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Abstract. We demonstrate a kernel of size O(k?) for 3-HITTING SET
(HITTING SET when all subsets in the collection to be hit are of size
at most three), giving a partial answer to an open question of Nieder-
meier by improving on the O(k?) kernel of Niedermeier and Rossmanith.
Our technique uses the Nemhauser-Trotter linear-size kernel for VERTEX
COVER, and generalizes to demonstrating a kernel of size O(k"™") for

r-HrrTING SET (for fixed 7).

1 Introduction

Kernelization is a central technique in the development of fixed-parameter
tractable algorithms. Intuitively, a kernelization for a parameterized problem
‘P is a polynomial-time algorithm that, given any instance Z, either determines
that it is a “no” instance, or finds another instance Z’ (with perhaps a modified

“yes” instance if and only if 7 is, and the

parameter value) such that 7’ is a
size of Z' (which is the kernel) is bounded by some function of k. Since many
problems have exponential-time brute-force algorithms, applying one to Z’ yields
a fixed-parameter tractable algorithm for P. Although technically any problem
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admitting a fixed-parameter tractable algorithm has a kernel, it is more useful to
discover kernelization techniques as an aid to finding fixed-parameter tractable
algorithms than to extract kernels from such algorithms.

This paper describes an algorithm for finding kernels for variations of the
HiTTING SET problem, one of the original NP-complete problems from Karp's
1972 paper [5]. In order to describe these variations, we need some terminology.
Given two sets S and T', we say S hits T' (or T is hit by S) if SNT = (. We
apologize for the violent metaphor, which we inherited; our preference would be

to use touches or meets.

r-HITTING SET

Input: A collection C of subsets of a finite set S such that for every T € C,
T| <.

Parameter: A non-negative integer k.

Question: Ts there a subset H of S such that |H| < k and for every T € C, H
hits T?

We describe an instance of r-HITTING SET by a tuple Z = (S,C, k). For any
r > 2, r-HITTING SET is NP-complete, since for » = 2 it is simply the VERTEX
COVER problem (S is the set of vertices and C the set of edges).

Because of the set-theoretic nature of »-HITTING SET, kernels for it have
a slightly stronger property than described in the general introduction above.
Given a collection C C 27 and a subset S’ of S, we denote by C|ss the collection
of sets in C restricted to S, that is, the set {T'NS’' | T € C,TNS" # (}. A kernel
for an instance of r-HITTING SET is a subset K of S such that any solution to
the instance 7' = (K,C|k, k) of ~-HITTING SET is a solution to Z.

If we can find a kernel of size f(k) for r-HITTING SET, we can solve any
instance in time O(f(k)*n) by simply trying all subsets of the kernel to see if they
are solutions to the restricted problem. As we mentioned above, this approach
works for other kernelizable problems, though in the case of ~-HITTING SET an
approach based on bounded search trees is faster [8], and kernelization serves
mainly to bring the running time of the search algorithm down from O(ckn) to

O(c* f(k) +n) (for some constant c). The ultimate goal is to find a linear-sized



kernel for problems, because this brings down the cost of the brute-force search,

and implies the existence of a constant-factor approximation algorithm.

2 Reducing kernel size

The first instance of kernelization most students of parameterized complexity [4]
see is the O(k?) kernel for VERTEX COVER due to S. Buss [2, cited in [1]].
But VERTEX COVER is one of the few problems known to have a linear-sized
kernel, provided by the following theorem due to Nemhauser and Trotter [6]

(with improved running time due to Chen et al. [3]).

Theorem 1. There is an algorithm running in time O(kn + k3) that, for any
instance T = (S,C, k) of VERTEX COVER with input size n, either computes a
kernel K C S, |K| < 2k, or proves that T is a “no” instance.

The proof of Theorem 1 makes elegant use of the linear programming relax-
ation of the integer program for VERTEX COVER, but we do not need to know
anything about the proof; we will use the algorithm as a black-box subroutine
in computing our kernel for ~-HITTING SET. To illustrate the method, we first
demonstrate a kernel of size 6k2 for 3-HITTING SET. Theorem 2 below improves
the O(k?) kernel for 3-HITTING SET given by Niedermayer and Rossmanith [8],
which is basically a generalization of Buss’s O(k?) kernel for VERTEX COVER.
We save a factor of k by using the fact that Nemhauser and Trotter give a kernel
of size O(k), not O(k?), for r-HITTING SET in the case r = 2, though an entirely
different technique is employed to make use of this fact. Niedermeier [7, p. 31]
lists as an open problem the use of Nemhauser-Trotter techniques to improve

the size of the kernel for -HITTING SET.

Theorem 2. There is an algorithm running in time O(kn + k*) that, for any
instance T = (S,C,k) of 3-HITTING SET with input size n, either computes a
kernel K C S, |K| < 6k?), or proves that T is a “no” instance.

Proof: Our algorithm actually does something slightly stronger; it computes a

set ' C S of elements that must be in any solution to Z, and a set M C S of



elements that may be in the solution, with |[F'U M| < 6k2. (Many kernelization
algorithms do this, including that of Theorem 1, though we do not use this fact.)

We start by forming a collection G C C using the following greedy algorithm:
Start with G empty, and repeatedly choose an arbitrary set C € C. Add C to G,
and delete from C any set with a nonempty intersection with C. Repeat until C

is empty. This takes O(n) time.

If |G| contains more than k sets, Z is a “no” instance, because any two sets
in G are disjoint, and so more than k elements are required to hit them all.
If |G| < k, we proceed to construct the kernel. Let E be the set of elements
appearing in the sets in G, that is, E = Jgeg G. E must hit every set in C (if it
did not hit some set, the set would not have been deleted in the algorithm that
created G, which is a contradiction), and |E| < 3k. Thus E is a hitting set, but
if a hitting set of size k exists, it may not be contained within . We will use

the elements of £ to construct our kernel.

For each e € E, we define C. to be the collection of sets in C containing the
element e, that is, C. = {T' | e € T, T € C}. Think of C. as a subproblem induced
by the element e. We also define C., to be the sets in C, but with the element e
removed, that is, C, = {T'\ {e} | T" € C.}. Note that Z. = (S \ {e},C., k) is an
instance of VERTEX COVER, since every set in C. has size at most two. Since
every T' € C. must be hit, we will either choose e to be in the hitting set, or we
find a hitting set for Z.. The former can be achieved by adding e to F', and the
latter by adding to M a kernel for the instance Z, of VERTEX COVER. Doing

this for every element e € E will give us the sets F' and M that we seek.

Applying Theorem 1, either Z. is a “no” instance, or we can find a kernel K,
of size at most 2k for Z in time O(kn. +k3) (where n. is the size of the instance
Z.). If I, is a “no” instance, e must be in any solution H for Z. Suppose it is
not. Then in order for H to hit all the sets in C., H would have to be a solution
to Z.. But since 7. is a “no” instance, this would make the size of H greater
than k&, which is a contradiction to H being a solution for Z. Thus if Z, is a “no”

instance, we add e to F'. If instead it is a “yes” instance, we add K. to M.

Since, for each of the at most 3k elements of E, we either added one element

to F or at most 2k elements to M, |F' U M| < 6k2, as required.



We claim that the set K = F'UM is a kernel for Z. To see this, suppose that
7' is the problem defined by the candidate kernel K, that is, 7 = (K,C|k, k).
If 77 is a “no” instance, then Z must be as well, since if H is a solution for Z,
H N K will be a solution for Z’. If 7’ is a “yes” instance, then let H' C K be a
solution. Since every element added to F' must be in any solution, we know that
F C H’. We need to show that H' is a solution for Z. To do this, we take an
arbitrary set T in C, and show that H’ hits it.

If F hits T', we are done, so suppose it does not. Since E hits T', there must
be some element e in F NT; if e is in the hitting set H', then T is hit by H’,
since it is hit by e. If e is not in H’, then since F' does not hit T, e is not in F.
It follows that Z. is a “yes” instance, and K, C M.

Since K, is a kernel for Z,, K. must hit 7'\ {e} (because K. contains a
solution for Z., which is a “yes” instance). Since T'N K. is nonempty, it is a set
in C|k. Since H' is a hitting set for C|k, it must hit T'N K., and therefore it hits
T, as required.

O(kne + k®)

to find F' and M, where n. is the number of sets in C that contain e. Since every

The running time of the procedure is O(n) to find E plus ) . p
set in C contains at most three elements, >~ n. < 3n, and since |E| < 3k, the

total running time is O(kn + k%). O

In proving the above theorem, we used a subroutine for kernelizing VERTEX
COVER to create an algorithm for kernelizing 3-HITTING SET. We can continue
this process, using a subroutine for kernelizing (r — 1)-HITTING SET to create

an algorithm for kernelizing r-HITTING SET.

Theorem 3. For fizedr > 2, if there is an algorithm running in time O(kn+k")
that finds an O(k"=2)-size kernel for “yes” instances of (r — 1)-HITTING SET,
then there is an algorithm running in time O(kn + k™1) that finds an O(k"=1)-

size kernel for “yes” instances of r-HITTING SET.

Proof: The proof of this theorem is a generalization of the proof of Theorem 2,
which we can describe more succinctly now. Let Z = (5,C, k) be an instance of
r-HITTING SET. As before, we form a set F' of elements that must be in any
solution to Z, and a set M of elements that might be, with F' U M being our

kernel of the desired size. Let G be a maximal pairwise disjoint collection of sets



from C chosen using a greedy algorithm running in time O(n). If |G| > k, there
is no solution to Z. If |G| < k, we let E' = |Jocg C- £ must hit every set in C,
and |E| < rk.

For each e € E, we define Cc = {T |e € T, T € C},and C, = {T'\{e} | T €
Ce}. Then Z, = (S \ {e},C., k) is an instance of (r — 1)-HITTING SET. By the
statement of the theorem, either Z. is a “no” instance, or we can find a kernel
K, of size O(kr’2) for 7., where n. is the size of Z.. In the former case, e must
be in any solution H for Z, because if it is not, H would have to be a solution to
7T, in order for it to hit all the sets in C.; thus we can add e to F. In the latter
case, we add K. to M. Since we are adding at most 7k sets of size O(k"~2) to

either F or M, |[FUM|=O(k"1).

Then K = F UM is a kernel for Z. To see this, we define 7' = (K,C|k, k). If
7' is a “no” instance, so is Z. If 7' is a “yes” instance, let H’ be a solution for it;
F C H'. If T is any set in C, we must show that H’ hits T. Either F' hits T', or,
since E hits T, there exists e € ENT; if e € H', then T is hit by H'. If e ¢ H’,
Z. is a “yes” instance. Since K, is a kernel for Z, it hits T\ {e}, so TN K, is a
set in C|k. Since H' is a hitting set for C|g, it must hit TN K. and thus 7.

The running time of the procedure is O(n) + >, O(kne + k"); since every
set contains at most 7 elements, Y _n. < rn, and the total running time is

O(kn + k™1). O

The method of Niedermeier and Rossmanith also generalizes easily to provide
a kernel of size O(k") for ~-HITTING SET (though this is not explicitly mentioned
in their paper). Unfortunately, the constants hidden in the O-notation increase
with 7 in our case, but not for the Niedermeier-Rossmanith kernel. Thus The-
orem 3 is not of much practical interest for larger values of r; even in the case
r = 3, the Niedermeier-Rossmanith kernel is smaller for k£ < 6. However, Nieder-
meier [7, p. 34] mentions that Nemhauser-Trotter kernelization seems to perform
well in practice, and this suggests that our kernelization for 3-HITTING SET may

also have practical merit.



3 Conclusion

Since HITTING SET is W[2]-complete when the size of sets in the collection is not
bounded in size [4], it is unlikely that we will find a linear-sized kernel for this
problem. However, the statement “r-HITTING SET has a kernel of size f(r)k”
for some f(r) = 29(") is not inconsistent with what we believe about separations
among parameterized complexity classes. It would be interesting to either prove
this statement, or to demonstrate it false by proving lower bounds on the size of

kernels for this and other FPT problems.
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