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Abstract

A method has recently been proposed [1] to extract multiple signal source information from
single-channel electroencephalogram (EEG) recordings. A dynamical systems approach is
used to analyze the resulting EEG time series, and its dynamics are captured by the
transformation of the original data into an embedding matrix residing in a Euclidean
embedding space. Measurements in [1] are taken to be of ongoing unbounded EEG
recordings. Many experiments concerning the study of cognitive tasks, though, are developed
in a multi-subject repetitive setting where time-boundaries are defined in relation to the onset
time of certain stimuli. Each repetition of an experiment is known as a trial and, although the
experimental setting might induce to expect little variability amongst responses, the reality
usually yields high inter-trial and inter-subject variability. Pooling all responses may mislead
their interpretation. In this paper we resort to the Generative Topographic Mapping (GTM,
[2]). a neural-network inspired but statistically principled unsupervised model, to achieve the
following goals: First, the definition of groups of trials with intra-group similarities and inter-
group differences in order to improve the interpretability of the results in the aforementioned
experimental settings; second, the visualization of embedded EEG dynamics in a 2-
dimensional latent space; finally, the study of the trajectories of these EEG dynamics over the
GTM latent space representation, showing that transitions and stationary states in these
trajectories correspond to special features in the time-power and time-frequency

representations of the EEG data.
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1. Introduction

The Self-Organizing Map (SOM, [3,4]) is the most widely successful and frequently used
neural network unsupervised model, inspiring thousands of studies over the last fifteen-odd
years'. It was, by conception, an attempt to model certain brain processing features ([3]. [5]).
Over the years, it has veered, as a model, towards more conventional problems such as
clustering and visualization. Only in the last few years it has been used to peer back from
these knowledge niches to cognitive problems, as in reinforcement learning ([6], [7]),
language brain processing [8], visual cortex activity ([9],[10]), spiking neurons analysis
([11],[12]), or temporal cortex categorization [13]. Despite these examples, neural network, or
neural network-inspired unsupervised models have not regularly been applied to problems in

the area of neurosciences.

To the best of our knowledge, there have been to date no applications of the GTM in the field
of neurosciences. This is a model somehow inspired by the SOM and, while the data
visualization possibilities of both models are akin, it has some advantageous features, all of
them stemming from its probabilistic formulation: when probability theory lays at the
foundation of a learning algorithm, the risk that the reasoning performed in it be inconsistent
in some cases is lessened ([14],[15]). The main advantage is that the GTM generates a density
distribution in data space in such a way that the model can be described and developed within
a principled probabilistic framework in which all the modelling assumptions are made
explicit. The GTM also provides a well-defined objective function (something that the SOM
lacks) and its optimisation, using e¢ither non-linear standard techniques or the EM-algorithm,
has been proved to converge. As part of this process, the calculation of the GTM learning
parameters is grounded in a sound theoretical basis. Bayesian theory can be used in the GTM
to calculate a posterior probability of each point in latent space being responsible for each
point in data space, instead of the SOM sharp map unit membership attribution for each data

point.

There are several non-invasive methods for the analysis of brain signals. Most research on
this area has resorted to functional Magnetic Resonance Imaging (fMRI) and EEG. The
former is most suited to achieve spatial resolution and signal source localization, but is very
limited when it comes to explore the signal time-course. On the contrary, EEG recordings
have a fine time resolution, but the problem of signal source localization is a hard and still
open one. A novel method has recently been proposed [1] to extract multiple signal source
information from single-channel EEG recordings. This is quite a departure from existing

methods that make use of rather complex experimental arrangements of over a hundred
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recording clectrodes (channels). It resorts to a dynamical systems approach to the analysis of
sampled time-series, which states that, "given a time-series in a n-dimensional dynamical
system, delay-coordinate embedding lets one reconstruct a useful version of the internal
dynamics of that system" [16]: the dynamics of the EEG are shown to be captured by means
of a transformation of the original EEG data into an embedding matrix made up of
overlapping successive intervals of the data (delay vectors) residing in a Euclidean embedding
space. The illustration of this method in [1] uses ongoing EEG recordings, but many
experiments concerning the study of cognitive tasks are designed to encompass multiple trials
and involve multiple subjects. A variation on the dynamical embedding matrix is used in the

present study to analyse the dynamics of this type of experimental settings, using the GTM.

The second section of this paper provides a brief summary of the dynamic embedding
procedure. This is followed by a proposal to extend this to multi-trial experimental settings,
suggesting the definition of homogeneous sub-groups of trials to improve the interpretability
of the results in the aforementioned settings. Section 4 attempts to succinctly describe the
GTM and its recent developments, and its application to the clustering and visualization of
EEG dynamics is proposed in section 5. Section 6 compiles the results of applying these

theories in a specific human cognitive problem and a discussion of these results follows.

2. Embedded dynamics of ongoing EEG

Different techniques are used to gauge brain activity. These can be roughly classified into two
groups: invasive (intracraneal recordings, mostly used in non-human brains) and non-invasive
techniques. Amongst the latter fMRI and Positron Emission Tomography (PET), and also
EEG which resorts to measurements of electric potentials in the scalp with a setting of
electrodes. EEG provides the means to explore brain dynamics through its fine time-

resolution capability.

Unfortunately, time-resolution is not accompanied by resolution in space: signal source
localization is a classic and still open problem in the EEG literature. Recently, James and
Lowe [1] provided a method for source localization with the rather unique feature that it
resorts to single-clectrode (channel) recordings. Based on a dynamical systems approach to
the analysis of the underlying signal generators, it makes use of the technique of dynamical
embedding (DE) and assumes that the signal is due to the non-linear interaction of a few
degrees of freedom with added noise. A DE matrix, built by concatenation of successive,
overlapping fragments (or delay vectors) of the original EEG signal over time, and residing in
a Euclidean embedding space, is shown to "reconstruct” the unknown dynamical signal

generator. Further details of the DE method can be found in ([1],[17]).



In the examples of the application of DE methods for source localization of EEG signals in
[1], unbounded ongoing EEG recordings are used. Although useful in many practical
instances, it leaves aside many experimental settings characterised by a design in which
several individuals are invited to perform repeatedly certain precisely defined tasks over a
number of trials. Bounded intervals of EEG signal are then isolated for analysis, usually

encompassing pre-stimulus and post-stimulus periods.

The present study aims to modify this DE approach to be used in such type of experimental
settings. Consequently, an alternative way to design the DE matrix is required; it will be
described in section 6.1. As mentioned above, there are also different goals for its analysis in

this study, which are summarised next.

3. From ongoing EEG to multiple-trial, multiple-subject dynamics analysis

Even in very narrowly defined and scrupulously planned EEG measurement experiments
involving human high-level brain processing tasks, the presence of variability in the results
between subjects and within-subject different trials seems unavoidable ([18],[19],[20]). Some
standard techniques, such as Event Related Potentials (ERPs) resort to straight averaging.
This has the undesired effect of cancelling out any observations that are not stimuli-locked,
including most induced signals that are the result of top-down high-level brain processing. A
number of techniques that attempt to circumvent this shortcoming have been developed, for
instance those based on simultaneous visualization of multiple trials such as the ERP Image
[16], or those based on wavelet transformations of the original EEG signal resulting on time-
frequency plots ([21], [22]).

These methods still involve the use of all trials on an equal basis. Similar brain processes
might be expected to entail similar measured brain activities. Nevertheless, trial variability
might be the result of actually different ongoing processes happening during the execution of
the experimental tasks. If that is the case we might expect to observe different subgroups of
dynamics, similar within subgroup but dissimilar amongst subgroups. The final analysis of the
responses to these experimental tasks might benefit from the isolation of trials belonging to

certain subgroups.

The use of DE techniques, with the modifications in the construction of the DE matrix
described in section 6, will help in this work to study several issues: The visualization of the
trajectories of those dynamics represented by the delay vectors over a latent, 2-dimensional
visualization space; as a result, different types of dynamics, such as transitions and stationary
states, might be isolated and associated to magnitude and frequency patterns in the original

signal. Equally, experimental trials might be grouped according to their particular dynamic



pattern. Also, fragments of each trial or even complete trails might be singled out as outliers

according to such dynamic patterns.

4, The GTM as a tool for the visualization and analysis of EEG dynamics

According to the dynamical systems view put forward in [1], brain inner sources of the signal,
captured in the scalp through EEG recordings, generate data that lie in an unobservable
manifold that can be represented by the DE matrix and its corresponding Euclidean
embedding. We attempt to visualize this unobservable manifold and the trajectories described

by its delay vectors by using the latent two-dimensional space of the GTM that generates it.

4.1. Introduction to the GTM

The GTM is a latent variable model introduced by Svensen [2] as probabilistic formulation of
Kohonen's SOM ([3],[4]). GTM goes beyond projection (from high-dimensional to low-
dimensional spaces) methods as it generates a non-linear and topographically preserving
mapping from a low-dimensional visualization latent space onto the high-dimensional space
in which the data reside. The mapping is carried through by an intermediate set of basis
functions generating a mixture density distribution in the data space. An objective function
can be defined for the GTM, whose optimization using either standard non-linear techniques

or the EM-algorithm, has been shown to converge.

In short, GTM describes a non-linear low-dimensionality latent variable model that generates
a probability density in the multi-dimensional data space through a lincar mixture of basis

functions defined as:
y= W(]n(u) \ (1)

where y is a point in data space, u is an L-dimensional point in latent space, W is the matrix
that generates the explicit mapping from latent space to an Z-dimensional manifold embedded
in data space (in the Euclidean embedding space defined by the DE matrix, in this case), and
@ is a set of R basis functions. The prior distribution of u in latent space is usually constrained
to form a uniform discrete grid of points, units or nodes, analogous to the layout of the SOM,

in the form:

p(u) =%Z§(u-ui), 2

where M is the number of nodes.



The log-likelihood of fitting the data from the latent variables is given by
N

LL(W,B)=>In p(x" W, B) 3)
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which is empirically estimated by summing over the input data set {x"}. The optimisation of
the objective function entails finding optimal values for W and [3, which can be accomplished
using the Expectation-Maximization (EM) algorithm [23]. Details of this calculation can be
found in [2].

4.2, Automatically regularized GTM

An advantage of the probabilistic setting of the GTM is the possibility of introducing
regularization in the mapping from latent to data space. This procedure automatically
regulates the level of map smoothing necessary to avoid overfitting the data, which are

assumed to be the product of underlying generators and likely to contain noise.

The use of a single regularization term entails a homogeneous smoothing of the mapping and
can be formulated through the modification of the objective function (3) in the form of a
penalized log-likelihood:
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where the regularization coefficient o is now an adaptive parameter that can be estimated

using the evidence approximation [24]. For details on this procedure, see [25].

4.2.1. Selective Mapping Smoothing

Alternatively, the smoothing of the mapping can be adapted locally. The complexity of the
mapping is mostly controlled by the number and form of the intermediate basis functions.

One regularization term can this time be associated to each of them, so that eq.(4) becomes:

LLPH\,(W,B)ZZIHp(X"|W,B) Z%ar %)

n=1 r=1
where o, is the regularization coefficient associated to basis function , and w, is the vector of
weights from W corresponding to a,. The multiple adaptive regularization parameters {o,}
can be estimated using a variation of the aforementioned evidence approximation. This
procedure, named Selective Mapping Smoothing (SMS) and inspired in the technique of

Automatic Relevance Determination (ARD, [26]) is described in more detail in [27].



The selective smoothing accomplished by SMS should provide mappings of optimum
complexity for a given common width of the intermediate basis functions. Zones of data
space requiring strong smoothing will have the activity of their corresponding basis functions
diminished through the reduction of the values of their associated weights caused by high
regularization coefficients' values. On the contrary, zones that do not require smoothing will

keep their corresponding basis functions active.

S. Mapping the EEG dynamics into two dimensions

This section develops several new ideas concerning the representation of the DE matrix, and
therefore the representation of the EEG dynamics, on the latent space for visualization of the
GTM. It includes hypothesis on the clustering of embedded dynamics, trajectories over the
latent space, and the relation of these features with time-power and time-frequency-power

representations of the EEG signal.

5.1. Clustering of embedded dynamics

Each trial in an experiment corresponds to one performance of a scheduled task. As
previously pointed out, even for narrowly defined tasks the results stubbornly show high
within-subject inter-trial variability and, indeed, high variability between subjects. Despite
this overall variability, we should also expect to find regularities between trials. In other
words, we might expect subgroups of trials to exist, showing a degree of homogeneity that
also discriminated them from other subgroups. This is especially important for tasks that are
likely to increase the variability phenomenon by their own nature: figure 1 illustrates one of

these cases, where variability is enhanced by the unexpectedness of the stimuli involved.

Assuming that the hypothesis that distinct areas of the GTM two-dimensional latent space
correspond to different types of dynamics of the EEG holds true, we would expect that the
projections of the delay vectors corresponding to the same intervals across trials fell into a
reduced number of map units that resided in a reasonably limited neighbourhood. But this can
only expected to be true provided there is homogeneity across the set of trials of the
experiment. Therefore, should the results show that different sub-groups of trials exist, the
aforementioned clustering of equivalent delay vectors across trials should be much more

compact for each sub-group than for the whole set of trials.
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Figure 1: Time-frequency plots of signal power, obtained using the procedure described in section 6.1, from an
experimental task analysed in [28], showing power EEG measurements before and after a rewarding stimulus. In
the left-hand plot, the reward was delivered in a predictable way, whereas in the right-hand plot the reward was
delivered in an unexpected fashion. Although bursts of activity across the frequency range are visible in both
cases, they are much more regular in the predictable experiment. Although not necessarily the case, this is likely to
be the result of a much higher variability over trials in the unpredicted experiment due to the own nature of the
experiment. Power values are colour-coded from high (positive or negative, dark) to low (near 0, light); the scale

has been omitted.

Even if these “clusters of trials™ exist, it would be interesting to find out whether some delay
vectors show more homogeneity than others. This is akin to asking if homogeneity over trials
is higher at certain times in the experiment. Should they exist: do they correspond to delay

vectors of special interest for the experiment at hand?

5.2 Intra-trial dynamic trajectories

Following a dynamical systems view, it is suggested in [1] that the DE matrix represents the
dynamics of the EEG signal in a Euclidean embedding space of a dimension corresponding to
the length of the delay vectors. These delay vectors would trace a trajectory on the manifold
generated by the Euclidean embedding. The dimensionality of this space, though, renders the

visualization of these trajectories impossible.

The GTM provides a way around this problem through the visualization of the DE matrix on
its latent space. The trajectory traced by the delay vectors in the discrete two-dimensional
latent space of the GTM would be expected to show certain features: First, certain level of
orientation manifested in the prevalence of latent space contiguity for successive delay

vectors; second, the existence of stationary states in the form of successive delay vectors



being mapped in the same latent space units; third, the occurrence of neat transitions between

areas of the latent space, corresponding to transitions in the dynamics of the EEG recordings.

Assuming that different trials might show different characteristic trajectories through the
latent space map and that these might be organized into different subgroups, we now outline a
procedure to group GTM nodes in order to compare the resulting clusters (or macro-clusters,
if we accept that each GTM node can be considered a cluster by itself) with the trajectories
traced by the trials. It is based in a contiguity-constrained agglomerative algorithm proposed
in [29] for the SOM and its pseudo-code is shown in figure 2. In short, this procedure assumes
that delay vectors that are close in the DE space are also close in their latent space
representation (contiguity condition). The distances in the algorithm are taken to be Euclidean
and there is no a priori selection of cluster seeds. The contiguity or neighbouring condition
consists of only considering, as candidates to be merged, those (macro)clusters that contain
neighbour nodes in the GTM latent space. For nodes neither in the edges, nor in the corners of

the latent space, the eight surrounding nodes are considered neighbours.

There are of course diverse alternatives to this procedure. One of those might, for instance,
use cumulative responsibility peaks [30] or maxima of mapping distortion (magnification
factor, [31]) as (macro)cluster initial seeds. Comparing clustering algorithms is beyond the
scope of this study, though. The number of final (macro)clusters defining the GTM latent
space partition is also an open theoretical problem, but a subjective and parsimonious enough
solution suffices here, given that we only aim to characterize trial trajectories over the map in

an interpretable way.

Initialise each GTM node as a nacrocl uster seed
Intialize these macroclusters' centroids with their reference vectors.
Repeat until a given termination condition is met

Merge the two cl osest (Euclidean di stance) macrocl usters

Repl ace their centroids by their nmean vector

End

figure 2: Pseudo-code of the contiguity-constrained agglomerative algorithm described in the text, adapted from
[29].



5.3. Correspondence between cluster dynamics and EEG signal representations

The previous ideas are nothing but different aspects of a main core hypothesis, stating that
different dynamics in the EEG signal, through the design of a DE matrix, will be mapped into
distinct areas of the GTM latent space. Given that each of the delay vectors that shape the DE
matrix is defined as a time-window in the signal, we can check the correspondences between
the delay vector representations on the GTM discrete latent space and any EEG signal
representation over time. Therefore, correspondences with the raw EEG signal can be

explored, as well as correspondences with time-frequency displays of the signal.

6. Experiments

The ideas put forward in the previous section are now set to test using data from a specific
experimental task, which is described first. Details of the GTM settings are also provided and

several results are displayed and analysed.

6.1. Experimental task, EEG data and its processing

In order to study the ideas advanced in the previous sections, we will resort to data from a
specific experimental task. The schema of this experimental paradigm is shown and described
in figure 3. Twelve healthy right-handed subjects, ages 23 — 38 (mean age = 27), participated
in the study. EEG was recorded continuously with an EGI (Electrical Geodesics Inc.) 129-
electrode array. The vertex (position Cz) was used as reference. Sampling rate was 500 Hz,
and all channels were processed on-ling by means of a 0.1 to 200 Hz band-pass filter. Eye
movements were monitored with a subset of the 128 electrodes. EEG was segmented into

epochs containing data from 500 ms prior to stimulus onset to 1500 ms following it.

In this study, data from only one of the experimental conditions described in figure 3 are
selected: that of Unexpected Reward (UR), given that its unpredictability condition should
highlight inter-trial variability. Data from a single channel (Pz), corresponding to the parictal
arca are selected. This area and, particularly, this channel are known to be relevant for the
experimental task at hand. There are 30 trials of data, each containing 1000 values / time
points. All trials are concatenated to create the DE matrix. Two parameters are relevant to its
construction: the lag (1), controlling the amount of overlapping between consecutive delay
vectors, and the number of lags (m) or embedding dimension, which controls the length of the
delay vectors. In this study, we select their values to be T = 5 (10ms) and m = 60 (equivalent
to intervals of 120ms), given that any relevant changes in the experiment at hand are likely to

happen at such time-scale.
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Figure 3: Schematic representation of the experimental task. On each trial, subjects selected one of four cards
displayed on a computer screen positioned 1 meter in front of them. Subjects responded pressing one of 4 keys
marked on a computer keyboard. On rewarded trials, a card with a £ symbol appeared for 150 ms. Each £ sign was
worth £0.25, and subjects saw a running total of their earnings after each trial. In the Unexpected Reward
condition (UR), subjects were unaware of when they would receive a reward or which card was rewarding. In the
Expected Reward condition (XR), subjects were informed that every fourth card choice would result in a £ sign
regardless of which card they picked. Two control conditions were used: Subjects selected the cards in the same
way as above. In the Unexpected Control (UC), a card with % sign appeared with probability 0.25 while in the
Expected Control (XC), every fourth card selection resulted in a % sign regardless of the card is selected.

Subjects were informed that no reward was associated with the control conditions.

Time-frequency power plots have previously been mentioned, and its calculation will now be
briefly described (for more details see, for instance, [22]). Using a wavelet analysis of the
epochs, spectral changes in frequency bands activity can be analysed. Complex Morlet
wavelets are used in this study for frequency analysis in order to overcome limitations
associated with the constant Fast Fourier Transform window length and, thus, achieve a trade-
off between time and frequency resolutions. The method provides a magnitude of the signal
for each frequency, over a time range and, therefore, a time-frequency representation of the
signal is generated. In this study, the frequency range analysed spans from 4.84 to 97.66 Hz in
0.49 Hz steps. An ¢poch from 400 ms to 100 ms prior to stimulus onset was used as a

baseline, and its mean was subtracted from each time-frequency point.

6.2. GTM initialisation

The GTM-SMS model [27] was designed as follows: the latent space arrangement is a square
lattice of 100 nodes, the width of the basis functions was set to a fixed value of 1, and the



initial values of the {a,} hyperparameters, considering uninformative priors, were set in all
cases to be 0.5. In order to achieve consistent results over experiments, the weight matrix W
of the GTM was initialised so that the model starts from an approximation to Principal
Components Analysis (PCA), a method that is described in [32].

6.3. Results

The results shown in this subsection focus on intra-trial dynamic trajectories, across-trials
clustering of delay vectors, and the correspondences between these and features of different

time-related representations of the original EEG data.

6.3.1 Intra-trial dynamic trajectories and its correspondence with EEG raw signal and

time-frequency representations

The EEG recordings that are the origin of the analysed DE matrix contain data of 30 different
trials of the same experimental task. Only a limited number of representative trajectories are
plotted here in figure 4: this might suffice, as several subgroups of trajectories are neatly

differentiated by the GTM latent space areas they evolve through.

These areas roughly coincide with the (macro)cluster partition of the GTM latent space
obtained with the contiguity-constrained agglomerative procedure outlined in section 5.3. The
latter can also be seen in figure 4. Each of these representative trajectories is neatly distinct in

terms of the areas of the latent space and (macro)clusters of the map nodes involved.

It should be possible to link these results with alternative representations of the EEG data.
More specifically, we would like to ascertain: first, if transition areas in the dynamic
trajectories correspond to transition areas in the signal and, equally, if stationary stages of
these trajectories correspond to uneventful periods both in the raw EEG and on its time-

frequency representation.

First, the resulting trajectories (some of which are shown in the next few figures) manifest a
clear level of "orientation", understood as the predominance of paths in relatively close
neighbourhoods for successive delay vectors (therefore with a predominance of gradual
changes), with little presence of criss-crossing. Second, stationary states are quite commonly
found. Let us isolate some of these trajectories: take for instance trials 11 and 20, seen in
figure 5. In this figure, the highlighted nodes correspond to rather long time intervals formed
by several consecutive delay vectors of the DE matrix. These stationary nodes seem to

correspond to relatively uneventful periods in the EEG signal where signal amplitude does not

sharply vary.
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Figure 4: On the left-hand side of the top-row: a cluster partition of the GTM map obtained by application of the
contiguity-constrained algorithm described in section 5.2. The rest of the figures are representative trajectories of
delay vectors over complete trials. The colour-coding hints the relative time within a trial at which a delay vector
has last been mapped onto it: from white, corresponding to the end of the time-span of the trial, to black,
corresponding to its beginning, through all grades of grey. It must be noted that nodes responsible for several delay
vectors are colour coded only according to the delay vector corresponding to the later time-interval. Notice that
these trajectories (as well as the ones not depicted here) follow quite closely the limits of the obtained clusters. The
relative size of the GTM nodes, represented by squares, corresponds to the number of delay vectors within a trial

that are mapped onto each of them.

Third, neat transitions between areas of the latent space can be found: For the sake of brevity,
consider just frial 1, shown in figure 6. There is a neat point of transition, between the fourth
and fifth columns of the map, where the delay vectors leave the left-hand side of the map not
to return, crossing towards the centre of the map. The accompanying raw EEG recording
interval shows that such transition in the GTM map corresponds to a sudden shift towards
high positive activity in the vicinity of 200ms after stimulus, which might be the result of a
first wave of induced brain activity. Most interestingly, the later "climb" through the
rightmost column of nodes towards yet a different area at the centre-top of the map
corresponds to a second sudden rise of electric activity. The accompanying time-frequency
plot reveals that these two transition periods immediately precede changes in the frequency
pattern of activity, especially in the over-20Hz Gamma frequency band, which is commonly

associated with induced brain activity.
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Figure 5: GTM representation of trials 11 (right) and 20 (left) and the trajectories traced by the delay vectors.
Relative square (node) size and colour coding as in figure 4, but this time trajectory lines have been drawn
between consecutive nodes following a similar colour pattern, with lighter shades of grey for nodes corresponding
to earlier delay vectors, and darker shades corresponding to later ones. A grey circle identifies the starting node,
whereas a black circle identifies the finishing one. Stationary states, characterised by several consecutive delay
vectors being mapped onto the same GTM node, are highlighted. The raw EEG signal corresponding to these trials
is also shown, and the time intervals corresponding to the "stationary nodes" mentioned above are also highlighted.
Notice that these stationary states seem to correspond to rather uneventful periods of the signal in terms of its

power amplitude.

6.3.2 Across-trials location of delay vectors and the advantages of trial subgroup

1solation

As outlined in section 5.1, should the different subgroups of trajectories previously found
have an influence on the distribution of the delay vectors across trials, the homogeneity of the
delay vectors representation over trials would increase by isolating those delay vectors
corresponding to specific trial subgroups. It would be expected that the projections of the
delay vectors that correspond to the same time-windows across trials fell into a reduced
number of map units that resided in a reasonably limited neighbourhood. The results
generally confirm this hypothesis, as illustrated in figure 7. Each of the maps in this figure,

corresponding to delay vector type 9 (from —420ms to —300ms), highlights delay vector



instances belonging to a different subgroup of trials (out of the 30 existing ones for each delay

vector type) and occupying close neighbourhoods.

60

wp # s05 conditidyg: .El.appltl.\a

70

60

50

40

30

20

-400 -200 [o} 200 400 600

Figure 6: Similar arrangement to that in figure 5, but highlighting transition periods in the trajectory of delay
vectors corresponding to trial 1 across the GTM latent space. These transition periods are shown to correspond to
sharp magnitude variations in the EEG time-power signal, as well as to periods immediately preceding neat

changes in the time-frequency-power patterns.
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Figure 7: These GTM latent space plot represent all delay vector instances (30) for delay vector type 9 (with size-
coding as in previous figures). On each of the plots, subgroups of delay vectors have been highlighted in black. On
the left-hand side plot, delay vectors from two subgroups of trials (represented by the second and third plots from
the left in the top row of figure 4) are highlighted. On the centre plot, delay vectors from the subgroup of trials
represented by the first plot from the left in the bottom row of figure 4 are highlighted. In the right-hand side plot,
delay vectors from two subgroups of trials (represented by the first and second plots from the right in the bottom
row of figure 4) are highlighted.



The level of homogeneity is quantified in a simple way by calculating (and plotting in figure
8), for every delay vector, the mean distance between its instances over trials for every

subgroup of trials as well as for the whole set of trials:

Ng-1 Ng
2
D K = 1 2 xi Xy (6)
= ol - 2 2
for {x}, , the N, data points (delay vectors) whose representation in the GTM map belongs to

each of the defined subgroups or the whole set of trials.

As expected, the mean distances (6) are much lower for any of the subgroups of trials, for any
representative delay vector than for the whole set of 30 trials. There is a further interesting
feature in the shape of the mean distances for the whole set of trials: it evolves quite
smoothly, suggesting a gradual transition over time for the variability over trials. In fact trial
homogeneity seems at its maximum at pre-stimulus periods (minimum mean distance,
roughly between —260ms and stimulus onset) and at its minimum at post-stimulus times (Oms
to 480ms) with the mean distance peaking at intervals usually related to top-down induced
brain activity ([22],[33]) (maximum mean distance, roughly between 200ms and 320ms),
suggesting that high-level cognitive processes are accompanied of higher variability over

trials.
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Figure 8: Plots of the mean distance (6) over the delay vector types. Values are plotted for all trials as well as for
the seven subgroups of trials represented by the plots in figure 4. The much higher homogeneity of the subgroups
is clearly visualised. Also the smooth and progressively changing shape of the values for all trials is indicative of

time intervals for which trial variability is higher or lower. A functional interpretation is suggested in the text.

Even more interesting is the fact that the subgroups of trials correspond to gradually changing

but distinctly different time-frequency representations. This can be appreciated in figure 9,



where time-frequency representations of the Unexpected Reward (UR) condition, following
the procedure outlined in section 6.1, have been obtained for the 7 subgroups of trials
represented in figure 4, as well as for the whole set of 30 trials. The latter would be the type
of representation found in a typical study with multi-trial, multi-subject set-up and it turns out
to be rather uninformative, with only very vague bursts of activity in the area around 20Hz, at
—200ms and before 200ms. The reason behind this is evidenced by the trial subgroup
representations: all of them are much more informative, with neater bursts of activity, but also
very different amongst them, so that the representation for the whole set of 30 trials has most

of the relevant activity eclipsed, providing a misleading clue to real activity.

Also, a clear pattern of dynamic evolution can be observed if we follow this trial subgroup
representations "from left to right" in the GTM latent space (from left to right and from the
top to the bottom in figure 4): The first subgroup shows narrow bursts of high-frequency
gamma band activity between —400ms and —300ms, together with vague low-gamma (~20Hz)
activity at around —200ms and 600ms. In the second subgroup, the high-frequency activity has
decreased whereas the low-gamma activity of the previous subgroup intensifies, suggesting
foci below the gamma band and also at around 100ms. All this low-frequency activity
disappears in the third subgroup, with higher-frequency activity at around —200ms. This is
much more intense in the fourth sub-group and seems centred around 40Hz, also active at
around 100ms. The active frequencies get lowered again towards 20Hz, but more or less at
the same times, although a pattern of sustained activity is clear after stimulus onset. This
sustained activity is more focused in the sixth sub-group, but also an intense pre-stimulus
activity appears at —~400ms with the activity at —200ms extending to high-gamma frequencies.
Finally, activity in the seventh subgroup increases at times over 600ms whereas almost

disappears at pre-stimulus times shifting again to lower frequencies.

All these results support the hypothesis that different signal dynamics are represented by
different arcas of the GTM, and that these dynamics gradually evolve throughout the
topographic mapping. They also come to show the usefulness of defining subgroups of trials,
as this procedure unmasks different dynamics and limits the undesired effects of trial

variability in the experiments.
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Figure 9: Time-frequency-power plots, obtained following the procedure outlined in section 6.1. The first one
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corresponds to the whole set of trials, whereas the following seven correspond to the subgroups of trials
represented by the plots in figure 4. Much neater activations (high power values colour coded as clear shades) are
seen for the subgroups of trials, as well as gradually changing patterns of activation following an imaginary path

from left to right in the GTM latent space (for which functional interpretation is given in the text).



7. Discussion

The main contributions of this study can be summarised as follows: it has been shown that,
through a variation on the EEG signal dynamical embedding techniques proposed in [1], the
main dynamics of bounded time-interval EEG signals can be represented, to intuitive
advantage, in the two-dimensional latent space of the GTM model. Signal transitions and
stationary states can be neatly visualized in this representation. Many experiments involving
the study of brain responses to defined tasks resort to their repetition in what are known as
trials, according to the expectation that brain responses will be replicated. Experience
indicates that trial variability is a common phenomenon. The GTM has been shown to
discriminate between different subgroups of the multiple trials in which the experimental
tasks are organized. Isolation of these subgroups has been shown to benefit the coherence of

their analysis.

The GTM is a very useful tool for exploratory data mining. The present study is mainly
exploratory in nature, and it is acknowledged that further research is due before the tenets in it
suggested can be fully validated. Many interesting issues can be targeted by following this
line of research, including the use of a similar approach to address multi-subject and multi-
channel analyses. Given that the replication of a task usually entails within-subject variability,
even greater inter-subject variability may be expected. It would therefore be beneficial to
explore the possible existence of subgroups of individuals showing similar responses. The
extension to the analysis of multi-channel recordings is of a different nature: the goal would
be the discovery of subgroups of channels with similar underlying signal dynamics, and it
would complement existing techniques of channel activity representation over the scalp
topology. It would be of utmost interest qualifying whether the independent component
analysis (ICA) of the DE matrix (following the procedure in [1]), associated to different
subgroups of trials, indicates the existence of different subgroups of brain signal source

combinations.
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