypeByPositionInOrganization[workplace] = position

—— A person works also in another department

Context System::worksAlsoIn(person:Person, dep:Department)
pre: person.work2>select (dep) 2isEmpty ()
post: person.work=>includes (dep)

—-— A person is moved to another workplace

Context System::WorkplaceReassigment (person:Person, wp:Workplace)
post: person.Workplace=wp

21

—-— Transfer a department to another superdepartment

Context System::changeSuper (sub:Department, super:0rganization)
pre: super <> sub.super
post: sub.super = super

—-— List all the workers, their workplaces, and their phones numbers

Context System::1listOfWorkers(): Set (Tupletype (name:CharacterString, fax:PhoneNumber,
phone:PhoneNumber, address:StreetAddress,
cp:PostalCode))

Body: Person.alllnstances2>collect (e| Tuple (name=e.name,
fax=e.Workplace.faxNumberText,
phone=e.Workplace.phoneNumberText,
address=e.Workplace.streetAddress,
cp=e.Workplace.postalCodeOfAddress)

—-— List all the workers of a Department
Context System::listWorkersOfDepartment (dep: Department): Set (Tupletype (
name:CharacterString,
fax:phoneNumber,
phone:phoneNumber,
address:StreetAddress,
cp:PostalCode))
Body: dep.worker2>collect (e| Tuple(name=e.name,
fax=e.Workplace. faxNumberText,
phone=e.Workplace.phoneNumberText,
address=e.Workplace.streetAddress,
cp=e.Workplace.postalCodeOfAddress)

—— List all the workers dependents of a Department (that is the workers of the
—-— department or some of its subordinates) ordered by their name
Context System::listWorkersOfDepartmentAndSubordinates (dep:Department) : Set (Tupletype (
name:CharacterString,
fax, phone:phoneNumber,
address:StreetAddress,
cp:PostalCode))
Body: let allDepartments:Bag(Organization) = dep.allDepententsDepartments()in
allDepartments.worker2sortedBy (name)—=2collect(e| Tuple(name=e.name,
fax=e.Workplace. faxNumberText,
phone=e.Workplace.phoneNumberText,
address=e.Workplace.streetAddress,
cp=e.Workplace.postalCodeOfAddress)

A.2 Additional Operations

—— Returns all the subdepartments of an Organization. Note that a
—— department is an organization, so we can apply this operation to it
Context Organization
Def oper: allDependentsDepartments () :Bag (Organization)
Body: ggg.allDependentsDepartments()-)union(self)

22

Departament de Llenguatges i Sistemes Informatics
Universitat Politéecnica de Catalunya

Research Reports - 2004

LSI-04-1-R : Automatic Generation of Polynomial Loop Invariants: Algebraic Foundations, Rodriguez,
E. and Kapur, D.

LSI-04-2-R : Comparison of Methods to Predict Ozone Concentration , Orozco, J.

LSI-04-3-R : Towards the definition of a taxonomy for the cots product’s market , Ayala, Claudia
P.

LSI-04-4-R : Modelling Coalition Formation over Time for Iterative Coalition Games, Mérida-
Campos, C. and Willmott, S.

LSI-04-5-R : Illegal Agents? Creating Wholly Independent Autonomous Entities in Online Worlds,
Willmott, S.

LSI-04-6-R : An Analysis Pattern for Electronic Marketplaces, Queralt, A. and Teniente, E.

LSI-04-7-R : Ezploring Dopamine-Mediated Reward Processing through the Analysis of EEG-
Measured Gamma-Band Brain Oscillations, Vellido, A. and El-Deredy, W.

LSI-04-8-R : Studying Embedded Human EEG Dynamics Using Generative Topographic Mapping,
Vellido, A. and El-Deredy, W. and Lisboa, P.J.G.

LSI-04-9-R : Similarity and Dissimilarity Concepts in Machine Learning, Orozco, J.

LSI-04-10-R : A Framework for the Definition of Metrics for Actor-Dependency Models, Quer, C.
and Grau, G. and Franch, X.

LSI-04-11-R : QM: A Tool for Building Software Quality Models, Carvallo, J.P. and Franch, X.
and Grau, G. and Quer, C.

LSI-04-12-R : COSTUME: A Method for Building Quality Models for Composite COTS-based
Software Systems, Carvallo, J.P. and Franch, X. and Grau, G. and Quer, C.

LSI-04-13-R : Enabling Collaboration in Virtual Reality Navigators, Theoktisto, V. and Fairén,
M. and Navazo, I.

LSI-04-14-R : DesCOTS: A Software System for Selecting COTS Components, Carvallo, J.P. and
Franch, X. and Grau, G. and Quer, C.

LSI-04-15-R : Ewvaluation and symmetrisation of alignments obtained with the Giza++ software,
Lambert, P. and Castell, N.

LSI-04-16-R : A note on the use of topology extensions for provoking instability in communication
networks, Blesa, M.J.

LSI-04-17-R : An ISO/IEC-compliant Quality Model for ER Diagrams, Costal, D. and Franch,
X.

LSI-04-18-R : A Case Study on Pruning General Ontologies for the Development of Conceptual
Schemas , Conesa, J.

Hardcopies of reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Campus Nord, Modul C6
Jordi Girona Salgado, 1-3
03034 Barcelona,Spain
nurias@lsi.upc.es

See also the Departament WWW pages, http://www.lsi.upc.es/

