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Abstract

Similarity and dissimilarity are rarely formalized concepts in Artificial Intelligence (AI). Sim-
ilarity and dissimilarity have a psychological origin, and they have been adapted to Al In this
field, however, similarity and dissimilarity choice is not always dependent on the problem to
solve. In this paper, a formalization of similarity and dissimilarity is presented. The purpose
of this paper is to contribute to the design and understanding of similarity and dissimilarity
in Al increasing their general utility. A formal definition and some basic properties are
introduced. Also, some transformation functions and similarity and dissimilarity operators
are presented.
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1 Introduction

From a psychological point of view, human being uses the notion of similarity to solve prob-
lems, to search information, to inductively reasoning or to categorize elements. Formally,
similarity is defined as the degree of likeliness or analogy between two elements. Opposite to
similarity is the concept of dissimilarity, playing an important role. The four main psycholog-
ical similarity models are the geometric model [33, 17] , the feature model[34], the structural
model [7, 6, 20] and the transformational model [10, 9]. One of the most well-known psycho-
logical theories, Gestalt [37], defines similarity as the result of evaluate if two objects look
similar to one another, not if they are the same object. This perception is useful to group
objects in classes or groups with common features.

Based from this human point of view, Machine Learning theory has adapted this psychological
concept of similarity, becoming one of its essential components. However, there are confusion
with definitions and properties of similarity yet. The reason is that similarity and dissimilarity
are evasive concepts, rarely formalized. Because of this, in Machine Learning usually the
choice is a predefined similarity and not a similarity related to the problem to solve. In this
cases, the power and the flexibility of similarity are underused.

With the objective of highlight the utility of similarity and dissimilarity, this work con-
tributes with ideas about designing and understanding similarity and dissimilarity measures,
making them useful within different fields of AI. Starting from a formal definition basis, a
similarity and dissimilarity theory is constructed. In order to understand better similarity
and dissimilarity, their properties are described and analyzed. Then, some transformation
tools are introduced to increase similarity and dissimilarity utility and adapt them to specific
problems. This tools and their impact on similarity and dissimilarity is also analyzed. These
transformations are a way to construct new similarities and dissimilarities based in other
ones.

This document is organized as follows. In the next section, similarity and dissimilarity con-
cept is analyzed. Then, in Section 3, a definition of similarity and dissimilarity are introduced,
as well as their main properties. In Sections 4.1 and 5, two kinds of transformations are in-
troduced and analyzed. Next, some examples are shown in Section 6. Finally, in Section
7 some aspects of similarity properties are discussed, and in Section 8 are the conclusions
about this work.

2 Similarity and dissimilarity scope

Despite of being a widely used concept in Al, similarity and dissimilarity formalization is
far from being clear. In general, it is assumed that both evaluate a comparison between
two objects. Nevertheless, there are disagrees about their formalization and their properties.
Because of this, sometimes similarity is used instead of distance or metric and viceversa.

Based on the original classic psychological work [34] or geometric concepts [33, 17], similarity
and dissimilarity are used in several fields to compare many kinds of objects. These theories
are based on geometrical distance accepting or rejecting some of the metric axioms. Therefore,
this point of view assumes that similarities and dissimilarities are defined in a metric space.
However, this assumption is strongly refuted in the literature and there are no agreement
about the truthfulness of metric axioms. In fact, some authors like Tversky [34] argued that
metric axioms are unnecessarily restrictive. On the contrary, he proposes a feature contrast
model. Other authors [38, 15, 12, 28], use fuzzy logic[4] to model both geometric axioms



and feature axioms of similarity and dissimilarity. At last, transformational model considers
similarity and dissimilarity between two objects as the transformation cost between them
[11].

Independently of the chosen similarity model, either similarity or dissimilarity are used in
several fields like Case Based Reasoning (CBR) [24, 22] , in Data Mining [31], in Information
Retrieval (IR) [1], in Pattern Matching [2, 35], Fuzzy Logic [13, 36], etc. Likewise, there are
some excellent previous works in similarity classification [28] and similarity theory [18].

3 Definitions

3.1 Similarity

In a general sense, similarity expresses the degree of coincidence between two elements.
Therefore, it is reasonable to treat them as functions since the objective is to measure or
calculate this value between any two elements of the set. Since this can be represented
functionally, in this document similarity is considered a function of two arguments. In this
section, we will describe similarity properties as well as further notation.

A similarity function is defined as follows:

Let X be a non-empty set where there is defined a equality relation =. Let s be a function
s: X xX—I,CR

Assume that s is upper bounded, exhaustive and total. This implies that I, is upper bounded
and also that sup I, exists’.
R

Let Syqe be the maximum value of s (i.e. Smar = suplg). Without loss of generality,
R

consider s;,q; > 0. In any other case, a non-negative maximum can be obtained applying
the transformation s + |Symaz|.

Function s may be required to satisfy the following axioms, for any z,y,2z € X:

Property s1 (Reflexivity). s(z,x) = Sjqe. This implies sup I € I.
R

Property s2 (Strong reflexivity). s(z,y) = Spmaz < = = .
Property s3 (Symmetry). s(z,y) = s(y, ).

Property s4 (Lower boundedness). A similarity s is lower bounded when Ja € R such
that s(z,y) > a, for all x,y € X. This is equivalent to ask that iﬁf I, exists.

Property s5 (Lower closedness). Given a lower bounded function s, define $,,;, = iﬁf L.

The property ask for existence of z,y € X such that s(x,y) = $min-

Consider now a function C' : X — 2%. Each one of the elements in 2% will be called a
complement of .

n this document we will only focus on similarities whose images are subsets of R. For a more general
view see [22, 23, 24].



Property s6 (Complement). A lower closed similarity s defined in X has complement
function C, where C(x) = {2’ € X/s(z,2') = Spmin}, if Vo, 2’ € X, |C(x)| = |C(z")] # 0.

Moreover, if s is also reflexive, necessarily x ¢ C(z). On the other hand, s has unitary
complement function if Vo € X, |C(z)| = 1. In this case, Vz € X:

$(,Y') = Smax ==y € Cly),y € C(x)

Let us define a transitivity operator in order to introduce transitivity in similarity and dis-
similarity functions.

Property s7 (Transitivity). A similarity s defined on X is 7s«-transitive if there is a
transitive operator 7s+ such that the following inequality holds:

9(Tay) 2 T (S(.TJ,Z),S(Z,y)) Vr,y,z € X (31)

Let us to introduce a simple example of similarity.
Ezample 1. Let X = 7™, and let s a function defined in X:

|z -y

=1 — =

Where I, C Q, supl; =1 and i%f I, = 0. Also, the relation = is the commonly used in Z.
Q

This function satisfies reflexivity, symmetry and strong reflexivity axioms. Moreover, it
is lower limited by 0, although it is not lower closed. For this reason, it does not have
complement function. Despite of this, it fulfills transitivity, expressed as follows:

S(may) > max{s(:c,z) + S(Zay) o 1,0}

This expression will be analyzed further in this document (Example 8).

Consider now another function, defined in X too and expressed as follows:

/ 0 ify=—a
s'(z,y) = 1— 2= Gtherwise
lz—y[+1

It is also strongly reflexive, symmetric and transitive. However, this one is lower closed and
unitary complement function: for each z € X, C(z) = {—z}. Further, some examples of the
importance of this choice are presented.

Remark 1. The fulfillment of these axioms leads to a basic semantic associated with s. This
semantic depends on two relations. The first one is between s(z,y) and s(x, z) expressing
the way that x is more or less similar to y than it is to z. The other one is the choice of the
relation =.

Notation

Along this document we will use the following notation in order to identify the different
similarities and their properties.

e The set X of elements will de called definition set.



A similarity in X is a function s satisfying axioms s2 and s3. 3(X) denotes the set of
all the similarities with a definition set X.

A similarity is bounded (closed) if it satisfies axiom s4 (axiom sb5).

e A similarity has (unitary) complement function if it satisfies axiom s6.

A similarity is ms-transitive if it satisfies axiom s7 for a fixed similarity transitive
operator Tyx.

A similarity is strong if it satisfies axiom s2. Otherwise, it is called pseudo-similarity.

3.2 Dissimilarity

Dissimilarity is the opposed concept to similarity since it reflects the degree of unlikeness
between two elements. Because of that, both the definition of dissimilarity and the axioms
that dissimilarity can fulfill are analogous to those seen in previous section. In fact, there is
a direct correspondence between properties.

Again, let X be a non-empty set where it is defined a equality relation =. Let & be a function
0: X xX —IsCR

Assume that 0 is lower bounded, exhaustive and total. This implies that Is is lower bounded
and also that i%f I5 exists.

Let ,nin be the minimum value of § (i.e. dmin = i%f I5). Without loss of generality, we will

consider d,,;, > 0. In any other case, we can get a non-negative maximum applying the
transformation 6 + |§min |-

The function § can fulfill the following axioms, for any z,y,z € X:

Property d1 (Reflexivity). 6(z,z) = dmin. This implies i%f I5 € Is.

Property d2 (Strong reflexivity). §(z,y) = dnin <= = = ¥.
Property d3 (Symmetry). §(z,y) = 0(y, ).
Property d4 (Upper boundedness). Ja € R such that d(z,y) < a. This implies that

sup Iy exists.
R

Property d5 (Upper closedness). Given an upper bounded function §, let d,,,., denote
supls. There exist x,y € X such that §(z,y) = Omasz. This is equivalent to ask that

R
infI, €1;.
R

Consider again a function C': X — 2%,

Property d6 (Complement). An upper closed dissimilarity ¢ defined in X has complement
function C, where C(x) = {2z’ € X/§(x,2’) = Omas}, if Vo, 2’ € X, |C(x)| = |C(z")] # 0.

Again, if § is reflexive, necessarily x ¢ C(x). On the other hand, § has unitary complement
function if Vo € X, |C(x)| = 1. In this case, Vz € X:

5(z,y") = Omin <=y € C(y),y € C(x)



Property d7 (Transitivity). A dissimilarity ¢ defined on X is 7a«-transitive if there is a
transitive operator 7o« such that the following inequality holds:

5(33;3/) < Tax (S(I,Z),S(Z,y)) Vr,y,z € X (32)

Remark 2. Like similarities do, the fulfillment of these axioms leads to a basic semantic
associated with 4. This semantic depends on the same two relations: The first one is between
0(z,y) and §(z, z) expressing, in this case, the way that x is more or less dissimilar to y than

it is to z. The other one is the choice of the relation =.

Notation

Analogously to similarity, we introduce here the notation that will be used in this document.

o A dissimilarity is a function § : X x X — I fulfilling axioms d2 and d3. Denote
A(X) to the set of all the dissimilarities defined on X.

e A dissimilarity is bounded (closed) if it satisfies axiom d4 (axiom db).
e A dissimilarity has (unitary) complement if it satisfies axiom d6.

e A dissimilarity is 7a -transitive if it satisfies axiom d7 for a fixed dissimilarity transitive
operator Ta.

o A dissimilarity is strong if it satisfies axiom d2. Otherwise, it is called pseudo-dissimilarity.

Next, we introduce an example of two dissimilarities:

Ezample 2. Let X be the set of vowels: {a,A,e,E,i,1,0,0,u,U}. Consider the relation

z =y as “z is the same letter than y”. For the sake of clarity, denote C(z,y) to the function
that calculates the number of vowels between its two arguments plus one, in alphabetical
order (e.g. C(‘a’,‘0”)=3,C(‘a’,'u’)=4,C(‘a’,*A")=0).

Define the following dissimilarity with I5 = {0, 1, %, 11k

0 if 2 = Y
§(z,y) = { m otherwise

This dissimilarity can be represented as a table:

aA |l eE | i,I | 0,0 | u,U
a,A 0 0.25 1 0.33 | 0.5 1
e,E | 0.25 0 0.25 | 0.33 | 0.5
i,I | 0.33 ] 0.25 0 0.25 | 0.33
0,0 | 0.5 | 0.33 ] 0.25 0 0.25
u,U 1 0.5 | 0.33 | 0.25 0

Reflexivity and symmetry axioms are fulfilled because the matrix is symmetric and has zeroes
in the main diagonal. Moreover, since elements out of the main diagonal are nonzero, strong
reflexivity is also fulfilled. Note that the upper bound (1) appears in the matrix, therefore,
this dissimilarity is closed.



There are no complement function defined in X but, if it had existed, this dissimilarity
would not have complement function because just a pair of elements (‘a’ and ‘u’) reach the
maximum dissimilarity. Transitivity in this function is given by the next expression. For all
r,y,z € X:

O(z,y) <min{d(x, z) - 6(z,y)}6(x, 2) + 6(z,y) —5-8(x,2) - 6(2,y),4}

Further in this document, we will analyze the origin of this expression (Example 9).

Note the influence of the choice of =. If we define it now as “z is the same character than y”
(i.e. distinguishing letter ‘a’ from letter ‘A’) the values of the previous dissimilarity change.
For example, the dissimilarity value between ‘a’ and ‘A’, in this case, is:

1 1

QAN = —
oA = S oA 5

while formerly it was 0.

Note that the image of § has also changed. Now, I5 = {0, %, i, %, %, 1}.

Despite this, § is still strong reflexive although, in general, not always will be this way.
Thus, if we define dissimilarity do over the same set X as:

C(z,y)

52(55,21): 4

This dissimilarity is again symmetric, bounded and closed. Its image is I5, = {0, i, %, %, 1},
and it fulfills the triangle inequality, since C(z,y) is a metric. Note that, using the first

. . X . . . . . . .
definition of =, J5 is strongly reflexive, whereas under the second one is a pseudo-dissimilarity.

4 Transformations between similarities and dissimilari-
ties

There are many links between similarities and dissimilarity. This section introduces some
of the similarity and dissimilarity design tools. Using this tools a similarity or dissimilarity
can be transformed into another one, fulfilling different properties. Also, a dissimilarity can
be converted into a similarity or viceversa. Previously, let us to introduce the concept of
equivalence between similarity functions and equivalence between dissimilarity functions.

4.1 Equivalence Functions

Let X be the definition set. Consider now the set of all the pairs of elements of X and denote
it as X x X. For a fixed s € ¥(X), there is a preorder relation in X x X. This preorder is
defined as to belong to a class of equivalence with less or equal similarity value. This preorder
in X x X depends on s because it is induced by s.

Definition 4.1. Given X and s € 3(X), there exists a preorder, denoted by < in X x X
defined, Vz,y,2',y’ € X, as follows.

(z,y) = (') <= s(z,y) < s(2',y)



Analogously, given § € A(X), there exists a preorder in X x X defined as to belong to a class
of equivalence with less or equal dissimilarity value. Again, this preorder is induced by 9.

This preorder means that, for all (z,y), (z,w) € X x X
(z,y) = (w,2) A (w, z) < (z,y) does not imply z = w Ay = 2.

Therefore, this induces another relation in X x X, denoted by <, defined as follows:
(z,9) < (w,2) <= (z,y) 2 (w, 2) A =((w,2) 2 (z,9))
Similarly, denote (z1,z2) = (23, 24) when satisfying
(x1,22) = (@3, 24) N (@3, 74) = (x1, 22)

Consequently, elements of X can be grouped in classes of equivalence using this induced
preorder. This classification is done using the similarity value of each pair of elements.
Formally expressed, V(z1,z2) € X x X:

[(x1,22)] = {(z3,24) € X X X |sx(x1,22) = sx(x3,24)}

Where the square brackets denote class of equivalence.
Analogously, the elements in X can also be grouped using a dissimilarity.

Remark 3. Note that the set X x X is partitioned by the previously classes by means the
equivalence relation =. This partition is denoted by X2/ =.

Definition 4.2 (associate order). Let X be a definition set. Any similarity or dissimilarity
induces a preorder in X x X. An associate order is the relation in X2/ = defined as follows:

[(z, )] </= (@, y)] <= (x,9) 2 (" y)

Using these concepts the definition of equivalence between similarities and equivalence be-
tween dissimilarities is introduced.

Definition 4.3 (equivalent similarities/disimilarities). Two similarities (dissimilari-
ties) with the same definition set X are equivalent if they induce the same preorder in
X x X.

Note that the equivalence between similarities or between dissimilarities is an equivalence
relation. The previous definition 4.3 can be expressed in various ways.

Proposition 4.4. The three next definitions are analogous. For all sx, s’y € 3(X):

i) sx,s'x are equivalent.
i) Vz,y,z,w € X, sx(z,y) < sx(z,w) < s (x,y) < s'x(z,w).

iii) Vr,y,z,w € X, sx(z,y) > sx(z,w) < s (x,y) > s (z,w).



Proof. i) to ii) If sx, s’y are equivalent they induce the same preorder in X, so
for all z,y, 2,y € X

e =@ = { T SR

Consider, for some x,y,2’,y" € X, that sx(z,y) < sx(2’,y’). This implies
(x,y) < («',y). Thus,

(z,y) < (2 y) = sk (z,y) < sx(2',y)

i) to i) Derived from i) to ii) since all implications are double.

i) to iii) Analogous to i) to i), considering, for some z,y,2’,y" € X, that
SX($7 y) > SX(xIJ yl>
iii) to ii) Idem that i) to 7).
O

The main properties of similarities and dissimilarities are kept under equivalence relations.
Before, let us to introduce the following lemma about the minimum transitivity operator in
similarities and dissimilarities.

Lemma 4.5. Consider a similarity s € X(X) and a dissimilarity § € A(X), both of them
strong reflexive.

If s is lower bounded, s € ¥.(X) is Ts-transitive where T, is
a b= smax

Va,be Iy 1s(a,b)=<¢ b a4 = Smaz
Smin  Otherwise

If s is not lower bounded, Ts, is

a b = Smaz
m=(a,b) =< b a4 = Smaz
—oo  otherwise

Analogously, if 6 is upper bounded, § € A(X) is Ta-transitive, where Ta s

a b= dmax
VYa,be Iy 7a(a,b)=<¢ b a = Opmaz
Omin  Otherwise
If 6 is not lower bounded, Ta is

a b= 5ma:t
Ta(a,b) =4 b a = Omaz
+o00  otherwise

Proof. Let z,y,z € X be three elements of X.

If 2 = y by means of Tx-transitivity we know that

Smaz > Ts(s(, 2),5(2,9))



That is always true.
If 2 = z, then s(z, 2) = Synae and the transitivity is
s(z,y) < s(z,9)
Because = = z, s(z, ) = s(z,%) so this is also true.
If y = z, then 5(y, 2) = Syae and the transitivity is
s(z,y) < s(z,2)
Because y = z, s(x,y) = s(z, z) so, like the previous case, this is also true.

X pe X
If © # y,x # z and y # z, then, using strong reflexive and lower boundedness
properties:
S(x,Y) > Smin

or, if s is not lower bounded
8(1‘, y) 2 —o0

The demonstration using dissimilarities is analogous.
O

Proposition 4.6. Given two equivalent similarities s1,s2 € X(X) or two equivalent dissim-
ilarities 51,02 € A(X),
e 31 (61) is reflexive only if sy (02) is reflexive.
e 51 (01) is strong reflexive only if sy (d2) is strong reflexive.
e 51 (01) is symmetric only if s2 (02) is symmetric.
e 31 (1) is lower closed (upper closed) only if sy (62) has lower closed (upper closed).
e s1 (01) has complement function only if sa (d2) has complement function.

e 51 (01) is transitive only if so (2) is transitive.

Proof. Reflexivity Provided that s;(x,2) = s1,,,,, using Definition 4.3,
Ve,y € X sa(z,x) > sa(z,y) <= s1(z, ) > s1(z,y)

Therefore denote s5 to the maximum value for similarity ss.

max

Strong Reflexivity If s; is strong reflexive then

s1(z,y) = 51,,,, ==y

Suppose that 3z, y € X such that = ;Z y but sy(z,y) = s2,,.,. This means
that sa(x,2) = sa(x,y) but, using Definition 4.3 we know that this means
that

si(z,x) = s1(z,y)

and this is a contradiction.

10



Symmetry Symmetry is trivial, using definition of equivalence.
Lower Boundedness This property cannot be assured.

Lower Closedness Provided that both similarities have lower bound, consider
a set of pairs of element of X denoted M; such that V(z,y) € My s1(x,y) =
s1 Therefore, using Definition 4.3,

Vz,we X, Y(z,y) € My s1(z,y) < s1(z,w) <= sa(x,y) < s2(z,w)

Denote s3,, = sa(z,y) for any (z,y) € M;. This is the lower closure of s.

Complement If s; has complement function, we know that Vo' € Cy(X) sy(x,2’) =
51+ Lherefore, using Definition 4.3,

Vr,y € X si(z,2') < s1(z,y) < s2(z,2") < s2(z,y)

Denote sy(z,2') = 89
Ca(X).

Transitivity Analyzing the expression of transitivity

Thus, sz has complement function and C;(X) =

min*

VI,y,Z eX Sl(mvy) > TlE(‘Sl(I)Z)vSl(Zay))

we cannot assure the fulfillment of this property by the similarity s, because
the transitivity operator m15.. However, using Proposition 4.5 we can assure
that if s; fulfils this minimum transitivity, ss also fulfils it. To demonstrate
this, simply use that both s; and s, are strong reflexive.

O

Following, we define an equivalence function that allows us to get equivalent similarities or
dissimilarities.

Definition 4.7. [Equivalence function] Given two equivalent similarities s1,s2 € X(X), or
two equivalent dissimilarities d1,02 € X(X), an equivalence function is a function f : I;, —
Is,, or Is, — I, such that for all z,y in X,

s2(w,y) = fosi(r,y)

or

v

52(55,:!/) = f © 51(1‘,y)

Proposition 4.8. Any equivalence function f fulfills in all its dominium (i.e. I, ), the
following properties:

e Strictly increasing monotonicity.

e Invertibility.

Therefore, f is a bijection.

Proof. For one side, following the definition 4.7, in order to assure that, for all
z,y,z,w € X,

s1(z,y) > s1(z,w) <= fosi(z,y) > fosi(zw)

11



function f has to be strictly increasing in I, .

For other side, using that s; and s; are equivalent, there exists a function f -1
such that

51('17 y) = f_l © 82(‘7"7 y)
Here, ffl is the inverse of f Therefore, f has to be invertible.

O

In this sense, the main properties of similarities and dissimilarities have to be kept by these
equivalence functions. The following proposition proves that any equivalence function keeps
all the properties expressed in Proposition 4.6.

Remark 4. Note that lower boundedness property is it not included in 4.6. This is due to
the fact that a not lower bounded similarity has a lower bounded equivalent similarity. The
analogy between the images of these similarities is that both are open intervals and their
lowest value (i.e. —oo and any real number, respectively) cannot be reached in any case.

The following Property illustrate a case such that the transformation f converts a not lower
bounded similarity into a bounded one.

Proposition 4.9. Let sy be a similarity in X(X) and let f be an equivalence function such
that f : Iy, — [a,b]. Denote sy to the composition of f and s1. Thus, sy is a similarity in
Y(X) such that Iy, C [a,b], keeping the properties of s1 in the terms of Proposition 4.6 says.

Proof. Using that f is strictly increasing, ss keeps the reflexive and the strong
reflexive property by means of considering b = fosi(z,z) = s The symmetry,
as usual, is trivially kept in this case.

mazx *

v

If s; has lower closure (therefore, sy also has it), consider a = f(s1,,, ) as the

lowest value of so. Also, using a as the lowest value assures the fulfilment of the
complement property as Proposition 4.6 says.

An special case is the following one, where [a, b] = [0, 1].

Corollary 4.10. Let s1 be a similarity in (X)) and let f* be an equivalence function such
that f* : Iy, — [0,1]. Denote sa to the composition of f* and sy. Thus, sy is a similarity
such that Iy, C [0,1].

In fact,

® So =1.

max

e if s1 has lower closure, then s

=0, and I, = [0,1].

min

e if s1 does not have lower bound, sy does have it (its value is 0) and therefore, I, = (0, 1].

Analogously, let 51 be a dissimilarity in A(X) and let f* be an equivalence function such that
f*: Is;, — [0,1]. Denote 83 to the composition of f* and §,. Thus, 02 is a dissimilarity
such that I5, C [0,1].

In fact,

12



e 8y =0.

min

e if 1 has upper closure, then 83, . =1, and I, = [0, 1].

max

e if 01 does not have upper bound, 6o does have it (its value is 1) and therefore, Is, = (0, 1].

Proof. The demonstration is based on setting a = 0 and b = 1.
O

Remark 5. From here on, denote X*(X) to the set of all the similarities whose images are
[0,1] or (0,1], depending on if they have lower closure or not. Analogously, denote A*(X) to
the set of all the dissimilarities whose images are [0, 1] or [0,1). Also, denote 75« and Ta+ to
the transitivity operators of similarities and dissimilarities in ¥*(X') and A*(X), respectively.

Any similarity in X(X) or dissimilarity in A(X) has at least one equivalent similarity in
Y*(X) or dissimilarity in A*(X), and all the properties the last ones fulfills are also fulfilled
by the one in (X)) or in A(X) - always under the terms exposed in Proposition 4.6. The two
main points to consider when applying an equivalence function to a similarity or dissimilarity
are: first, the transformation from an unbounded similarity or dissimilarity onto a bounded
one or viceversa. And second, the change of the transitivity operator. In fact, the first one is
just, considering a scale transformation since the equivalent similarity or dissimilarity image
interval is kept open or closed in each case. Therefore, there are no differences apart that the
values of similarity or dissimilarity will be condensed into a smaller interval or spread into a
wide interval, although this is a relevant fact and it has to be bore in mind. The second one
affects even more to the transitive property, since it changes the main operator. This leads
to an extensive study of how transitivity works and how these equivalence functions affect
it. This issue will discussed further on this document.

Therefore, from here on and using Corollary 4.10 we will restrict our study to similarities and
dissimilarities in ¥*(X) and A*(X), respectively. This simplifies the theory because some
known results from Probabilistic Metric Spaces[30] and Fuzzy Logic[16] can be used to build
up the similarity and dissimilarity theory. However, all the results can be applied in a more
general form (i.e. using X(X) and A(X)), taking care about the two points of difference that
we mentioned before.

Some examples of equivalence functions are the following, for s € 3(X) and § € A(X):

e If s has lower bound, a simple lineal transformation can be used.

Fx R Smin
(Z) B Smazxz — Smin
If § has upper bound:
Pk _ z— 5mzn
f (Z) B 6maz - 5min

e If s does not have lower bound (i.e. Iy = (—00,a]), the following transformations can

be used:
- a—z
P >
ff(z)=1 pa——] a>0
If 6 does not have upper bound (i.e. Is = [a,4+00)):
e z—b
= — b>0
7@ z—b+1 -

13



Transitivity in equivalence

In Proposition 4.6 is stated that transitivity operators of equivalent similarities or dissimilar-
ities can be different. By means of equivalence functions we can obtain equivalent similarities
or dissimilarities and also know some of their properties, except transitivity. In this sense,
the following theorem state how to obtain the transitivity operator of an equivalent similarity
or dissimilarity using the equivalence function.

Theorem 4.11. Let sy be a transitive similarity and 6, a transitive dissimilarity. Denote
71y and Tia to their respective transitivity operators. Let f be an equivalence function. The
equivalent similarity so = f o s1 is Ty transitive, where

v

7’22(@7 b) = .}F(TlE(f:_l(a)vf_l(b») Va,b e I,

The equivalent dissimilarity d; = f 001 s Toa transitive, where

v

oa(a.b) = f(na(f~ (), f1 (1) Va.be I,

Proof. Consider only the similarity case. Therefore f : I, — I,.
Using that s; is transitive we know that, for all z,y, z € X, s1(z,y) > mis(s1(w, 2), s1(2,9))-
Applying f to this inequality we get
fo 81(%’!/) Z fo TIE(Sl(va)a 81(Z7y))

Using that f~1 o sy = s1,

sa(z,y) > foms(f" osa(e.2), [ 0 52(2.y))

Simply defining 725 as it is defined in the Theorem we get the transitivity expres-
sion on ss:

82(1"7 y) > 7—22(82 (l‘, Z)7 52 (Zv y))
And this proves the Theorem.
O

A particular case of the previous theorem is the one using functions from (X)) to X*(X).

Corollary 4.12. Let s be a s -transitive similarity in 3(X) and § be a Ta-transitive dissim-
ilarity in A(X). Consider a similarity s’ € ¥*(X) and a dissimilarity 6 € A*(X) such that
s = ffos and & = f5 0. Both of them are transitive where their respective operators are:

e (a.0) = P(rs(P (a). (1) Vabel

TA*(aab) = f*(TA(f* (a)af,; (b))) Va,b € Iy

Proof. The demonstration is quite simple using that the set of ,f* functions is a
subset of the set of f functions.

14



Figure 1: Graphical representation of equivalence functions in 3 and A

Until now we have seen two classes of equivalence functions: f and f *. Let us to introduce
more notation. Consider know the equivalence functions between similarities or dissimilarities
in ¥*(X) or A*(X) and denote them 7. Therefore, we have the following groups (see Fig.

1):

° f Y — X

° f* N — X

o 1 :Y* — ¥¥
Note that the second and the third ones are subsets of the first one. Let us to introduce a
definition for this functions, although Definition 4.7 also includes this one.

Definition 4.13 (equivalence function on [0, 1]). An equivalence function on [0, 1], de-
noted as 7, is a increasing bijection on [0,1]. This implies:

e 71(0) =0 and n(1) = 1.
e 71 is continuous on [0,1].
e 71 has inverse on [0,1].
Denote A to the set of all the equivalence functions on [0, 1].

Ezample 3. Let § be a dissimilarity defined on A(X) given by the following expression for
all z,y € X:

o(z,y) = |z — yl

Therefore, Is = [0, +00). Besides, 4 is transitive by means the transitivity operator 75(a, b) =
a+ b, for all a,b € I;.

15



Applying the following function we get a dissimilarity on A*(X). Denote this dissimilarity
5/
f(z) = % Vz € [0, +00)

As expected, ¢’ is also strong reflexive, symmetric and it has not got upper closure, although
it has now upper bound. We also know that ¢’ is transitive, and using Proposition 4.12 this
transitivity is given by the following operator, for all a,b € [0,1)

at+b—2-a-b

75 (a, b) = Tall

Converting a similarity into a dissimilarity is another type of transformation. This transfor-
mation is studied in the following section.

4.2 Transformation functions between similarities and dissimilari-
ties
Transformation functions introduced so far are concerned separately to similarities or dis-

similarities. In this section, it is shown that both concepts are deeply interrelated. Next, let
us introduce a way to obtain dissimilarities from similarities or viceversa.

Definition 4.14 (transformation function). A transformation function n is a decreasing
bijection on [0,1]. This implies the following:

e 1(0) =1 and 7(1) = 0. This is called limit conditions.
e 7 is continuous on [0,1].

e 7 has inverse on [0,1].

A transformation function is involutive if A~! = fi. Denote N to the set of all the functions

n.

Note that this definition is restricted to similarities and dissimilarities in ¥*(X) and A*(X).
However, using that both f* and 7 are bijections an analog transformation function between
elements of ¥(X) and A(X) is the composition of two or more functions in the following
way:

Let f : B(X) — ©*(X) and f2 : A(X) — A*(X). Using a transformation function i we
can build a bijection between 3(X) and A(X) by means of composition:

f=Ffonof;
where f: 2(X) — A(X).
The following example and Figure 2 illustrates this:

Ezample 4. Let § be a dissimilarity having Is C [0,400). The objective is a equivalent
similarity having Iy C (0,1]. In order to get this, a transformation function is needed. For
instance, let g be this function, where g : [0, +00) — (0, 1] defined as follows:




Figure 2: Graphical representation of equivalence and transformation functions in ¥ and A

This is a composition of two functions: _#7 and 1 —z. Note that the first one is a f*—type
function and the second one a n-type function. Applying these functions progressively to the
original dissimilarity, we get an equivalent dissimilarity ¢’ with Is C [0,1). Finally, applying

7 to &' we get a similarity s where Ig C (0, 1].

Analogously to the Proposition 4.6, it has to be proved that a transformation function n
gets a similarity from a dissimilarity or viceversa. Nevertheless, we introduce a more general
result. Given a fixed function 7, the application over all the similarities in ¥*(X), returns
the set of all the dissimilarities in A*(X). Previously to show this result, let us to introduce
more notation. Define the next sets of functions, for all 1 € N

(X) = {noslseX*(X)}
(08|60 € A*(X)}

=
|

It is also needed a little lemma.

Lemma 4.15.

V6 e A*(X), . N
Vi e N, nod € X (X).
Analogously,
Vs € ¥*(X)
- "0 A (X).
Vi e N, fios € AM(X)
Proof. Let s be a similarity and 7 a transformation function.

e 7,0 s is reflexive because Vr € X,

s(z,x) =1<= (fos)(z,z) =1

17



e 7,0 s is trivially symmetric.

Thus, 7 o s is a dissimilarity, this is, belongs to A*(X).

The demonstration is analogous for a dissimilarity and a n function.

O
Theorem 4.16. Given X, Va € N,
i T5(X) = A*(X)
it A%L(X) =X*(X)
Proof. Let 1 be any function in N.
e Let s be a similarity in ¥*(X). Using lemma 4.15, nos € A*(X) = X} C
A*.
e Let § be any dissimilarity in A*. It is trivially true that
§=(hon Hod
Grouping 77! and 4,
§=no (o)
Since A~1 € N and using lemma 4.15, it is verified that (A= 0 §) € X*.
Therefore, there exists some s = 771 o §, such that § = # o s. This implies
that A* C X% (X).
p3}
O

These two corollaries are extracted from the theorem. The first one shows that, effectively,
the choice of the 72 function is irrelevant to get all the dissimilarities in A*(X).

Corollary 4.17. Vi, fs € N,

Xp(X) = X3,(X) and
AL (X) = AR(X)
Proof. Let 72; be a function in AV, using Theorem 4.16 we get that ¥r = A%X).

This is, for all § € A* exists s € X such that § = 1 o 5. For any other fiy € N,
using Theorem 4.16 we get that 37 = A*(X). Trivially, &7 = X7 .

For A% and A}  the demonstration is analogous.
1 n2
O

Moreover, there no exists any similarity (dissimilarity) that cannot be generated by a 7
function and a dissimilarity (similarity). Formally,

Corollary 4.18. Vs € ¥*(X),

3 e N A3 € A*(X) such that s = hod
Analogously, V6 € A*(X),

i e N Ads € S*(X) such that § = o s

18
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Figure 3: Given a similarity and a dissimilarity, not always exists a n function that relates
them. For instance, in this case this function relates a similarity and a dissimilarity, but it
does not belong to A.

Proof. Suppose that 30 € A*(X) such that Vn € N such that § # 7 o s. Then,
0 € DS(X) but 6 ¢ X% (X). This is impossible, using Theorem 4.16. Thus, the
initial supposition is false.

The other case with a similarity is analogous.
O

It has to be notice that, given a similarity s and a dissimilarity ¢, it is not true that always
exists a n function that relates them. To show that, consider an example:

Ezample 5. Let the definition set be X = N and consider the following similarity in X*(X)

1 ife=y
s(r1,22) =< 1/2 ife=2ydy=2x
0 otherwise
Consider now a dissimilarity in A*(X):
0 ifr=y
0(x1, ) = 1 ifx=2ydby=2x
1/2 otherwise

Both of them are strongly reflexive, symmetric and both are closed. Nevertheless, the unique
function f that fulfills § = f o s is

1/2 siz=0
f(z)= 1 siz=1/2
0 siz=1

Of course, f is not in /. The function f is shown on Figure 3.
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4.3 Relations between equivalence and transformation functions

Similarity and dissimilarity functions have an important semantic value, as well as equivalence
and transformation functions. Therefore, the choice of the 7 or # function is not irrelevant.
In fact, an equivalence function can change the behavior of a similarity, and consequently,
its semantic meaning. For example, a transformation increasing low values of similarity and
decrease high values of similarity, semantically means to potentiate small differences between
objects. Moreover, transformations modify similarity and dissimilarity properties. The two

transformation functions (i.e # and #) introduced so far are interrelated in this way.

addition, their mutual analogy allows to interrelate them functionally.

In

Thus, the relations between transformation functions are shown in the following proposition:

Proposition 4.19.
Vi, fy € N, Aoy €N
Vﬁleﬁ,ﬁleﬁ, ﬁ10ﬁ1€./\7
Vﬁleﬁ,ﬁleﬁ, ’fllofllEN

Vity, iy € N, ity oty € N
Proof. Using limit conditions of functions in N:
(’ﬁl e} flg)(o ’ﬁ,l(l) =0
’fllole 1 ﬁ1<0):1

and viceversa. Using that the composition of decreasing monotonic functions is
an increasing monotonic function, it is verified that, 1, ong € N and TNy 0Ny € N.
For other hand, using that the composition of increasing monotonic functions is
an increasing monotonic function, it is verified that 7y oite € N and #p 0411 € N.
Finally, the composition of an increasing monotonic function and a decreasing
monotonic function is always an decreasing monotonic function.

O

Moreover, due to n and 7n functions likeliness, most of the properties are common. Because

of that, we introduce the following theorem, that is analogous to Theorem 4.16.
Theorem 4.20. Given the definition set X, Vn € J\7,

i 25(X) = 2(X)

it A%(X)

A*(X)

Proof. This demonstration is analogous to the demonstration of Theorem 4.16.

Following the analogy, the corollaries 4.17 and 4.18 have their respective equivalent ones.

Corollary 4.21. Vi, ny € /\7,

(X)) = 5,(X)  and
W) = ALX
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Figure 4: This figure shows all the possible transformations for a given similarity. There
exist four dual triples < s1,61,7 >, < 81,602,721 >, < 59,01, 1 > and < sg,02,7 >. The

transformation 7 can be defined as a composition: 7 =fion=n"ton L

Proof. Analogous to the demonstration of corollary 4.17.
O
Corollary 4.22. Vs € £*(X),
I e N A3s" € (X)) such that s =i o s’
Analogously, V6 € A*(X),
e N A3 € A*(X) such that § =it o &'
Proof. Analogous to the demonstration of corollary 4.18.
O

4.4 Duality

Until now, the concepts of similarity and dissimilarity have been introduced as well as 7 and
7 transformations. Their mutual relations have been also showed up. This section introduces
the duality between similarity and dissimilarity.

Definition 4.23 (duality). Given s € ¥*(X), § € A*(X) and 7 € N. 5,0 are dual by
means of 7 if
d=hnos (4.3)

or the equivalent form
s=n"to§ (4.4)

This duality is expressed by the triple < s,§,n >.



Note that, for a given s € ¥*(X) and a 7 € N there is a relation between two similarities
and two dissimilarities (see Figure 4). It depends on the application of 7 or 2! in each case.
However, if 71 is involutive, the number of triples is reduced to one.

Proposition 4.24. Given the following triple < s,d,7 >. For all x1,x2,x3,14 € X:

1. s(w1,22) = (w3, 24) <= 6(21, w2) = 0(x3, 74)
2. s(x1,x9) < s(x3,24) <= §(x1,22) > 0(x3,24)

3. s(z1,22) > s(x3,x4) < 6(z1,22) < 0(x3,24)

Proof. Using the definition of duality, 6 = n o s. Since 7 is a bijective function,
(1) is verified. Since it is strictly increasing, (2) and (3) are verified.

O

This duality affect also similarity and dissimilarity properties. Thus, a closed similarity is
dual respect to a closed dissimilarity, independently of the chosen 7 function.

Proposition 4.25. Given a dual triple < s,,7 >, it is true that
e 0 is strongly reflexive iff s is.
e 0 is closed iff s is.
e J has (unitary) complement function iff s does.

e § is Tax-transitive iff s is Ts«-transitive, where Ta~ can be defined by means of Ts«

Tax(2,y) = ire- (A7 (2), 771 (1))) (4.5)

Proof. This demonstrates duality in each property for a given s € ¥*(X),n €
N(X)and § =nos.

e Strong Reflexivity. For all z,y € X such that z ; 1y, results
S(2,y) # Smaz
Applying 7 to the previous inequality
6(x,y) # Omin

e Closure. For all z,y € X
S(Ia Z/) 2 Smin
Since 7 is strictly monotonic and decreasing
any € X78<Iay> > Smin < (ﬁo S)(I,y) < ﬁ(smzn)
Thus, if 3z, y € X such that s(z,y) = Smin, then (Ros)(z,y) = A(Smin) (i-e.
§ is closed)
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e (Unitary) complement.
For all z,2’ € X, such that 2’ € C(z),

s(x,a’) =0
Applying n,
(fos)(x,z") = n(0)

This is,
Sz, 2"y =1

Therefore, complement property is kept.

e Transitivity. See demonstration in [16, Teorema 3.20, pdgina 84]. It is valid
to prove that transitivity property is kept.

O

Proposition 4.26. Given a dual triple < s,6,7 >, and given two functions s’ € ¥*(X) and
§ € A*(X). s is equivalent to s' and 0 is equivalent to &' iff exists a function i’ € N such
that s’ =7/ o'

Proof. If s and s’ are equivalent, there exists some 71 € N such that 8 = i os.
Since s = 1 o § the following is true:

s'=mnonod
Similarly, if § and & are equivalent, for a #’ € N this stats

§=n'0d

Substituting,
! v A v/ !
s =nonomn of
Using Proposition 4.19, it is verified that s’ =7’ 0’ where #/ =i on o n’.

For other hand, if exists 7’ € N such that s’ = %/ o §’, using Proposition 4.19, %’
is a composition of various functions.

Substituting,
Denote § to i/ o ¢’
Knowing that s =no0§

s =mnos

Using Definition 4.7, s and s’ are equivalent.
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Consider now the relation between the set of equivalent similarities (or the equivalent dis-
similarities) to a given one, and the set of n functions. Define this set for a given s € 3*(X).

*(s) = {i o slin e N}
And define also this set for a given 6 € A*(X).
A*(8) = {i o d|i € N'}
Similarly, for a given s € ¥*(X), define the set of all the transformations:
A*(s) = {hos|h e N}
Define the same for a given dissimilarity 6 € A*(X),
S%(8) = {o dlh € N}
All this four sets are mutually related. Next theorem shows their relationship.

Theorem 4.27. Vs € ¥*(X),§ € A*(X),

1. s and § are dual by means of a v function iff

or equivalently,

A*(5) = A*(s)

2. s and § are not dual by means of a function s iff

) ~

Y(s)NXr () =0
or equivalently,

A*(8) N A*(s) = 0

Proof. Due to the analogy between the sets A*(5), A*(s) and %*(8),5*(s), this
demonstration uses only the first ones.

1. Let < 5,8,7 > be a dual triple. For all & € A*(8), using Proposition 4.26
and Proposition 4.19, 34’ € N such that ¢’ = 7’ o s. Therefore, &' € A*(s)
and A*(5) C A*(s).

Inversely, for all &' € A*(s), using that § = 7 o s and &' = 7’ 0 s, we get that

=n"onlos

Using Proposition 4.19, &' € A*(8). Then, A*(§) € A*(s).
2. Let s and ¢ be a similarity and a dissimilarity such that s ¢ 3*(6). Using
Proposition 4.19, for all s’ € ¥*(s),

This is, *(s) N £*(8) = 0.
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4.5 Transitivity and transformations

As we pointed out before, equivalent similarities (or dissimilarities) keep the same properties,
even transitivity. However, the transitivity operator changes from one similarity to another.
In fact, there exist a hierarchy in transitivity operators, from the most restrictive one to the
laxest one.

Definition 4.28. Let T+ be the set of all the similarity transitivity operators. The relation
to be as strong as is

Given 75,76 € Ts», Ts« is as strong as 7&. if Ya,b € [0,1], 7s+(a,b) > 7&.(a,b) but
T« # T4 and it is denoted as 75« J 7.

This relation is a preorder in Tx«. Similarly, 7s+ is stronger than 4. (and it is denoted as
Tox I 745a) if Va, b € [0, 1lms«(a, b) > 7% (a,b).

Analogously, this relation have its dual for dissimilarities:
Definition 4.29. Let Ta+ be the set of all the dissimilarity transitivity operators. The
relation to be as strong as is

Given Tas,Th+ € Tax, Tax is as strong as 7h. if Ya,b € [0,1],7ax(a,b) < 74.(a,b) but
Tax # Th. and it is denoted as Tax J Th«.

This relation is a preorder in Ta. Similarly, Ta« is stronger than Tx. (and it is denoted as
Tax O 7The) ifVa,be|0,1], Tax(a,b) < Th(a,b).

This hierarchy is related to the fulfillment of the transitivity axiom (s7 and d7) in the following
way:

Proposition 4.30. Let s be a Ts«-transitive similarity. For every similarity transitivity
operator T4, such that T+ J 4., the similarity s is also T4. -transitive.

Analogously, let & be a Ta«-transitive dissimilarity. For every dissimilarity transitivity oper-
ator Th. such that Ta~ 3 Th., the dissimilarity 0 is also T).-transitive.

Proof. Let s be a 7s«-transitive similarity. Then, for all z,y,z € X,

s(z,y) = o (s(2,2), 5(2,9))

Let 74. be a transitivity operator weaker than 7y+. This means that, for all
a,b e€0,1]
s+ (a,b) > 5. (a,b)

Therefore, for all z,y,z € X,
s(z,y) = 1o (s(2,2), 8(2,9)) > 15 (s(2, 2), 5(2,Y))

Demonstration for 7A+ operators is analogous.
O

Next propositions show that transitivity is altered when applying an equivalence function.
However, the transitivity operator of the resulting similarity or dissimilarity can be either
stronger or weaker that the original one.
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Proposition 4.31. Given it € N, s € X*(X), § € A*(X), we state

a)

Proof.

Given that s is Ts«-transitive, a sufficient condition that does n o s at least T« -
transitive is that, for all a,b € I

n(rs«(a,b)) > s+ (n(a), (b)) (4.6)

Given that & is Ta«-transitive, a sufficient condition that does n o § is at least
Tax-transitive is that, for all a,b € I

n(rax(a,b)) < 7ax(n(a),n(b)) (4.7
If s is T« -transitive such that, for all z,y,z € X

s(z,y) = e (s(x, 2), s(2,y)) (4.8)

then Ezxpression 4.6 becomes a sufficient and necessary condition that does 1 o s
at least T« -transitive.

If § is Ta« -transitive such that, for all x,y,z € X

O(z,y) = Tax(6(z, 2),0(2,v)) (4.9)

then Expression 4.7 becomes a sufficient and necessary condition that does 1 o §
at least Tax-transitive.

In order to prove (a), consider that s is Tsgs-transitive. This is, for all

r,y, 2z € X

S(Ia Z]) > T (S(xaz): S(Z: y))

Applying 7 to both sides, we get

7o S(I, Z/) > 10 Tsx (8(1‘,2’), S(Z?y))

If Equation 4.6 is fulfilled, then

nos(z,y) = nors(s(z,2),8(2,9)) 2 rox (o s(z,2),n05(2,y))

This shows that n o s fulfills 7s+-transitivity.

To prove (b) consider the fulfillment of Equation 4.8. Then, applying 7 to both
sides and using Equation 4.6, we get

nos(r,y) =noTs(s(z,2),s(2,y)) 2 mo: (7 0 s(x, 2),1 0 5(2,y))

Again, this is analogous for dissimilarities.

Corollary 4.32. Let ny, 7y be functions 0f/\7.

e Given s € X*(X), ts«-transitive. niyongos is at least T« -transitive if, for all a,b € I.

’fll o ’flg O Ty (a,b) Z Tz*(’fll o ’flg(a),’fll o ’ﬁ,Q(b))
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e Given 6 € A*(X), Tax-transitive. fi10n200 is at least Ta«-transitive if, for all a,b € I;.

fig 0 g © Tax (@, b) < Tax (g 0 Nia(a), Ny o fa(b))

Proof. Simply use that Vi, e € /\7, N1 0Mgy € N and Proposition 4.31.
O
Corollary 4.33. Given it € N and s € Y*(X), Ts«-transitive. For all a,b € I,
n o 7gs(a,b) > 75« (fi(a), 7(b))
only if for all a,b € I,
it o T (a,b) < g+ (7 (a), (b))
Similarly, this is also true for any § € A*(X). For all a,b € Iy,
n o 7ax(a,b) < 7ax(ii(a), n(b))
only if for all a,b € Is,
i o tax(a,b) > Tax (T (a), (D))
Proof. Using Proposition 4.31, for all a,b € I,
n o Tgs(a,b) > s« (fi(a), 7(b))
Take a’ = 1(a) and ' = 7i(b). Using that, for all a € I, n(a) € I, we get that
for all a’, V' € I:
nors (i t(d),n (b)) > s (2(a), (b))
Finally, applying 7~ we prove the corollary.
O

Proposition 4.34. Let s € YX*(X) be a ms-transitive similarity, and & € A*(X) a Tax-
transitive dissimilarity. Given iy, s € N, consider the following similarities and dissimilar-
ities:

® 51 =11 08, Ty, -transitive.

® Sy = T3 0 8, Ty, -transitive.

e §; =171 004, TA, -transitive.

e {3 = fig 04, TA,-transitive.
. For all a,b € I:

1

v

o Only if iy " o fg(Ts+(a,b)) > 7« (] 0 fia(a), 7! o g (b)) then s, I Tx, .

o Only if iy ' o (T« (a,b)) < 7+ (7y ' 0 fia(a), iyt o g (b)) then s, C Tx, .



e Only if ’ﬁ,;l o 'FLQ(TE* (a, b)) = Ty* (ﬁ;l o ﬁg(a), ﬁ;l o 'ﬁ,g(b)) then s, = T, .

For dissimilarities, for all a,b € I5:

Yoiig(b)) then Ta, T Ta, -

Sc

e Only if n7" o fia(Tax(a, b)) > Ta+ (A7 0 fig(a), ity
e Only if iy ! o fg(Tax(a, b)) < Tax (g * o fig(a), ity * o ia(b)) then Ta, I Ta, .

o1

o Only if iy ' o fg(Tax(a,b)) = Tax (17 * 0 fig(a), iy * 0 fa(b)) then Ta, = Ta, .

Proof. Remember that 7, (a,b) = iz 0 Ts+ (115 *(a), 71y  (b)).

Consider the following:
TSy > TS,

Substituting at both sides,

g 0 T+ (5 1 (@), 7y 1 (b)) > iy 0 7+ (17 L (a), 7 ()
Applying 7y

i1t 0 iy o T (115 1 (a), 1y 1 (B)) > - (R L(a), 717 (D))

Taking o' = 7, '(a) and ¥ = 7, '(b), and using that 7, ' is continuous and
Dom (i, ) = Im(7, ), we know that for all a,b € I,,:

iyt o fig 0 T (a/,B) > e (i Y o dia(a)), i o 7ia(B))

The rest of the cases are analogous.

O

Proposition 4.35. Let s € YX*(X) be a ms«-transitive similarity, and & € A*(X) a Tax-
transitive dissimilarity. Given f, N € N, consider the following similarities and dissimilar-
wties:

e {1 = N3 08, Ta, -transitive.

® §3 =Ny 08, Ta,-transitive.

e 51 =Ny 046, Ty, -transitive.

e Sy =Ny 04, Tx,-transitive.
. For all a,b € I,:

e Only if 1yt o fig(Ts«(a,b)) < 7+ (] ' 0 fg(a), iyt o fa(b)) then Ta, I 7a,.

e Only if iyt o Ng(7s+(a, b)) > s+ (A7 ! 0 n(a !

o fia(b)) then Ta, T 7a, -

s)

1
e Only if 1y ' o fig(rs«(a,b)) = 7+ (] * 0 fn(a), iy 0 fa(b)) then Ta, = 7a, -

For dissimilarities, for all a,b € Is:
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e Only if iy " ofig(Tax(a,b)) < Ta«(fy ' o fig(a), iy * o fig(D)) then s, C Tx, .

o Only if iy " ofig(Tax(a,b)) > Ta«(fy o fig(a), iy * o fig(D)) then T, O 7s,.

o Only if iy " ofig(tax(a,b)) = Ta« (7] o fig(a), fiy * o fin(D)) then Ts, = Tx,.
Proof. Remember that 7, (a,b) = 71y o 75 (715 *(a), 71y ' (b)).
Consider the following:
TAy > TA;

Substituting at both sides,

fiy 0 T+ (3 1 (a), 73 L (D)) > iy 0 T (AT (a), 271 (D))

Applying 7y,

fiy ! oy o T (g ' (@), Ry (D)) < T (R (a), By (D))

Taking o = fi; '(a) and ¥ = 7y '(b), and using that ;' is continuous and
Dom(7, ') = Im(fi, ), we know that for all a,b € Is,:

ATt ofig o Tse(a/, V) < s (R 0 fig(a’), At 0 Ag (b))

The rest of the cases are analogous.
O

Due to the fact that expression in Proposition 4.31 depends on two free parameters (transi-
tivity operator and transformation), in next section we consider one of them fixed, and then
evaluate the sufficient conditions that the other one needs to fulfill.
Given that most of the well-known dissimilarities are metrics, consider the set of dissimilarities
which transitivity operator is the addition.
Let § € A*(X) be Ta«-transitive such that Va,b € Iy, Ta-(a,b) = a + b. Therefore, d is a
metric because it fulfills the triangle inequality. Thus, a transformation 7 € N keeps metric
properties if, for all a,b € I

n(a + b) < 1i(a) + 7i(b) (4.10)
This is known as subadditive condition and comes directly from Proposition 4.31 as a partic-
ular case.
Therefore, we can state that any subadditive transformation keeps metric properties. A great

number of functions belong to this group. For instance, concave functions do. In order to
prove this, let us to introduce the following lemma and a formal definition of convexity:

Definition 4.36. Let f be defined on an interval I that contains neither co nor —oo. Then
f is convex on I if

fOz+ (1 =Ny) < Af(z)+ (1 =N f(y)
for all z,y € I and all \ € I; and f is concave on I if

fz 4+ (1=XNy) > Af(2) + (1= A)f(y)

for all z,y € I and all \ € I.
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Lemma 4.37. Let f be defined on [0,00). If f is concave and f(0) = 0, then f is subadditive.
If f is convex and f(0) = 0, then f is superadditive.

Proof. Let x,y be in [0,00). If x +y = 0, then z = y = 0 and, with f(0) = 0,
Equation 4.10 is trivial. Hence we can assume that « + y > 0, whence

() e ()

(5o (e

and

If f is concave and f(0) = 0, we therefore obtain

@) > e f )+ f(0) = e f( )

x
r+y xr+y

and similarly,

fly) =2

x+yﬂw+w

Adding the two inequalities yields Equation 4.10.
O

Obviously, n fulfills the requirements of Lemma 4.37 and therefore can be concluded that
any concave transformation over a metric dissimilarity keeps its transitivity.

Furthermore, in this case, we can show graphically the effects of Proposition 4.34. As a
particular case, consider the following corollary:

Corollary 4.38. Let ny, s be transformations in N (discarding the identity), and 6 a metric
51 = ’Fll 0d

dissimilarity. Define two equivalent dissimilarities o
52 = N2 o )

Denote 75, to the transitivity operator of 61 and denote 5, to the transitivity operator of ds.
For each interval [a,b] C 10,

o IfVz € [a,b],71; " oty is superadditive then 75, T 75, for all z,y € X such that
o(z,y) = 2.

o IfVz € [a,b], 71y toiiy is subadditive then 15, 3 75, for allz,y € X such that §(z,y) = z.

Moreover, if Vz € [a,b], n1(x) = fia(z) then 15, = 75, for all x,y € X such that §(z,y) = z.

Proof. To prove this, simply substitute 7a+ in Proposition 4.34 with operator
sum.

O

Lemma 4.39. Let f and g be two concave (convex) functions. f o g is concave (convex) if
and only if f is non-decreasing.
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Figure 5: Composition of two transformations fy(z) = 1 — 5% and #,(z) = ¢/z. Note

that 75 and 77" are concave.

Proof. Provided that both g and f are concave, it is true that

FQOz+ (1 - Ny) M)+ (1 =N f(y)
gz + (1 - N)y) Ag(w) + (1= N)g(y)

(A\VARYS

Thus, applying f non-decreasing to the second expression we get

fogr+(1-=Ny) > f(Ag(z)+ (11— Ng(y))
FQg(z) + (1 =Ng(y)) > Mfoglx)+(1—=X)fog(y)
Joghz+(1—=XN)y) > Afog(x)+(1—N)fogly)

V

This is analogous with convexity.
O

Now, using Lemma 4.39, we can state that, for a given metric dissimilarity § and two transfor-
mations 1, and 7, a sufficient condition to do transitivity of 721 od stronger than transitivity
of i1y 0 & is that fip is concave and #; ' is convex (i.e. #;' is concave). This is shown
graphically on Figure 5.

Similarities also have an equivalent property. Preceding propositions can be modified simply
by using the following transitivity operator in place of the additive operator:

m.(a,b) = max{a +b—1,0} (4.11)

For instance, let s € X*(X) be 7s«-transitive such that Va, b € I, s« (a,b) = a+b. Therefore,
s is a metric because it fulfills the triangle inequality. Thus, a transformation n € AN keeps
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metric properties if, for all a,b € I

n(a+b) < n(a)+ n(b) (4.12)
This is known as subadditive condition and comes directly from Proposition 4.31 as a partic-
ular case.
Therefore, an equivalent proposition can be deduced from 4.38

Corollary 4.40. Let 1,72 be transformations in N (discarding the identity), and s a
FLukasiewicz similarity (i.e. with transitivity operator like 4.11). Define two equivalent simi-
. S1=MN108
larities { o
SS9 =Ny 0S8
Denote 75, to the transitivity operator of s1 and denote Ts, to the transitivity operator of ss.
For each interval [a,b] C Is,

o IfVz € [a,b],

ity ! oitg(max{a+b—1,0}) > ity ' odta(a) + 7yt odia(h) — 1

then 15, 1 75, for all z,y € X such that s(x,y) = z.

o IfVz € a,b],

v—1 v —1

iy ! oig(max{a+b—1,0}) < ity ' oitg(a) + 7yt odia(h) — 1

then 15, C Ts, for all z,y € X such that s(x,y) = z.

Moreover, if Vz € [a,b], n1(x) = na(z) then 15, = 75, for all x,y € X such that s(z,y) = z.

Proof. To prove this, simply substitute 75+ in Proposition 4.34 with 7=« (a,b) =
max{a +b—1,0}.

5 Transformations of the definition set

The power of similarity and dissimilarity functions lays on their several fields of applications.
In order to do this, a similarity or a dissimilarity must be flexible and transformable from
a context to another. As we have seen so far, there are tools that transform similarities
and dissimilarities defined on the same definition set. One step further in this direction
is to transform similarities with different definition sets. This is useful because sometimes
a similarity value is easier to calculate in a definition set than in others, or it is easier to
understand. Even more, some well-known similarities can be used directly in other contexts.

Until now, similarities and dissimilarities were defined in the same definition set. In order to
work with different definitions set, we have to extend the definition of equivalence (4.3). In
fact, the former definition is a particular case of this extended equivalence.

Definition 5.1 (g-equivalence). Given two definition sets X,Y’, a function g : X — Y,
and two similarities or dissimilarities px € II*(X),py € II*(Y'). The functions px,py are
g-equivalent if the preorders induced by px and py in X x X and Y x Y, respectively, are the
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same, where px(x,y) = py(g(z), g(y)). This means that there are a correspondence between
the elements preordered in X2 and Y2,

(z1,72) < (23,24) == (9(21), 9(22)) < (9(21), 9(22))

For the sake of shortness, for here on, denote X? to X x X. Now, some equivalent definitions
to the foregoing one are introduced.

Proposition 5.2. The following definitions are analogous. For py € II*(Y) and px €
I (X).

i) px,py are g-equivalent.

ii) py,py induce the same preorder in Y2, where pi, (z,y) = px (9~ 1(z),g71(y)) and g is
a bijection g: X — Y.

iii) Va,y, 2,y € X,

e px(z,y) > px(a'.y') <= py(9(x),9(y)) > py(9(2’),9(y"))
e g: X — Y is bijective.

Proof. i) toii) If px and py are g-equivalent, they induce the same preorder in X?
and Y2, respectively, and Vr,y € X, px(z,y) = py(9(x),9(y)). Similarly,
we can define Vz,y € Y, py-(z,y) = px(¢9 1 (x),9 1 (y)). Thus, py and pi
are the same function and, therefore, they induce the same preorder in Y2,

i) to iii) If px and py are g-equivalent, they induce the same preorder in X2 and Y2.
This means that there are a correspondence between the elements preordered
in X2 and Y2, for all z,y, 2,y

(z1,22) < (23, 74) = (9(21),9(72)) < (9(21), g(2))

recalling the definition of this preorder we get that

px(z,y) > px (', ) = py(9(x), 9(v)) > py(9(2'), 9(¥"))

Since this is for all z,y,2’,y’ € X, g must be exhaustive and invertible.
O

Remark 6. Note that if g(z) = x and X =Y the former definition of equivalence is recovered.

Once extended the equivalence, we introduce a way to define similarities and dissimilarities
based on other ones defined in a different definition set. Before that, however, let us to
introduce the definition of isomorphism between orders, extracted from [25], a lemma and a
proposition that will be useful to out main purpose.

Definition 5.3 (isomorphism between orders). Given two ordered sets A and B, an
isomorphism from A to B, for the orders <4 and <p, is a bijection f from A to B such
that the relations x1 <4 a9 and f(z1) <p f(x2) are equivalent. That is, for all z,y €
A, f(z), f(y) € B:

r<ay< f(z) <p f(y)
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Lemma 5.4. Let X, Y be two definition sets and let g be a function g : X — Y. Two
similarities, sx € X*(X) and sy € L*(Y), are g-equivalent iff exists an isomorphism between
the associate orders induced by sx in X2 and sy in Y2, respectively.

Proof. If sx and sy are g-equivalent, we know that, Vz,y,2’.y € X

sx(z,y) < sx(',y) <= sy(g(x),9(y)) < sy (g(=),9(y"))

Recalling the Definition 4.2

sx(z,y) < sx(2',y) <= [(=,9)] </= [(2',9)]

we can assure that, if sy and sy are g-equivalent, necessarily,

[(z,9)] </= [, y)] = [(9(=), 9))] </= [(9(2). 9(y))]

This is an isomorphism between orders (Definition 5.3).

For other hand, if there exists an isomorphism between the orders, this means
that

[(z, )] </= 1@, 9")] = [(9(), 9(¥))] <= [(9(z"), 9(¥))]

Following the definition of the partitions produced by the preorders in X and Y,
for all z,y,2’,y € X,

SX(-T,Z/) < SX(xlay/) <~ SY(xay) < SY(x/ay/)

This, following Proposition 4.4, means that sx and sy are g-equivalent.

O

Let us to introduce a particular case of g-equivalent transformation. When one of the defi-
nition sets is a subset of the other one. (i.e. Y C X). For the sake of simplicity, consider g
the identity. Then, a similarity or a dissimilarity defined in a set X is also defined for any
subset of X. Nevertheless, not all the properties are kept.

Proposition 5.5. Let X be a definition set and let Y be a non-empty subset of X. Given
a similarity or dissimilarity p € I1*(X). Exzists p' € II*(Y') g-equivalent to p defined for all
x,y Y asp'(x,y) = p(x,y). It is strongly reflexive if p' is.

Proof. Consider that p is a similarity. Firstly, p’ € II*(Y) fulfills reflexivity,
symmetry and boundedness because Vz,y € Y, s'(z,y) = s(z,y).

If s is strongly reflexive, Vz,y € X,
X
s(y)=l=uz=y

This trivially includes the particular case Va,y € Y. Therefore, s’ is also strongly
reflexive.
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As a consequence, for the same similarity or dissimilarity defined in X and, therefore, in a
subset of X, the preorder induced by the similarity is the same for the common elements.

Remark 7. Note that in Proposition 5.5 there are not the properties complement and closure.
This is because first, the complement of an element can be in X \ Y and second, the elements
that gets the sy,;, value can be also in X \ Y.

Theorem 5.6. Given a similarity or a dissimilarity py € II*(Y) and a injective function
g: X — Y. Denote Yy = Im(g) and X, = Im(g~"). FExists a unlimited number of
similarities or dissimilarities px in X by assimilation of py in'Y and by means of function
g, fulfilling the following:

1. px € H*(Xg)
2. px,py are g-equivalent.

3. px(z,y) = ilpy (9(x), 9(y))), €N

Proof. Consider that p is a similarity.

Firstly, g is a bijection X, — Y,. Therefore, using Proposition 5.5 py is also
defined in Y.

Secondly, px is reflexive because, using properties of function n € N (4.13)
px(z,7) = n(py(g9(), 9(z))) = n(1) = 1

Similarly, if I,,, C [0,1] then I, C [0,1].

Finally, given that py is symmetric, px symmetry is trivial to check. Therefore,
px is a similarity because it is reflexive and symmetric.

Denote <y to the induced preorder in Y2 by py. Also denote =y, = toits associate
order defined on Y2/ = (see Definition 4.2).

Partition X2 in the following classes:

[(1,22)] = {(23,24) € X?/(g(23), 9(24)) € [(g(21), g(x2)]}
Denote this partition X2/ =.

Element of Y2/ = and X?/ = are clearly related. Even more, there exists a
bijection between both sets denoted by f.

Given that there exists an order in Y2/ = and using that f is a bijection. Trans-
porting this order [25] we can state that there exists an equivalent order in X2/ =
(i.e f is an isomorphism between X2/ = and Y2/ =).

Given that X2/ = and Y2/ = are the associate orders to the induced preorders

by sx and sy on X? and on Y?, using lemma 5.4 we can state that sy and sx
are g-equivalent.

O

The Theorem 5.6 says some useful things. Firstly, affirms the existence of a similarity or a
dissimilarity in the set X. Obviously, since px is related to py by means a n function, is
also applicable the Proposition 4.9. Therefore, all the known similarities and dissimilarities
defined in Y can be used in X.
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Proposition 5.7. Given a similarity or a dissimilarity px € 1I*(X), other similarity or

dissimilarity py € II*(Y) and a bijection g : X — Y, it is true that

py is reflexive only if px is reflexive.

py is strong reflexive only if px is strong reflexive.

py is symmetric only if px is symmetric.

py is lower closed (or upper closed) only if px is lower closed (or upper closed).
py has complement function only if px has complement function.

py is transitive only if px is transitive.

Proof. Analogous to Proposition 4.6. Assume p is a similarity for this demon-

stration.

Reflexivity Provided that px(z,z) = px using Theorem 5.6 and Definition

43,

max

Vr,y € X py(g9(z),9(x)) > py(9(®),9(y)) <= px(z,7) > px(z,y)

Therefore denote py_ . to the maximum value for similarity py .

max

Strong Reflexivity If px is strong reflexive then
Px(2,Y) = PXpae <= T =Y

X Y
Suppose that 3z,y € X such that z # y and, therefore g(z) # g(y), but

py(9(2),9(y)) = py,,... This means that py(g(z),g(z)) = px(z,y) but,
using Definition 4.3 we know that this means that

px(z,z) = px(z,y)

and this is a contradiction.
Symmetry Symmetry is trivial, using definition of equivalence.
Lower boundedness Again, this property cannot be assured.

Lower closedness Provided that both similarities have lower bound, consider a
set of pairs of element of X denoted Mx such that V(z,y) € My px(x,y) =
DX,im- Lherefore, using Definition 4.3,

Vz,w e X, ¥(z,y) € Mx  px(z,y) < px(2,w) <= py(9(x),9(y)) < py(9(2), g(w))

Denote py,.,. = py(9(z), g(y)) for any (z,y) € Mx. This is the lower closure
of Py -

Complement If px has complement function, we know that Vz' € C(X) px(x,2’) =
PXx,...- Lherefore, using Definition 4.3 and Theorem 5.6,

Va,y € X px(x,2') < px(z,y) <= py(9(2),9(z)) < py (9(x),9(y))

Denote py (x,2’) = py,,,,. Thus, py has complement.
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Transitivity Analyzing the expression of transitivity

VI,y,ZGX pX(%?J) ZTXE<pX(mvz)apX<Z7y))

Again, we cannot assure the fulfillment of this property by the similarity py
because the transitivity operator 7yy. However, using Proposition 4.5 we
can assure that if px fulfils this minimum transitivity, py also fulfils it. To
demonstrate this, simply use that both px and py are strong reflexive.

6 Examples

In this section includes some examples of all the concepts introduced in this document,
including transitivity operators and transformation functions. Moreover, there are examples
of transitivity transformations.

6.1 Operators

Some of the functions described here have been studied in others research fields and can be
adapted and used in this context. Thus, for instance, the transformation function concept,
denoted by 7, is strongly related with the concept of fuzzy complement. In general, a strictly
decreasing and continuous fuzzy complements are in N.

In this sense, t-norms and t-conorms, introduced in [29], have been used in fuzzy logic
[14, 16]. T-norms can be seen as similarity transitivity operators, while t-conorms can be
seen dissimilarity transitivity operators. Therefore, seeking not to repeat work, some of the
demonstrations are based in those present in [16].

However, the functions used in [16] are defined over numeric values, while in this document,
7 and 7 functions work with functions, not values. For other hand, t-norms and t-conorms
work with values on [0,1], while transitivity operators work with values in (0, 1] and [0,1),

or in a more general form, on (—oo,a] and on [b,+00), for similarities and dissimilarities,
respectively.

Other examples of transitivity operators, added to those widely studied t-norms and t-
conorms, are the following:

e Similarity transitivity operators, Va,b € I
— Operator 7x(a,b) = max{a+ b — k,p}, where I, = [p, k], k,p € R.
— Operator ms(a,b) = min(a, b), where Iy = (—o0, k], k € R.
— Operator 7x(a,b) = ab, where Iy = [0, 1].

e Dissimilarities transitivity operators, Va,b € I

— Operator 7a(a,b) = a + b, where Iy = [0, +00).
— Operator 7a(a,b) = max(a,b), where Is = [k, +00), k € R.
— Operator 7a(a,b) = ab, where I5 = [1, +00).

(a,b)

— VT F P, I = [0,400).

Operator 7a(a,
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Note that one of the transitivity operators is the operator sum. This expression es known as
triangle inequality. In fact, a metric is a particular case of a dissimilarity:

Definition 6.1 (metric). A metric d is a dissimilarity with I; C [0,400) fulfilling the
transitivity for the sum operator.

Likewise, by means of the operator max for dissimilarities, we can obtain the ultrametric
inequality.

Definition 6.2 (ultrametric). An ultrametric d is a dissimilarity with I; C [0, 400) ful-
filling the transitivity for the operator max.

This relation between metrics and dissimilarities is very useful because there are several
metrics defined in many fields. Now, this metrics can be used as dissimilarity functions in
order to design new similarity or dissimilarity functions.

Remark 8. In the literature there are various transformations that, applied to a metric, keep
its properties [8]. In general, this transformations are, among others: monotonic, continuous
and subadditive. Actually, this functions are a particular case of dissimilarity equivalence
functions. Moreover, keeping metric properties is related to domination.

We introduce now a transformation example:

Ezample 6. Consider a simple transformation f () = 2+ 1. Tt can be seen as a composed

v

transformation. Consider that the image of a similarity is on [a,b]. f is composed by the
following functions:

fiw) = T— (6.13)
n(x) = =z (6.14)
o) = (a+1)+2z(b—a) (6.15)

That is, f(x) = f5 oo ff(z) = x4 1. Tt returns an equivalent similarity in [a 4 1,b + 1].

Two particular cases of transformations are 7(z) = z and 7(z) = 1 — z. Obviously, the first
one does not change transitivity. However, the second one transform a similarity on to a
dissimilarity or viceversa. In this case, the similarity transitivity operator and the dissimilar-
ity transitivity operator have the same strength. More precisely, there are a correspondence
between the transitivity operator of a similarity and its dual by means of the transformation
n(z) = 1 — z. In fuzzy logic, this transformation is called standard transformation. For
instance, t-norms and t-conorms have a correspondence between them. Here we show the
most well-known t-norms and t-conorms:

a sib=1
1. T(a,b)y=¢ b sia=1
0 en otro caso

2. Ty(a,b) =max{0,a +b—1}
3. Tp(a,b) = ab
4. Th(a,b) = min(a, b)

T-conorms:
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a sib=0
. Smla,b)=< b sia=0
1 en otro caso

[

o

St.(a,b) = min{l,a + b}

3. Sp(a,b)=a+b—ab

4. Sp(a,b) = max(a, b)
There exists a correspondence between each t-norm and each t-conorm (i.e. the first t-norm
with the first t-conorm, and so on). This is usually expressed as T,,, =1 — Sy, Tp = 1 — Sp,
etc. Thus, if a transformation n(z) = 1 — z is applied to a similarity or a dissimilarity whose

transitivity operator is a t-norm or a t-conorm, the resulting dissimilarity or similarity will
be transitive respect to its corresponding t-conorm or t-norm.

6.2 Transitivity and transformations

This examples illustrate the relationship between transitivity and transformation functions.

Ezxample 7. Let § be defined as follows:
ay) = vl 1

It is easy to show that § is a composition of f(z) = e* — 1 and &'(z,y) = |z — y|. Thus, J is
Ta-transitive with 7a(a,b) = ab+ a + b.
To see this, use Equation 4.5, given that ¢’ is 7)-transitive with 74 (a,b) = a +b.
Therefore:

ala,b) = f(f'(a)+ D)

_ JP @+l

— o n(+a)tin(i4b) _
— o n(l+a) | Jn(14b) _ g
= (1+a)(1+0b)—1
= ab+a+0

Ezxample 8. Recall the similarity used in Example 1:

|z -y

s(z,y) :1—m

Its transitivity expression is

s(z,y) > max{s(z, z) + s(z,y) — 1,0} (6.16)

This expression can be obtained analyzing the similarity. We know that |2 — y| is a metric;
this is a dissimilarity with sum transitivity.
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Consider now this transformation, with & > 0:

z+k
Recalling Proposition 4.31 and using the subadditive property of 7y,

a+b - a n b
a+b+k a+k b4k

we state that 7, (z) is also a metric dissimilarity. Therefore, we can affirm that

|z~ y] |z — 2| 2~ vl
lt—yl+1 " |[z—z|+1 |z—y|+1

If we apply now the transformation 7(z) = 1 — z, we will obtain the original expression of
the similarity s. Using equation 4.5 the transitivity finally changes to the equation 6.16.

Ezample 9. In Example 2 the dissimilarity ¢§ is defined in a set of vowels.

{4 e

—=—= en otro caso
570(1'1?!)

Again, we can obtain its transitivity expression. It is enough to notice that C(z,y) is a
metric dissimilarity and Tl(a:y) is a transformation f* : [0,4] — (%, 1]. Knowing this,
using Theorem 4.11 we have the following transitivity operator:

Tas(z,y) = A(min{n " (z) +n(y),4})
_ 1
5-min{5- 14514}
1

max{%+i—5,4}
- min{— %Y 4
y+zxr—5-2-y

6.3 Similarities, dissimilarities y metrics

As it has been pointed out previously, there are a connection between dissimilarities and
metrics. In the following examples, we show how to pass from a dissimilarity to a metric.

Ezample 10. Given a metric d in R, we can obtain a similarity by means the following
transformation:

1
Swﬂ)zfiﬂﬁﬂﬁ (6.17)

In order to verify that this is a similarity, we have to start from the metric. If we apply to
this metric the following function:
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We get a dissimilarity on [0,1). Then, applying the simplest transformation n(z) = 1 — z.
Finally the expression of the similarity is:
d(z,y) 1

s(z,y)=1- dz,y)+1  1+d(z,y)

Note that the metric is defined on [0, +00), while the similarity is defined on (0, 1]. Remember
that a similarity is closed only if it comes from a closed dissimilarity, and viceversa (see
Proposition 4.25).

Ezample 11. A metric dissimilarity §; is symmetric, bounded and fulfills the triangle inequal-
ity. If we apply the function 7(z) =1 — z to dy we get a similarity s; Lukasiewicz-transitive
(i.e. 75, (a,b) = max{a+b—1,0}). However, if we apply the function #(z) = 22 to 6; we get
a dissimilarity but not a metric (see Corollary 4.38).

Besides, if we apply n to s, using Corollary 4.40, we get a similarity with a transitivity
stronger than s;. To prove this simply recall Corollary 4.40. If

(max{a+b—1,0})* > (a)® + (b)* — 1

then 75, 1 75,. Effectively, the power can be included into the max operator because it is a
monotonic operation. Thus,

max{(a+b—1)%,0} > (a)* + (b)? — 1

We can ignore the max operator because (a+b—1)? will always be greater than 0. Simplifying
we get:

ab+1>a+b
This is always true if a,b € [0,1]. Denote s3 to this new similarity.

Now consider the following dissimilarity:
52 =1- S1

Which is the relation between §; and d27. Obviously da = i 0 §; = 01(2 — 7). However, if
Ts, 1 Ts,, Which is the relation between 75, and 75,7. Using corollary 4.38 and using that s
is subadditive we state that 75, 1 7s,, this is 75, is stronger than 75,. This means that Js is
also a metric dissimilarity.

In the next table are collected the similarities and dissimilarities described here and their
respective transitivity operators.

(z,y) = |z—yl 75, (a,b) = min{a+b,1}
si(zyy) = 1—|z—y| Ts, (a,b) = max{a+b—1,0}
sa(my) = 14+ (@—y? 20—yl 7lab) = (a+ Vb 1)
Oo(r,y) = 2Je—yl—(z—y)? T(a,0) = 1-(VI-a+v1I-b-1)
The next figure illustrates all the process.
(X)) A*(X)
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Ezample 12. Given a complex definition set X where its elements are can share or not
common attributes. When comparing two elements x1, x5 € X, four values are calculated.

e (a) number of common present attributes.

(a)
e (b) number of attributes present in z; and absent in z5.
e (c) number of attributes present in 25 and absent in ;.
(

e (d) number of common absent attributes.

This counters are represented in the next table, where (+) indicates presence and (-) absence.

| @2

Loy | 4| -

+ a|b

- c | d

A valid similarity function in X is
( ) a+d

s(xy,29) = ————
DT bt e+d

This is a closed similarity with complement where I; are the rational numbers on [0, 1].
The transitivity operator is 75(x,y) = max{x + y — 1,0}. This is the similarity transitivity
operator corresponding to operator sum. It is easy to prove that, in effect, 1 — s is a metric.

b+c
5 =
(122) =
FEzample 13. Let d; be a metric in [0,1]. Consider the following similarity:
81 = 1-— dl

s1 is T, -transitive where 7y, (a,b) = max{a +b—1,0}.

Consider now the following similarity

S = v/ 1-— <d1)2

Using the equation 4.5 and the properties of transformation functions its transitivity operator
is:

Toy(a,b) = \/1 —min{y/1 —a%+/1—b2,1}2
\/1 —min{(v/1 — a2+ 1—-02)2,1}
Vmax{1 - (VI—a® + VI 12)2,0}
max{y/1 - (vVI—a + V1 12)2,0}
\/1—(\/1—a2+ V1—b2)?

42



Note that sy = 73 0 d; where n2(z) = v/1 — 22. Using Proposition 4.35 we know that 7y, is
stronger than 75, only if Va,b € [0, 1],

a7t ofig omin{a + b, 1}) > min{a; ! o fig(a) + iyt o fig(h), 1}

This is,

1—+/1— (min{a+b,0})% > min{2 — /1 — a2 — v/1— 52,1}

Graphically, this can be seen in the following figure:

1

Difference between 72, ! o 715 o min{a + b, 1} and min{n; * o 7ia(a) + 1y * o fia(b), 1} ——

1 —
08
0.6 [ =
0.4 MR-
0.2 ZRS \\Q\A\\\Q\\\"::’

0 7 SN\

ANt 1
08
0 0.6

Non-metric transitivity operators

The most restrictive transitivity operator (i.e. the strongest one) is min for similarities and
max for dissimilarities. For example, an equivalence relation can be seen as a min-transitivity
similarity.

Ezample 14. Consider any similarity s, min-transitive, where |I5| = 2 (e.g. I, = {0,1}).
Similarity s models an equivalence relation R C X? as:

1 (x, R
wn={o (e

This similarity is closed, bounded and with complement except in the case that R = X?2.

Similarly, we can get a equivalence relation modelled by a dissimilarity. Thus, a dissimilarity
§ defined as 6 = 1 — s is max-transitive and models the relation R® = X2\ R.

6.4 Definition set transformations

Following examples show some definition set transformations. In order to follow this exam-
ples, recall Proposition 5.5.
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Figure 6: Representation example of trees and lists. The first element of each list is a node,
the rest are the branches of that node.

Ezample 15. This examples show that not all the properties are kept when a similarity or a
dissimilarity defined in X is moved to a subset of X.

e §(z,y) = |z| — |y| defined on X = [~1,1] where = is the usual in R. § is not strongly
reflexive in [-1,1] but, if we consider that § is defined in X’ = [0, 1] it is strongly reflexive.

e The following dissimilarity ¢'(x,y) = @ defined on X = [—1, 1], is strongly reflexive
n [-1,1]. Of course, on X’ = [0, 1] still fulfilling that property.

e s(x,y) = w defined in X = [0,27) is closed since s(%,2F) = 0. However on
X' =1[0,7) it is not closed.

Ezxample 16. Consider a similarity defined over n-ary trees. There are a direct way to trans-
form trees to lists as it is represented in Figure 6. Obviously, this function is not bijective
because not all the lists are covered (i.e. it is not exhaustive). However, using Theorem 5.6,
a similarity defined for lists is applicable to trees because there exists this bijective function
between a subset of lists and trees.

7 Discussion about fulfilling of axioms

Some classic and previous similarity and dissimilarity works affirm that some similarity and
dissimilarity axioms are false. Geometrical models of similarity accept symmetry, strong
reflexivity and transitivity. However, other authors like Tversky [34] deny this. Tversky
affirms that empirical proves demonstrate the falseness of this three axioms. Strong reflexivity
is false due to the existence of a different meaning between identity and likeliness when
comparing objects. Tversky proposes an example arguing that two complex objects are more
similar than two simpler elements based on the fact that they share more features. This is
not contradictory with our definition. When comparing two complex objects and two simple
objects we are using two different similarities or dissimilarities. Thus, there can achieve
different similarity or dissimilarity values.

Tversky also denies the symmetry arguing that say butchers are like surgeons is not the same
that say surgeons are like butchers. Actually, the context is different in each phrase. Because
that argument is not valid to refuse the symmetry. In this cases, it is necessary to wonder
which attributes are being considered when comparing two complex objects. Anyway, any
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asymmetric function can be transformed into a symmetric function in order to work as a
similarity or dissimilarity. An example of this transformation is, for all z,y € X:

5 (5(e,1) + 5(3.2)

For other hand, Tversky and others also affirm the falseness of transitivity. An example [21]:
If Jamaica is like Cuba and Cuba is like Russia, then Jamaica is like Russia. At this point, it
is essential to differentiate between two things. For one hand, again the context is different in
the first phrase than in the second. For the other hand, there is an assumption that Jamaica,
Cuba and Russia are either related with a equivalence relation (i.e. Jamaica = Cuba & Cuba
= Russia = Jamaica = Russia) or it is assumed a geometric model (e.g. a metric). In
this document, we introduced a wide definition of transitivity, not restricted to metric and
ultrametric relations. In fact, a minimum transitivity is assured for those similarities and
dissimilarities strongly reflexive (See Proposition 4.5.

However, there is an exception with operators max and min. In Section 4.5 we showed that
the transitivity operator changes when applying 7 and n functions to similarities and dissim-
ilarities. However, those similarities and dissimilarities min and max transitive, respectively,
does not follow this property. Formally,

Proposition 7.1. Given a min-transitive similarity, any equivalent similarity is min-transitive.
Analogously, given a max-transitive dissimilarity, any equivalent dissimilarity is max-transitive.

Proof. See the analogous demonstration in [16, Teorema 3.19, pagina 84].
O

A possible undetermined value has no meaning in similarity and dissimilarity framework.
This is the reason to require both s and § to be total. If some definition set does a similarity
or dissimilarity not total, Proposition 5.5 allows to use a similarity or dissimilarity on a subset
of any definition set. Thus, we can use only the elements of the definition set that does total
the similarity or dissimilarity.

With respect to strong reflexivity, in most cases its unfulfillment is due to a bad identification
problem with =. This can be resolved redefining this relation.

An alternative to this is to classify the elements of X. This classes, denoted by F(z), where

x € X are defined as follows:
E(z) = {z' Z 2]z’ € X}

Finally, define Z as 2 = 2/ <= ' € E(x).

Considering the complement axiom, some properties can be extracted:

Proposition 7.2. If s € ¥*(X) is E-transitive and it has complement function, for all
z,y € X and for all T € C(x),7 € C(y)

1. s(x,y) + s(z,y) < 1

2. 25(,y) + s(y, T) + (7, 7) < 2
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Proof. If s is L-transitive,

S(y’-ﬂ) 2 max{s(y,x) =+ s(:v,@) - 1’0}

Since § € C(y),
0= S(y,.{l]) + S(‘T7y) -1

then we get expression (1).

If we sum to the former transitivity expression the following

S(Iaf) > max{s(a:,y) + S(y,f) o 170}

we get
s(z,T) + s(y,y) > max{2s(y,x)+ s(Z,y) + s(7, ) —2,0} (7.18)
> 2s(y,z) +s(Ty) +s(y,z) - (7.19)
> 2s(y,z) + s(T,y) + (g, x) (7.20)

This is the expression (2).

Analogously, for dissimilarities:

Proposition 7.3. If § € A*(X) is a metric, and it has complement function and dpee = 1,
for all z,y € X and for all T € C(x),7 € C(y).

1. 6(z,y) +6(x,7) > 1
2. 26(2,y) + 8.7 + 57, 7) > 2

Proof. This demonstration is analogue to Proposition 7.2.

Based on this properties, some new concepts are introduced:

Definition 7.4 (strict complement). A similarity has a strict complement when it verifies
s(a,y) + s(2,7) = 1

Again, a dissimilarity has a strict complement when it verifies
§(z,y) +6(x, ) =1

Definition 7.5 (symmetric complement). A similarity has a symmetric complement
when Vz,y € X, s(z,y) = s(T,7). A dissimilarity has a symmetric complement when Vz,y €
X, 0(z,y) = 6(Z, 7).

Proposition 7.6. If s € ¥*(X) has strict complement, then s has symmetric complement.
If 6 € A*(X) has strict complement, then § has symmetric complement .
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Proof. Operating the strict complement condition the demonstration is straight-
forward. We know that,

operating with 7.21 and 7.22:
s(z,y) = 1-—s(z,7) (7.23)
s(z,y) = 1-—s(z,y) (7.24)
It follows that s(z,7) = s(Z, y).
For other hand, dado que z € C(%)

s(z,7) + s(z,y) =1
Thus
S(f,y) =1- S($7y)
Using expression 7.23, it is verified that s(Z,7) = s(z,y).

Example 17. An example with complement symmetric similarities and dissimilarities:

e Let X = {0,1} be a definition set and a complement symmetric similarity

s(z,y) =1 —dg(z,y)

(dg is the Hamming distance between bits), where the complement set is C(z) =
{1—=x}.

e Let X, = {Z€R"”| ||X||]2=r} and a complement symmetric similarity
Lo 1 =
S('Tay) = E(COS(‘T737) + 1) € [07 1]

Here, the complement is defined as C(%) = {—&}.

&8 Conclusions

Similarity or dissimilarity functions are essential to solve most of the problems of Al. The in-
correct choice of a standard similarity or dissimilarity can affect to the solution of a problem.
Designing or choosing a specific similarity or dissimilarity let to introduce domain knowledge
in order to get better outcomes when solving the problem. Therefore, researching on sim-
ilarity and dissimilarity design can lead to better interpretations and understanding of the
results obtained by several Machine Learning applications. Actually, the final objective is to
improve these results.

In this document several concept have been formalized. Also, a few theorems and proposi-
tions, some of them adapted from other areas, describe similarity and dissimilarity theory.
This is the base to advance in the design on order to improve the utility of similarities and
dissimilarities. Moreover, concepts like definition set transformations or transitivity are fun-
damental to keep a semantic value on similarity and dissimilarity. This semantic, for example,
let to choose a specific function or another for a specific problem.
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Notation
Symbol
s similarity function
Is similarity image
1) dissimilarity function
Is dissimilarity image
Sinaw maximum value of a similarity function
Omin minimum value of a dissimilarity function

¥(X) set of similarity functions defined in X

¥*(X)  set of similarity functions defined in X where I, C [0, 1]
A(X) set of dissimilarity functions defined in X

A*(X)  set of dissimilarity functions defined in X where Is C [0, 1]
P represents indistinctly similarities and dissimilarities
I(X) represents indistinctly to X(X) and to A(X)

IT*(X) represents indistinctly to 3*(X) and to A*(X)

T transitivity operator

Ty transitivity operator for similarities in X*

T« set of transitivity operators for similarity functions
TA* transitivity operator for dissimilarities in A*

Tax set of transitivity operators for dissimilarity functions
f* function ¥ — ¥* or A — A*

function ¥ — A or A — X
f function ¥ — Y or A — A
n function X* — A* or A* — ¥*
N set of . functions
n functions X* — ¥* or A* — A*
N set of . functions
P represents indistinctly to a similarity or a dissimilarity set
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