Logic decomposition of incompletely specified functions

Jordi Cortadella*
Department of Software
Universitat Politecnica de Catalunya
08034 Barcelona, Spain
jordic@Qlsi.upc.es

Abstract

The logic decomposition of incompletely specified functions (ISFs) is studied. A theoretical
support based on ternary algebras is provided. This support aims at the logic decomposition of
ISFs. A partial order is defined on the ISFs determined by the “definedness” of the functions,
in which the completely specified functions are the maximal elements. The proposed methods
aim at preserving the ISFs as undefined as possible during logic decomposition. Incompletely
specified diagrams (IDDs) are proposed as a graph-based formalism to efficiently explore different
decompositions.

1 Introduction

Logic synthesis of Boolean functions aims at finding implementations that minimize some target
cost. In many situations, the functions are incompletely specified due to the don’t care information
extracted from their environment. Don’t care sets are crucial in Boolean minimization to reduce
the cost of the implementations.

However, it is often the case that Boolean minimization cannot be performed on large circuits.
Decomposition techniques must be used to manage the complexity of such task. Algebraic methods
have been often used for decomposition, but the quality of the result is highly dependent on the
initial circuit and don’t care information cannot be used effectively.

Other methods closer to the Boolean nature of the circuits have also been used for decomposi-
tion, such as Boolean relations [CF93] or SPDFs [YSHO00]. Even though the quality of the results
is superior to that of algebraic methods, the high computational cost of such methods make their
use limited.

In this work, a framework for Boolean decomposition based on incompletely specified functions
is studied. The framework sits in between algebraic methods and Boolean methods. On one
hand, the main aim is the decomposition into well-known structures: AND/OR, XOR and MUX
decompositions. On the other hand, the Boolean properties of the functions and the don’t care
information are exploited and mantained during decomposition, in such a way that the assignment
of don’t care values to 0 or 1 is delayed as much as possible.

Incompletely specified diagrams (IDDs) are prosposed as a graph-based formalism to efficiently
manipulate and decompose Boolean functions.

This work has been inspired by the methods proposed in [YSC99, YCS00] for the decomposition
of completely specified functions.

*This work has been partially funded by a grant from Intel Corporation, CICYT TIC 98-0410, CICYT TIC
98-0949 and GRQ 1999SGR-150.



2 Definitions

2.1 Ternary logic

This section presents some basic concepts on ternary logic and incompletely specified functions
(ISFs). ISFs are represented as 3-valued functions, where the value L represents the undefinedness
of the function. In the scope of Boolean minimization, | corresponds to the don’t care value. A
crucial task in minimization is to assign 0 or 1 values to L in such a way that a low-cost completely
specified function is obtained.

Definition 2.1 (Boolean domain)
The Boolean domain is defined as the set B = {0,1}. The ternary domain is defined as B* =
BuU{Ll}.

Definition 2.2 (Operations on B*)
The operations complement, disjunction and conjunction are defined on B* according to the fol-
lowing tables:

T T + 0 1 L -0 1 1
01 0|0 1 1L 0|0 0 O
110 1|1 1 1 110 1 1L
1L /L 1 1 (0 L 1

Other operations tipically used in Boolean algebra can also be defined on B* in terms of the
previous operations, e.g.

T ®y = ry+7Ty
r—1Y = T+Yy

Note that the previous operations coincide with the corresponding Boolean operations on the
domain B. Kleene introduced the previous operations in his strong ternary logic [Kle52], where
the value 0.5 was used to represent ambiguity or undefinedness. Complement, conjunction and
disjunction were performed by the operations 1 — z, min and max, respectively. Multiple-valued
Kleenean functions taking values in the unit interval [0, 1] have also been used to represent fuzzy
functions [TKNM98].

Property 2.3 (Ternary algebra)
The system T = (B*,+,-,,0,1, 1) is a ternary algebra [Muk83].

Property 2.4 (Properties in ternary algebra)
The following properties hold in ternary algebra for any a, b and c in B*:



00 01 10 11
|

0 0 0 1
01 1L O

/(=)
1 0L 10 L1 1L
1

N

L

= Qo8

1 L L 1
L 0 1 1

Ll
(a) (b) (c)

Figure 1: (a) semilattice for truth values, (b) 1-variable functions, (c¢) semilattice for 1-variable
functions (the pairs (f(0)f(1)) are depicted in the Hasse diagram).

ea+b=b+a; ab=ba (commutativity)
o (a+b)+c=a+(b+c); (ab)c=a(bc) (associativity)
e a(b+c)=ab+ac; a+ (bc) =(a+b)(a+c) (distributivity)
e0+a=a; 1-a=a (identities)
cata=a; ac=a (idempotence)

eag+1=1; a-0=0

ea+t+ab=a; ala+b)=a (absorption)
ea=a (involution)
eatb=ab, ab=a+b (De Morgan’s Laws)

eat+ab=a+b; a(@a+b) =ab
eagt+a+l=a+a; aal =aa

Property 2.5 The system T = (B*,+,-,7,0,1, 1) is not a Boolean algebra, since the postulate for
the complement does not hold:

a=1 = (a+a#1 A a-a#0)

Definition 2.6 (U-semilattice on B*)
The following binary relation is defined on B* x B* (see Figure 1(a)):

C = {(03 0)’ (13 1)’ (J-’ -L)7 (03 L)’ (1’ L)}

C is reflexive, antisymmetric and transitive, and every pair of elements in B* has a lower bound.
Therefore, (B*,C) is a U-semilattice.

Property 2.7 (Monotonicity of operations)
The operations in Definition 2.2 are monotone, i.e.

zxLy == 7TLY
z1Cy1t AN 22Cys =  (z1-22) C (y1-y2)
21Tyt A 2oCyp = (21 +22) C(y1 +12)



2.2 Incompletely specified functions

Definition 2.8 (Incompletely specified function (ISF))

An n-variable ISF is a function f : B® — B*. The set of n-variable ISFs is called F};. The constant
functions f(z) =0, f(z) =1 and f(z) = L, for any x € B", will be denoted by 0, 1 and L,
respectively.

Definition 2.9 (Completely specified function)
A function f € F} is said to be completely specified if f(x) # L for any x € B*. The set of
n-variable completely specified functions is called Fy,.

Definition 2.10 (L-semilattice on F})
The following binary relation is defined on F; x F}:

fEg <= VzeB", [f(z) Cg(z)

C is reflexive, antisymmetric and transitive, and every pair of elements in B* has a lower bound.
Therefore, (F},C) is a U-semilattice.

Property 2.11 The following properties hold in (F},C):
e | is the minimal element.
o F, is the set of mazimal elements.

e f and g have an upper bound <= Vz € B (f(z) C g(z) V g(z) C f(x))
Figures 1(b) and 1(c) show all 1-variable ISFs with the partial order induced by their definedness.

Property 2.12 (Meet and join operators in (F},C))

The meet and join operators give the least upper bound and greatest lower bound of two elements
of a lattice, respectively. Given f and g in F};, the meet (M) and join (L) operators in (F},C) can
de defined in terms of the same operators in (B*,C) as follows:

(fng)(z) = flz)Ng(x)
(fug)lz) = flz)Ug()

Since (B*,C) and (F},C) are not MN-semilattices, the meet of two elements is not always defined.

For convenience, the fact that no meet exists for x and y will be denoted by x My =T.

Definition 2.13 (Realization and complete realization)
Given two functions f and g, f is said to be a realization of g if g C f (also denoted by f Jg). f
is said to be a complete realization of g if it is a realization of g and a completely specified function.

Definition 2.14 (Operations on F)
The Boolean operations in Definition 2.2 are extended to F}; as follows:

fl@) = f(2)
(f+9)(x) = [flz)+9()
(f-9)(x) = [flz)- 9(z)



Definition 2.15 (Cofactor)
Given an ISF f(z1,... ,zy), the positive cofactor of f with respect to x;, denoted by fz, is defined

by:
fo; = fx1,-- o @i, L, g1, .., Tp)

The negative cofactor of f with respect to z;, denoted by fz,, is defined by:
fz, = f(1,-o -, 2i21,0, 2541, ..., Tp)

Theorem 2.16 (Boole’s expansion for ISFs)
If f is an ISF then

Proof: The proof is similar to the one for Boolean functions (see [Bro90]). O

2.3 Logic decomposition

This section presents some results that support the approaches for decomposition proposed in
Sections 5 and 6. The letters f, g and h are used to denote functions in F}.

Theorem 2.17 (Conjunctive decomposition)
Let f = fifo+ fafs, 1 Eg and fs Eg. Then f E g(f2 + fa).

Proof: By property 2.7, f C gfs + ¢gfs4, and the theorem immediately follows by applying the
distributive law. O

Corollary 2.18 (Disjunctive decomposition)
Let f = (fi+ f2)(fs + f1), fi T g and fs Eg. Then f T g+ fafa.

Proof: The corollary holds by the duality between + and -. O

Theorem 2.19 (XOR decomposition)
Let f = fifa+ fsfa, 1 Eg, [3EG, foEhand fa T h. Then fCg®h.

Proof: We have that f C gh +gh =g ® h. O

3 Representation of ISFs with IDDs

An ISF can be represented by a ternary-valued BDD [MF89]. In this work, we will call them IDDs
(incompletely specified decision diagrams). An IDD is a 3-terminal decision diagram', each terminal
corresponding to an element of B*. We will often used the following notation to represent ISFs:

F=0-f0+1-frr L fr=fltl-fr

where f0, f! and f are the characteristic functions of the of the assignements that give the value 0,
1 and L, respectively. Figure 2 depicts the representation of an ISF. Node labels denote variables,
whereas the indices distinguish nodes with the same variable. Solid and dashed arcs denote T

'IDDs are different from ternary decision diagrams [Sas96], that have three children for each non-terminal node.



ab

00 01 11 10
06ojojo0|L|O

ecd 01| L |1 |11
11 1| L] L |1
10/0]1]1 1

Figure 2: IDD and the corresponding Karnaugh map.

and E arcs, respectively. Henceforth, we will assume that all IDDs are reduced and ordered, as
commonly assumed in most of the works that deal with decision diagrams [Bry92]. The function
is characterized by:

f = (@+bjed+abd
f' = (a+b)ed + bed
ft = (c+b)d+abed

Definition 3.1 (Paths)

Given and IDD, a path is a set of literals that identify a path from the root node to one of the
terminals. The set of all paths of an IDD is denoted by II. 0-, 1- and | -paths are paths that go
to the terminal nodes 0, 1 and L, respectively. The sets of 0-, 1- and L -paths are denoted by g,
[Ty and 11, respectively. Therefore, Il = Ilg Ul UIL,. For convenience, a path will be often
interpreted as a conjunction of literals. An empty path (with no literals) will be interpreted as the
function 1.

In the example of Figure 2, abcd and @bd are paths. However, @bcd is not a path. Thus, an
ISF represented by an IDD can be represented as follows:

F=0-> p+1-> p+Ll-> p=> p+Ll-> p

p€Ellp p€Elly pell; p€Elly p€ell

Definition 3.2 (Cut)

Given and IDD, a cut is a set of nodes such that every path crosses the nodes in the cut at most
once. 0-, 1- and L-cuts are cuts that cut all 0-, 1- and 1 -paths, respectively. The fact that a path
p crosses (does not cross) a cut C will be denoted by p~ C (p+ C).

In Figure 2, the set {b9,c3} is a cut, whereas the set {bo, c1,c3} is not a cut. The set {c1,c2,c3}
is a 1-cut, and the set {c2,c3} is a 0-cut.

Definition 3.3 (Prefix and suffix)

Given a cut C and a path p, the prefix of p with respect to C, denoted by p®, is the subpath that
leads from the root to one of the nodes of C. The sufiz, denoted by pc, is the rest of the path. In
case p does not cross C, then p© =p and pc =0 (or pc = 1, when interpreted as a product).



meet (f,g9) { join (f,g) {

if (f=g) return f; if (f = g) return f;
if (f = 1) return g; if (f=1) return L;
if (9 =1) return f; if (9= 1) return L;
if (f,g are constant A f # g) return T; if (f,g are constant A f # g) return 1;
v = topVar (f); v = topVar (f);
hy = meet (fi,g;); if (hy =T) return T; hy = join (fy,g¢)
he = meet (f.,g.); if (he=T) return T; he = join(fe,9¢);
if (hy = he) return hy; if (hy = h) return h;
return buildIdd (v,hs,h.); return buildIdd (v,he,h.);
} }

Figure 3: Algorithms for IDD meet and join operations (no cache operations included).

Given a cut C, a function f can be represented as follows:

F=>0fpe (1)

p€ell

where f,c is an ISF representing the cofactor of f with respect to the prefix of p. The function f,¢
is represented by the IDD node reached from the root by the prefix p©. Note that for any path p
not cut by C, we have that p = p© and Jpo is the constant function corresponding to the terminal
reached by p. Therefore, a function f can also be represented by the following equation:

F=> 0% foet+ > p f (2)
p~C pC

4 IDD operations

IDD operations for conjuntion, disjuntion and complement are easily implemented by the recur-
sive paradigm provided by Boole’s expansion and the terminal cases derived from the tables in
Definition 2.2.

Figure 3 shows the algorithms for the meet and join operations. The meet algorithm returns T
in the case that the two functions are not comparable. An exponential reduction in the efficiency
of the algorithms can be achieved by caching the intermediate results obtained during the recursive
calculation of the operations, as it is typically done in BDD packages [Bry92].

Figure 4 shows an algorithm for IDD minimization. Once the terminal cases have been solved,
two possibilities are considered for the recursive cases. Let f be represented by the triple (v, fi, fe),
where v is the top variable and f; and fe the cofactors with respect to v. The minimization can be
calculated as:

g = (v, minimize(fy), minimize(fe))

minimize((v, ft, fe)) = { h = minimize(f; 1 fe)

In case h = T, i.e. no upper bound exists for f; and f., then g is the selected solution, otherwise the
solution with minimum cost is selected. In the proposed algorithm, the selection is done according
to the IDD size. Note that the solution h removes the variable v.



minimize (f) {
/* Pre-condition: f# L */
if (f=0 Vv f=1) return f;
if (fy = 1) return minimize (f.);
if (fe = 1) return minimize (f;);
v = topVar(f); g = minimize (f1); g = minimize (f.);
if (gt =9e) g = g¢; else g = buildIdd (v,g:¢,9¢);
fmeet = ftﬂfe; if (fmeet =T) return g5
h = minimize (feet) ;
if (IddSize(g) < IddSize(h)) return g;
return h;

Figure 4: Algorithm for IDD minimization (no cache operations included).

5 Conjunctive and disjunctive decomposition of IDDs

Theorem 5.1 Let f be an ISF represented by and IDD and C a 1-cut of the IDD. Then,
f E Z pc ) pr
p~C

Proof: Let us take equation (2) for f. Since C is a 1-cut, for all paths that do not cross C' we
have that f, € {0, L}. By the monotonicity of - and +, we can substitute L by 0 for all f, and
remove the second summand of f, thus obtaining a more specified function. O

Theorem 5.2 Let C be a cut of the IDD representing a function f, and let g be an ISF such that
Jpc E g for any path p crossing C. Then,

FEg- > 0+ > p-f
p~C piC
Proof: It immediately follows by considering the monotonicity of - and 4, and by substituting

fpc by g in equation (2). O

Corollary 5.3 (Factorization)
Let C be a cut of the IDD representing a function f, and let g = |_| fpc # T. Then,
p~C

FEg- > %4> p- (3)
p~C pAC

Proof: By the definition of meet, f,c E g for all paths crossing C. The corollary immediately

follows from theorem 5.2. O

Theorem 5.4 (Conjunctive decomposition)

Let C be a 1-cut of the IDD representing a function f, and let g = |_| Jpc # T. Then,
p~C

FCa- D0+ p £
p~C pAC



Figure 5: Conjunctive decomposition.

Proof: From corollary 5.3, equation (3) holds. The equation can be rewritten as follows:

FCg- > p%40-> p+1L-> p
p~C ppC ppC
fr=0 fo=1

Since g-0=0and L E g- 1, we also have

fCg- > p%4+9:0-> p+g-L-> p
p~C

ppC ppC
f»=0 fo=1
and the proof of the theorem immediately follows by factoring g out. O

Corollary 5.5 Under the same conditions of theorem 5.4,

fCg- > p°

p~C

Proof: It can be easily proved by substituting | by 0 in all paths that do not cross C. O

Example 5.6 Figure 5 illustrates the conjunctive decomposition of the ISF in Figure 2. The 1-
cut is substituted by the meet of the nodes in the cut. The disjunctive decomposition is obtained
by substituting the cut by the constant 1 in the upper part of the cut. Note that the realization
(a+b)(c+4d) is one of the completely specified functions (mazimal upper bounds) of the conjunctive
decomposition. However, theorem 5.4 gives the least specified decomposition. For example, the
decomposition (a+ b)(c® d) is another valid realization that can be obtained by substituting L by O
in the rightmost IDD of Figure 5.

A similar approach can be proposed for disjunctive decomposition, given the duality of the
operations - and +. A disjunctive decomposition of f can be obtained by deriving a conjunctive
decomposition of f and complementing the disjuncts®. Alternatively, an approach similar to the
one for conjunctive decomposition, but using 0-cuts instead of 1-cuts, can also be applied.

%Note that the complement of an IDD can be simply obtained by interchanging the constants 0 and 1.



6 XOR and MUX decompositions of IDDs

Theorem 6.1 (XOR decomposition)
Let C be a cut of the IDD such that all 0- and 1-paths are cut by C. Let C = Cy U Ci and
ConCi=0. Let Xo = [ | foco, X1= [ | fpor and X = XoN X1 # T. Then

p~Co p~C1

FEX®| D »+L- D p
p~C1 ptsC

Proof: Let us first define

P=Y p% P=>p" PL=)p

p~Co p~Ci ppC

We also know that Py, P, and P, define a partition of the set of paths of the IDD, i.e.
Ph+P+ P =1 Py-PP=F-P=P-P =0
We can also prove that the following equality holds: Py + L P, = P+ L P,

P+1P = F]_J_PJ_

= (Ph+P)-(L+P+P) [since Py, P, and P, is a partition of the paths]
= I\P+P+PP+1P +P Ph+P P
Py+ 1P,

We can represent f as
F= 2 pheot 3 e+ Ly p
p~Co p~C1 ppC

For all paths cut by Co and €7 we have Xo C f 0, and X1 C f,c;, respectively. Therefore,
fEXoPy+X1PL+ 1P,

Since X1 C X, we also have that X; C X. Moreover, we have that Xo C X. Then?,

/ XPy+XP + 1P C
XPy+XP+ (X +X)LP =
X(Py+ LP)+ X (P + 1P)) =
X-P+1P +X(Pi+1P)) =

X (P, +1P))

1 1m

O

Example 6.2 Figure 6 shows an ezample of XOR decomposition. The cut C = Co U Cy is substi-
tuted by X and X. The prefizes and sufizes of the cut derive the new ISFs, shown at the rightmost
part of the figure.

®Note that X + X = 1 does not always hold in ternary algebra.

10



Figure 6: XOR decomposition.

The MUX decomposition can be applied when the same conditions of the XOR decomposition
hold, except for the fact that Xy M X; # T. In that case, a less stringent decomposition can be
done.

Corollary 6.3 (MUX decomposition)
Let C be a cut of the IDD such that all 0- and 1-paths are cut by C. Let C = CyU Cy and
ConCi=0. Let Xo= [ | foeo 2T and X1 = [ | fyor # T. Let

p~Co p~C1
Y = Z p“r 4+ L Z P
p~C1 ppC
Then
FEYX; +YXo
Proof: The proof is similar to the one for Theorem 6.1. O

7 Decomposition by function approximation

When the decompositions presented in the previous sections cannot be applied, other methods must
be sought. In this section, a method based on function approximations is described. The method
is illustrated by the example in Figure 7. Using approximations to decompose BDDs has already
been proposed in the context of formal verification [RMSS98].

Imagine that we would target at a conjunctive decomposition, f = g - h, of the function repre-
sented in Figure 7. Clearly, each conjunct must be an overapproximation of f, i.e. f(z) =1 =
g(z) = h(z) = 1. By overapproximating f by g (see Figure 8), a new function accepting a XOR
decomposition, as shown in Figure 9, would be derived. However, g is not a valid realization for f.
The least specified function h for the other conjunct can be obtained as follows:

flz)=1 = h(z)=1
fle)=L = h(z)=1
flx)=0 A glx) =0 = h(z)=1
flx)=0 A glx) #0 = h(z)=0



ab

00 01 11 10
00|0|0|0]|1

ecd 011010
1/0]1 | L] 1L
10(1]0|1|0

Figure 7: Approximation of an IDD without disjoint decomposition.

0|00 |1 0| 1|01 110 |L]1

1/0/1]0 1,0 (10 1| 1L ]1|1L

0|1, L]1 = oO|1|L]1L * 11 ]L1L]L

1]0/1]0 1{0|1]|0 1| L |1]1L
f 9 h

Figure 8: Overapproximation of f by g.

Needless to say that the accuracy of g in approximating f affects the number of assignments to
L in h. Therefore, there is a tradeoff between the accuracy of g and the complexity of h. In the
example, g only differs from f in one assignment.

This approximation can also be done at the level of IDD by using techniques similar to those
proposed in [RMSS98] to obtain dense approximations.

After having factored g out of f, a new node implementing g in the Boolean network is created.
This new node can also be used to implement other nodes in the Boolean network. Moreover, the
implementation of g also incorporates new don’t care conditions. Let us assume that g has finally
been implemented as

g=a®b®cd.

Figure 9: XOR decomposition of function g.

12



Figure 10: Function f’ and its simplification after applying the algorithm in Figure 4.

|

h/ \g

Figure 11: Netlist for function f after logic decomposition

Thus, the condition g # a ® b ® ¢ @ d is now a new don’t care condition that can be incorporated
into f as follows:

ff=f (®adbdcdd)+L-(gDadbdcdd)

where ¢ is a new variable representing the node implementing function ¢ in the Boolean network.
The previous equation evaluates to 1 when the variable g is different from the value of the function
g. The representation of f’ as an IDD is shown in Figure 10.

Now function f’ can be decomposed by some of the techniques previously presented. For
example, a cut including the two leftmost nodes with label g would be a 1-cut for conjunctive
decomposition.

Figure 10 depicts the IDD obtained after minimizing f’. The result can be decomposed as
follows (see Figure 11):

h = a+c+d
f = h-yg
8 Conclusions

This paper has presented some theoretical background for the Boolean decomposition of ISFs. The
main feature of the theory is the preservation of the undefinedness of ISFs during decomposition.

13



While being more powerful than algebraic decomposition, the proposed theory does not have as
much flexibility as Boolean relations or SPDFs. However, the complexity can be kept manageable
for moderate-size functions if IDDs are used for the manipulation of ISFs.

An algorithmic framework for the decomposition of Boolean functions is a near-future task that
will enable to evaluate the effectiveness of this theory in practice.

References

[Bro90]

[Bry92]

[CF93]

[Kle52]

[MF89)

[Muk83]

[RMSS98]

[Sas96]

[TKNMY8]

[YCS00]

[YSC99)

[YSHO00]

F.M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer Academic
Publishers, 1990.

R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293-318, September 1992.

K.-C. Chen and M. Fuyjita. Network optimization using don’t-cares and Boolean re-
lations. In T. Sasao, editor, Logic Synthesis and Optimization, pages 87-108. Kluwer
Academic Publishers, 1993.

S.C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff, Noth-Holland Pub-
lishing, 1952.

Y. Matsunaga and M. Fujita. Multi-level logic optimization using binary decision
diagrams. In Proc. International Conf. Computer-Aided Design (ICCAD), pages 556—
559, November 1989.

M. Mukaidono. Regular ternary logic functions — ternary logic functions suitable for
treating ambiguity. In Proc. of the 13th Annual Symposimum on Multiple- Valued Logic,
pages 286—291. IEEE Press, 1983.

K. Ravi, K.L. McMillan, T.R. Shiple, and F. Somenzi. Approximation and decomposi-
tion of binary decision diagrams. In Proc. ACM/IEEE Design Automation Conference,
1998.

T. Sasao. Ternary decision diagrams and their applications. In T. Sasao and M. Fujita,
editors, Representations of Discrete Functions. Kluwer Academic Publishers, 1996.

N. Takagi, H. Kikuchi, K. Nakashima, and M. Mukadiono. Identification of Incompletely
Specified Multiple-Valued Kleenean Functions. IFEE Transactions on Systems, Man,
and Cybernetics — Part A: Systems and Humans, 28(5):637-647, September 1998.

C. Yang, M. Ciesielski, and V. Singhal. BDS: a BDD-based logic optimization system.
In Proc. ACM/IEEE Design Automation Conference, pages 92-97, 2000.

C. Yang, V. Singhal, and M. Ciesielski. BDD decomposition for efficient logic synthesis.
In Proc. International Conf. Computer Design (ICCD), pages 626-631, 1999.

S. Yamashita, H. Sawada, and A. Hagoya. SPFD: a new method to express functional
flexibility. IEEE Transactions on Computer-Aided Design, 19(8):840-849, August 2000.

14



