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Escola Tècnica Superior d’Enginyeria de Telecomunicacions de Barcelona

Estudis: Enginyeria de Telecomunicació
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The first principle is that you must
not fool yourself and you are the
easiest person to fool.

Richard P. Feynman

Recognize reality even if you don’t
like it, specially if you don’t like it.

Charles T. Munger Prefaci i Agräıments

Aquest Projecte de Final de Carrera és el resultat d’un apropament de l’autor al camp de la infor-
mació quàntica, en particular la criptografia quàntica -o més ben dit la distribució quàntica de claus-
un camp molt interdisciplinar en el que conflueixen aspectes de la mecànica quàntica, la teoria de
la informació i la matemàtica aplicada (probabilitat, optimització,...).
Part dels resultats que aqúı es presenten apareixen en un article en el que l’autor va col·laborar al
seu moment [18] i es va publicar en el número 74 de la Physical Review A.
Aquest PFC es va realitzar durant el quatrimestre de primavera del curs 2005-2006 a l’ICFO, Insti-
tut de Ciències Fotòniques, al Parc Mediterrani de la Tecnologia.
Vull agräır al meu director, en Toni Aćın, per haver-me permès participar en aquest projecte i per
les discussions tant enriquidores que vam tenir sobre el tema al seu moment. També vull agräır-li
que hagi tingut la generositat de permetre’m finalitzar el que vaig deixar sense finalitzar tant de
temps després. Vull agrair als meus pares pel seu suport incondicional durant tota la meva vida, el
seu recolzament en els moments dif́ıcils i de dubtes i per haver estat sempre al meu costat. I també
a la archi pel suport i la paciència en la fase final d’aquesta història. He trigat 10 anys en redactar
aquest document. Si no hagués tingut la obligació deguda al canvi de plans d’estudis, podria haver
trigat 10 anys més.

El resultat no és el que m’hauria agradat al seu moment, però la demora no ha estat deguda a
un excès de perfeccionisme. Diguem, sense entrar en justificacions adicionals, que la vida no m’ha
donat ni el temps ni la força de voluntat necessaris per enfrontar-me als records que m’assaltaven
al treballar en aquesta memòria.

Voldria, abans d’iniciar la memòria del projecte, respondre a dues preguntes de manera breu:

• Perquè em vaig decidir a fer aquest PFC al seu moment i que em va aportar?
En el moment d’estar a punt de finalitzar la carrera d’ Enginyeria de Telecomunicacions i
també havent estudiat Matemàtiques, tenia interés en aprendre sobre algun tema nou i eva-
luar si la meva manera de ser aleshores era apta per la recerca (la resposta a aquesta última
pregunta va ser no). Adicionalment, com no havia trobat fins a aquell moment un àmbit del
coneixement adquirit a la carrera al que dedicar-me (una passió, amb la concepció errònia de
que la plenitut personal provenia de trobar-la), volia interactuar amb temàtiques diferents. El
tema que vaig escollir era intelectualment atractiu i era prou diferent al que havia fet fins al
moment com per a tenir curiositat. A més la mecànica quàntica sempre m’havia semblat un
tema molt atractiu, per les lectures casuals que n’havia fet i les petites incursions que havia
realitzat. Sota el punt de vista de la realització d’un projecte de final de carrera en Enginyeria
de Telecomunicacions, la confluència d’elements de teoria de la informació, f́ısica i matemàtica
aplicada em semblava adecuada. No negaré que tenia dubtes sobre si la temàtica encaixaria
en un PFC de “telecos”, però amb la perspectiva del temps transcorregut, sembla cada cop
més clar que la informació quàntica és un àmbit del coneixement tant de la f́ısica com del món
del processament de la informació.
Poder haver estat f́ısicament en un centre de recerca punter a nivell mundial va ser una
experiència molt enriquidora.

• Que vaig aportar amb la realització d’aquest PFC?

La meva participació va consistir en, a part de l’enteniment dels protocols i principis bàsics
descrits en les següents pàgines, en analitzar les fites de KeyRate proposades i obtenir els
resultats referents a la (no) nulitat de la informació intŕınseca, tant en els cas d = 2 com d = 3.
L’enteniment del formalisme que es fa servir per a desenvolupar el protocol de distribució de
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claus va ser una tasca àrdua, no tant per la complexitat de les eines sino per la familiarització
amb conceptes que són, parafrasejant a Niels Bohr, dif́ıcils d’entendre.

La fita final del projecte comú en el que vaig participar va suposar la publicació de l’article
[18], en el que vaig participar.
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Resum del projecte

La criptografia quàntica és el camp de la teoria de la informació quàntica que permet fer tasques
criptogràfiques, és a dir de generació de secret entre parts, a partir dels principis de la mecànica
quàntica. Si bé els principis i el fonament teòric que permeten distribuir correlacions amb secret
a partir de l’entrellaçament són vàlids, s’ha d’assegurar que no es perd el secret per qualsevol
desviament del cas ideal i per això molta recerca teòrica s’ha dedicat a derivar fites riguroses per
la seguretat de la criptografia quàntica. Les proves de seguretat usuals suposen que els participants
en l’intercanvi de claus, Alice i Bob, tenen un coneixement perfecte i control sobre els seus sistemes
i aparells quàntics. Per exemple, han d’estar segurs que els seus bits s’han codificat en qubits i no
en sistemes de més dimensions que permetin que un atacant pugui extreure’n informació.

Davant d’aquest problemàtica, l’estudi de la no-localitat intŕınseca de la mecànica quàntica com
a recurs d’informació més enllà de la pròpia mecànica quàntica, va proporcionar una possible solució.
Les correlacions que apareixen en el fenòmen f́ısic de l’entanglement violen el que es coneixen com
a desigualtats de Bell, que limiten les correlaciones que es poden obtenir via models de variables
locals (o equivalentment, estratègies deterministes). L’estudi de l’estructura de correlacions entre
les parts comporta l’estudi de l’anomenat politop non-signaling que està format per cares definides
per les desigualtats de Bell (el politop local) i punts extremals no-locals (que suposen una violació
maximal de les desigualtats de Bell).

A partir de la comprensión de la estructura del politopo, se presenta un protocolo de distribución
de claves basado exclusivamente en el grado de violación de las desigualdades de Bell por parte de
las correlaciones entre las partes ante un atacantes limitado exclusivamente por la restricción no-
signaling (no es posible transmitir información a mayor velocidad que la de la luz).

En aquest projecte, l’autor va poder participar en l’estudi i generalització d’aquest protocol
de distribució de claus sota assumpció de correlacions non-signaling, estudi de l’estructura de les
correlacions i obtenció de fites per a la generació de clau i fites teòriques de la informació intŕınseca
pel protocol amb número de possibles outputs d = 2 i d = 3.

Amb posterioritat als resultats aqúı presentats, el grup de Toni Aćın i col·laboradors ha extés
aquesta ĺınia de recerca per a provar la seguretat de protocols quàntics de distribució de claus
independents del dispositiu (el que s’anomena Device Independent Quantum Key Distribution -
DIQKD-) davant d’atacs més generals.

La resta del document estarà redactat en anglès per comoditat en la terminologia emprada.
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Resumen del proyecto

La criptograf́ıa cuántica es el campo de la teoŕıa de la información cuántica que permite realizar
tareas criptográficas, es decir de generación de secreto entre partes, a partir de los principios de la
mecánica cuántica.

Si bien los principios y fundamento teórico que permiten distribuir correlaciones con secreto
a partir de correlaciones son válidos, se debe asegurar que no se pierde el secreto por cualquier
desviación del caso ideal y por este motivo, esfuerzos de investigación teórica se han dedicado a
derivar cotas rigurosas para la seguridad de la criptograf́ıa cuántica.

Las pruebas de seguridad habituales suponen que los participantes en el intercambio de claves,
Alice y Bob, poseen un conocimiento perfecto y control total sobre sus sistemas y aparatos cuánticos.
Por ejemplo, deben estar seguros que sus bits se han codificado en qubits y no en sistemas de un
número de dimensiones más elevado que permita que un atacante pueda extraer información de
éstas.

Ante esta problemática, el estudio de la no-localidad intŕınseca de la mecánica cuántica como
recurso de información más allá de la propia mecánica cuántica, proporciona una posible solución.
Las correlaciones que aparecen en el fenómeno f́ısico del entanglement violan lo que se conocen como
desigualdades de Bell, que limitan las correlaciones que se pueden obtener por medio de modelos
de variables locales (o equivalentemente, estrategias deterministas). El estudio de la estructura de
correlaciones entre las partes comporta el estudio del denominado politopo non-signaling que está
formado por caras definidas por las desigualdades de Bell (el politopo local) y puntos extremales
no-locales (que conllevan una violación máximal de las desigualdades de Bell).

A partir de l’enteniment de l’estructura del politop, es presenta un protocol de distribució de
claus que es basa exclusivament en el grau de violació de desigualtats de Bell de les correlacions
entre les parts davant d’un atacant només limitat per la restricció no-signaling (no es pot transmetre
informació a major velocitat que la de la llum).

En este proyecto, el autor pudo participar en el estudio y generalización de este protocolo de
distribución de claves bajo asunción de correlaciones non-signaling, estudio de la estructura de las
correlaciones y obtención de cotas para la generación de claves y cotas teóricas de la información
intŕınseca para el protocolo con un número posible de outputs d = 2 y d = 3.

Con posterioridad a los resultados aqúı presentados, el grupo de Toni Aćın y colaboradores han
extendido esta ĺınea de investigación para probar la seguridad de protocolos cuánticos de distribución
de claves independientes del dispositivo (lo que se denomina Device Independent Quantum Key
Distribution -DIQKD-) ante ataques más generales.

El resto del documento está redactado en inglés por comodidad con la terminoloǵıa utilizada.
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Abstract

Quantum cryptography studies tasks in Quantum Information Theory for cryptographic purposes,
that is, for secret generation between parts from the principles of quantum mechanics.

The fact itself, that quantum correlations can be used to distribute secrecy, is safe. But of course,
one must verify that secrecy is not immediately spoiled by any small departure from this ideal case;
this is why much theoretical research has been devoted to the derivation of rigorous bounds for the
security of quantum cryptography

Usual security proofs contemplates that the participants in the key distribution, Alice and Bob,
have perfect knowledge and total control over their quantum systems and devices. For example,
one assumes that the logical bits are encoded in quantum systems whose dimension is under perfect
control (generally, qubits). Additional dimensions of the quantum system could be exploited by an
attacker to extract information (side channels).

The study of intrinsic non-locality of quantum mechanics as an information resource provides
a possible solution to this problem. The correlations obtained from the physical phenomenon of
entanglement violate Bell inequalities, that limit the correlations that can be obtained with local
variables models (or equivalently, deterministic strategies). The study of the structure of correlations
between the parties is the study of the non-signaling polytope which is limited by faces defined by
Bell inequalities (local polytope) and extremal non-local points (representing a maximal violation
of Bell inequalities).

From the study of the polytope’s structure, a key distribution protocol is developed which is
based solely in the degree of violation of Bell inequalities achieved by the correlations between the
parties. Moreover, the attacker is limited only by the non-signaling restriction - there is no instant
transmission of information-.

In this project, the author could participate in the study and generalization of said key distri-
bution protocol based in non-signaling correlations, the study of the correlations’ structure and the
derivation of secrecy generation bounds and theoretical bounds for intrinsic information, for the
protocol with number of outputs d = 2 and d = 3.

Afterwards the results here presented, Toni Aćın’s group and collaborators extended this research
path to prove the security of quantum key distribution protocols independently of the device(what
is called Device Independent Quantum Key Distribution -DIQKD-) in front of more general attacks.

The rest of the document will be written in English.
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Chapter 1

Introduction

Quantum information theory combines two of the most important scientific discoveries of the 20th
century: Information theory initially developed by Claude Shannon and Quantum Mechanics. Quan-
tum Information Theory addresses two issues under the author’s point of view:

• It applies the physical theory of quantum mechanics to communication and information pro-
cessing in which the theory is relevant (using entangled states or where following Moore’s law,
quantum mechanics matters as a consequence of the reduction of size ).

• By studying these applications, it is a very useful tool to understand physical reality and
interpret the counter-intuitive results of quantum physics.

If one had to enumerate the most quantum features, despite the name of the theory, these would
be superposition and entanglement. Both concepts are widely applied in different instances of quan-
tum information theory. On the one hand, in quantum computation, superposition of states allow
one to perform computing tasks unimaginable in classical terms. On the other hand, entanglement
and non-locality are the elements shown to provide a mean to distribute correlations at a distance,
whose secrecy can be guaranteed by the laws of physics, without any assumption on the computa-
tional power of the eavesdropper. The employment of quantum physics as a tool to obtain secrecy
is the largely studied field of quantum cryptography (or more accurately, quantum key distribution,
QKD). This the most mature development of quantum information science; quantum cryptography
is already a commercial product and a tool that is employed by companies and institutions to achieve
secrecy in their communication.

The secrecy obtained from these schemes is guaranteed by the physical principles of nature and
the laws of nature are not going to change in the near future... But, as Yogi Berra said “In theory
there is no difference between theory and practice. In practice there is.”: the implementation of the
ideal case can suppose a small departure that can turn the whole key distribution scheme insecure,
not because its principles are wrong, but because the scheme can be exploitable by a malicious
attacker. A lot of theoretical research has been devoted to derive rigorous bounds for the security
of quantum cryptography, establishing the conditions under which a secret key can be extracted.
But these security proofs can be just theoretical, and once the cryptographic schemes are put into
“practice”, the implementation can have different assumptions from the ideal case.

In particular, an assumption present in theoretical proofs unnoticed before the works presented
in [2, 5] was that the encoding of the bits in the quantum system is done having under control the
dimension of such systems. Removing this assumption has interest per se, but also side channels
in a device can be a serious problem from the point of view of the implementation. For example,
the designers of a device have to be careful that when they encode (say) polarization, they encode
only polarization, and that the device does not change the spectral line, or the spatial mode, or
the temporal mode of the photon as well. And these features could be exploitable maliciously. The
hope lies in the realization of Device Independent Quantum Key distribution schemes.

In the work described in this memoir, an approach that was a first step in that direction is
presented. Employing recent (at the time) developments in the understanding of non-locality from
an information theoretic point of view and as an information resource, a key distribution protocol
was developed in [2]. The defined protocols, both for the case of bits and for generic d-dimensional
outcomes, are extensions of this work. As in every typical quantum key distribution scheme, the

10
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trusted parties Alice and Bob aim to generate a secret key while the eavesdropper, Eve intends to
obtain the secret key.

The idea of the protocols here studied resides in guarantee security and the possibility of key
extraction by the structure of the Alice-Bob correlations, under the no-signaling1 condition. A
protocol or scheme to distribute secrecy is based on the idea that if the correlations cannot be
produced by pre-established or local deterministic strategies, then Eve has poor knowledge of Alice’s
and Bob’s symbols. Additionally, if the protocol reduce the attacker information in the cases where
shared randomness is employed, the secrecy extraction can be improved.

Moreover, there is an extra assumption: Eve has total control over the devices but not over the
choice of measurements performed. It is Eve who defines the correlations between Alice and Bob. A
pictorial description of the no-signalling assumption in the context of secrecy extraction is necessary.
This is shown in 1.1 The dark grey boxes in Alice’s and Bob’s laboratories are the devices provided
by Eve. In a first step, the laboratories are open for the signal that correlates them (grey spheres).
The arrows on the channel indicate that it is not important whether this signal comes from outside,
or is emitted by Alice’s device to Bob’s, or viceversa: in any case, it is under Eve’s control. What is
important, is that the inputs (x, y) have not been chosen yet. In a second step, the laboratories are
absolutely closed: no leakage of information about the inputs (x, y) or the outputs (a, b) is allowed.
In a third step (not shown), Alice and Bob can carry out the usual procedures of error correction
and privacy amplification by communicating on an authenticated channel.

Figure 1.1: Scheme of the protocol

The present study assumes, on the one hand that the eavesdropper Eve performs only individual2

attacks, on the other hand that Eve can distribute any correlation compatible with the no-signaling
condition (in this sense her power is greater than what quantum physics allows). Under these
assumptions, we prove that the protocols defined here allow extracting secrecy from noisy corre-
lations, when these correlations violate a Bell-type inequality by a sufficiently large amount. The
region, in which secrecy extraction is possible, extends within the region of correlations achievable
by measurements on entangled quantum states.

The following pages are the description of the necessary concepts and tools to introduce the
cryptographic protocols under study and the study of these protocols.

1We will define formally the no-signaling condition in the text, but it can be described as ”faster than light
communication is impossible” or the probability distribution of the outcomes of each one of the parties just depends
on his choice of measurement

2Eve sends independent identically distributed signals and she tries to guess each bit of the raw key without
performing correlations between instances. In chapter 5, the different types of attack will be defined.
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Memoir structure

The structure of the present document is the following:

• A first chapter with an introduction to notions from Quantum Information Theory. The
objective is to introduce the concept of entanglement and Bell inequalities.

• A second chapter describing the tools from an information-theoretic point of view necessary
to generate a symmetric key between two parties. The concepts introduced will be privacy
amplification, advantage distillation and intrinsic information.

• A third chapter describing;

– the framework to study non-locality independent of the Quantum Mechanics formalism.

– the structure of the correlations in this formalism and the Bell inequalities involved in
d = 2 and larger-dimensional outcomes.

– Results equivalent to the ones of quantum information theory in the non-signaling setting.

• A fourth chapter describing the protocol to distribute a secret key against an eavesdropper not
limited by quantum physics, employing individual attacking strategies based on the violation
of Bell inequalities and some classical information processing. The following results will be
detailed:

– Description of the protocol and structure of the correlations involved.

– For the binary case: analysis of results derived from symmetries of these correlations,
derivation of bounds to generate secret key in different settings and analysis of the intrinsic
information between the parties.

– For larger-dimensional outcomes: structure of the correlations involved, bounds to extract
secret keys and analysis of the intrinsic information.

The results of the work here presented was published in the number 74 of Physical Review A
([18])



Chapter 2

Quantum Information and
Quantum Cryptography

This chapter describes briefly the foundations of quantum mechanics and quantum information
theory necessary for the rest of the document. Firstly, we give a summary of the mathematical
techniques of the quantum formalism which are the rules common to any Quantum Information ap-
plication. Then we present the quantum bit or qubit. We describe the phenomenon of entanglement
and some of its consequences from the point of view of quantum information applications. Then
we present several examples of quantum communication protocols and introduce briefly Quantum
Cryptography.

Although, the protocol described is a quantum based key distribution protocol, the mathematics
employed to describe it are not the mathematics of quantum mechanics, but instead, as we will see
in chapter 4, a more general way of describing the phenomena experienced in entanglement.

We introduce these concepts here because they are the entourage in which the protocol analyzed
resides and the implementation of said protocol would be done with quantum states. Additionally,
it’s necessary to introduce the concept of entanglement and Bell inequalities as the test to identify
non-local correlations.

2.1 Quantum mechanics for Quantum information theory

The scope of this first section is to introduce the basic postulates and mathematical formalism of
Quantum Mechanics. Most of the formalism presented here can be found in chapter 2 of [11].
Briefly stated, all quantum machinery is linear algebra on a complex Hilbert space.

Postulate 1 Any isolated physical system has associated a complex Hilbert space H (vector space
with inner product). The description of this system is given by a normalized vector in this space,
the state vector which is an element of PH, i.e. a unit vector.

Quantum Mechanics does not tell what the state space for a determined physical system nor does
it tell us what the state vector of the system is, it provides a formalism that comprises any physical
state. The spaces employed in Quantum Information Theory are finite dimensional Hilbert spaces,
C2 to work with qubits and Cd to work with qudits.
The standard notation employed to explain the quantum machinery is the Dirac Notation:

• |ψ〉 stands for a column vector, also known as a ket

• 〈ψ| stands for the dual vector to |ψ〉, also known as bra

• 〈φ|ψ〉is the scalar product between |ψ〉 and |φ〉

The norm of a vector |ψ〉 is ‖ ψ ‖=
√
〈ψ|ψ〉.

Following from the first postulate, if |ψ1〉, |ψ2〉 ∈ Cd are two possible states of the system, then any
possible linear combination of these two vectors |ψ〉 = α|ψ1〉 + β|ψ2〉, where α and β are complex
numbers and such that ‖ψ ‖= 1, also represents a valid description of the system. This is known

13
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as the superposition principle and |ψ〉 is usually called a coherent superposition of |ψ1〉 and |ψ2〉.
Therefore, all the information on an isolated physical system can be specified through a vector in a
Hilbert space.

The evolution of quantum systems is prescribed by the postulate:

Postulate 2 The evolution of a closed quantum system is described by a unitary transformation,
that is an operator U such that U†U = 1. That is, the state |ψ〉 of the system at time t1 is related to
the state |ψ′〉 of the system at the time t2 by a unitary operator U which depends only on the times
t1 and t2

|ψ′〉 = U |ψ〉

The next postulate of quantum mechanics is the one concerning quantum measurement that
describes the interaction of an experimentalist with a quantum system she observes.

Postulate 3 Quantum measurements are described by a collection {Mm}of measurement operators.
These are operators acting on the state space being measured. The index m refers to the measurement
outcome that may occur in the experiment. If the state of the quantum system is |ψ〉 just before the
measurement then the probability that result m occurs is

p(m) = 〈ψ|M†mMm|ψ〉

and the state after the measurement is

Mm|ψ〉√
〈ψ|M†mMn|ψ〉

The measurement operators satisfy the completeness equation,∑
m

M†mMm = 1

The completeness equation expresses the fact that probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

〈ψ|M†mMm|ψ〉 ∀|ψ〉

Consider a measurement, in which different positions of the pointer can be associated with d
different states |φ1〉, . . . |φ1〉. Among the features of an ideal measurement, one tends to request
that the device identifies the state correctly.

The first postulate states that pure states are described by one-dimensional spaces (every vector
c|ψ〉 differing by a constant c represents the same state). With this construction, after a measurement
of the system, it may be found to possess a property that it did not possess with certainty before
the measurement. Given a state |ψ1〉, there is a non-zero probability that a measurement finds the
system in a different state |ψ2〉. The probability is given by:

P (ψ2 | ψ1) = tr(P1P2) =| 〈ψ1|ψ2〉 |2

This is called the Born’s rule for probabilities.

The next postulate deals with the description of composite systems, quantum systems made up
of two or more distinct physical system.

Postulate 4 the state space of a composite system is the tensor product of the state space of the
component physical systems. Moreover, if we have systems numbered 1 through n, and system i is
prepared in the system |ψi〉, then the state of the total system is the tensor product |ψ1〉 ⊗ |ψ2〉 ⊗
· · · ⊗ |ψn〉

This postulate can also be expressed in a more simple and convenient way for our main purpose:
Consider two physical systems A and B described by the corresponding Hilbert spaces, HA and
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HB . The Hilbert space associated to the global system AB, denoted by H, consists on the tensor
product of the two local spaces, HA⊗HB . Something to note of enormous importance, is that when
this postulate and the superposition principle are combined the concept of entanglement1 arises.
Indeed, consider two possible states of the global system HA ⊗HB , |ψA〉 ⊗ |ψB〉 and |φA〉 ⊗ |φB〉.
then |Ψ〉 = α|ψA〉 ⊗ |ψB〉 + β|φA〉 ⊗ |φB〉 is also a possible state of the composite system AB.
However, this state in general cannot be written as the tensor product of two vectors on each local
space, that is |Ψ〉 6= |ϕAϕB〉. The state |Ψ〉 is then said to be entangled. Although the global state
of the system can be described by a vector of the composite system, it is impossible to associate
a vector in HA and HB . This is related to the fact that system A is correlated to system B. In
following sections, more properties will be described about this principle as entanglement states play
a crucial role in quantum information and are relevant for the cryptographic protocol that will be
described at the end of this memoir.
Examples of entangled systems of two qubits are the Bell states. The state |Ψ−〉 is also called the
singlet.

|Ψ−〉 =
1√
2

(|01〉 − |10〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉)

|Φ−〉 =
1√
2

(|00〉 − |11〉)

|Φ+〉 =
1√
2

(|00〉+ |11〉) (2.1)

Consider the case where the preparation of a system is imperfect, the system can be in state |ψ1〉
with probability p1 and in state ψ2 with probability p2, and so on. In this case, as in the case of
entangled systems, there is a lack of knowledge about the state of the system. Since the information
on the state of the system is not complete, the state cannot be pure. In order to take into account
this lack of information, the so-called mixed states have to be introduced.
The mathematical description of a system that can be in state |ψi〉 ∈ H with probability pi, where
i = 1, . . . , N and N is arbitrary, is given by an operator called the density operator or density
matrix:

ρ =

N∑
i=1

pi|ψi〉〈ψi|

Note that tr(ρ) =
∑
i pi tr(|ψi〉〈ψi|) =

∑
i pi〈ψi|ψi〉 =

∑
i pi = 1. If the state is pure, |ψ〉, there is

only one no-vanishing probability, p1 = 1, and ρ = |ψ〉〈ψ|. Actually a state ρ is pure if and only
if tr ρ2 = 1. Once a mixed state is defined, one can specify how an open quantum system evolves
or how to describe a noisy evolution. In this case, a quantum system in a pure state may lose its
purity and become mixed. The general formalism is given by the so-called trace preserving maps.
Indeed, any evolution of an initial state, possibly mixed, ρi, into a state ρf , can be represented as:

ρf =
∑
k

AkρiA
†
k

where Ak are operators such that
∑
AkA

†
k = 1, the identity matrix.

Combining the mixed-state formalism with postulate 3, one can specify a general evolution, con-
sisting of a sequence of measurements and possibly noisy evolutions, through a set of operators Aik
describing a map transformation from any state ρ into:

ρi =

∑
k A

i
kρA

i†
k

tr(
∑
k AkρA

†
k)

with probability pi = tr(
∑
k AkρA

†
k). The standard von Neumann measurement formalism is de-

scribed by the previous one. A von Neumann, or projective measurement in a d-dimensional system
has d possible outcomes and the corresponding operators are the projectors onto a basis in this

1The term entanglement comes from the german term Verschränkung
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space. More precisely, consider a basis in Cd, a set of orthonormal vector |i〉 such that 〈i|j〉 = δij
2.

A measurement in this basis is represented by the projectors Ai = |i〉〈i|. Note that if the initial
state is ρ, the probability of obtaining outcome i is:

pi = tr(|i〉〈i|ρ|i〉〈i|) = 〈i|ρ|i〉

while the state is mapped into

ρi =
|i〉〈i|ρ|i〉〈i|

tr(|i〉〈i|ρ|i〉〈i|)
= |i〉〈i|

For the pure state case, ρ = |ψ〉〈ψ|, these expression become:

pi = tr(|i〉〈i||ψ〉〈ψ||i〉〈i|) =| 〈i|ψ〉 |2

and

ρi =
|i〉〈i||ψ〉〈ψ||i〉〈i|
| 〈i|ψ〉 |2

= |i〉〈i|

and thus,
|ψi〉 = |i〉

that is, the initial state |ψ〉 collapses into |i〉 with probability given by the square of the overlap
|〈i|ψ〉|2. The previous formula also implies that there is no measurement (physical process) distin-
guishing |ψ〉 from eiγ |ψ〉. This is: the state of a physical system is actually described by a vector in
a Hilbert space up to an irrelevant global phase.

2.2 The qubit

Once the tools needed for the analysis of any Quantum Information Theory application are defined,
the first step is to introduce the basic unit of Quantum Information, the quantum bit or qubit.
Consider the encoding of a classical bit into a quantum particle. The way of achieving is employing
a two-dimensional system: bit value 0 will be encoded into a state |ψ0〉, or simply |0〉 and 1 into
|1〉. Since these two options have to define a classical bit, the states have to be orthogonal, so they
define a basis in C2. Therefore, a measurement in this basis distinguishes in a deterministic way
between the two possibilities, as it happens for a classical bit. For instance

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
A two-dimensional particle can encode a classical bit and then defines a quantum bit. Note

however that because of the superposition principle, any coherent combination of |0〉 and |1〉 is also
allowed, something that is impossible in classical terms. Therefore:

Definition 2.1 A qubit is an element of H = C2 of the form a|0〉+ b|1〉, where a, b ∈ C such that
|a|2 + |b|2 = 1

It is possible to represent the state of a qubit by means of the so-called Poincaré or Bloch Sphere
(see Figure 2.1). Using the fact that the global phase of any pure state is irrelevant , α can always
be real. Then, any quantum bit can be specified by a complex number β, as α is fixed due to
normalization. Thus, any state has the form:

|ψ〉 =

(
cos( θ2 )

sin( θ2 )eiφ

)
2δij denotes Kronecker’s delta that is defined as δij = 1 if i = j and δij = 0 otherwise.
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Figure 2.1: A quantum bit can be represented by a point in the surface of the Bloch Sphere. the
corresponding unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ) is called Bloch vector. Mixed states are
inside the sphere.

Two angles θ and φ can specify any pure state in C2 as any point in the surface of the unit
sphere. It is important to note that the orthogonal vector |ψ⊥〉 is expressed as

|ψ⊥〉 =

(
sin( θ2 )

− cos( θ2 )eiφ

)
Therefore, orthogonal vectors in C2 are represented by antiparallel vectors on the Bloch sphere.

The Pauli matrices play a significant role in the algebra of qubits and are important to introduce
the quantum information processing applications that will follow.

The expression of Pauli matrices is:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
The basis |0〉, |1〉 that define a qubit is formed by the eigenvectors of σz with eigenvalues +1 and

-1 respectively, since σz|n〉 = (−1)n|n〉 for n = 0, 1. The effect of the other Pauli matrices in the
qubit basis is:

σx|0〉 = |1〉 σx|0〉 = |1〉
σy|0〉 = i|1〉 σy|1〉 = −i|0〉

The effect of σx is a bit flip. The eigenvectors of σx and σy are obtained substituting respectively
(θ, φ) = (π/2, 0) and (θ, φ) = (π/2, π/2) in the Bloch representations of |ψ〉 and |ψ⊥〉. The Pauli
matrices can also be expressed as

σx = |0〉〈1|+ |1〉〈0| σy = −i|0〉〈1|+ i|1〉〈0| σz = |0〉〈0| − |1〉〈1|

Suppose a generic pure state of a qubit |ψ〉 = α|0〉+ β|1〉. The associated projector is therefore

|ψ〉〈ψ| =| α |2 |0〉〈0|+ | β |2 |0〉〈0|+ αβ∗|0〉〈1|+ α∗β|1〉〈0|

Recalling the expressions of Pauli matrices in terms of projectors, one has:

|ψ〉〈ψ| = 1

2
(1 + (| α |2 − | β |2)σz + 2 Re(αβ∗)σx + 2 Im(αβ∗)σy)

From the fact that σ2
k = I it follows that |ψ〉〈ψ| = 1

2 (1 +
∑
k〈σk〉ψσk), that can be expressed as:

|ψ〉〈ψ| = 1

2
(1 + n̂ · ~σ), with n̂ =

 〈σx〉ψ
〈σy〉ψ
〈σz〉ψ

 =

 2 Re(αβ∗)
2 Im(αβ∗)
| α |2 − | β |2
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The vector n̂ corresponds to the expectation value of the ”magnetic moment” ~σ in the given
state. It is expressed in terms of the Bloch sphere, already discussed. Indeed there is a one-to-
one correspondence employing spherical coordinates with the expressions obtained in the previous
section:

|ψ〉 ≡ |+ n̂〉 = cos
θ

2
|0〉+ exp iφ sin

θ

2
|1〉 ←→ n̂ ≡ n̂(θ, φ) =

 sin θ cosφ
sin θ sinφ

cos θ


A two-dimensional particle, such as a spin- 1

2 particle can encode a classical bit: it is enough to
prepare two states of a given basis and always measure in this basis. However, it is possible to do
more than this as prepare coherent superpositions and measure in different basis. A quantum bit is
potentially richer than a classical bit (cbit). The first question one can raise is how many cbits are
required to transmit a qubit. A generic qubit is determined by a complex number and would need
infinite bits to be encoded. But this doesn’t mean that one qubit contains an infinite amount of
classical information: the information encoded in a quantum state has to be read through a measure-
ment. Only one cbit is accessible to the observer once the measurement is made. This fact is true
for any amount of qubits. Although the amount of information accessible in an encoded quantum
particle is the same as in a classical encoding, employing quantum states one can accomplish tasks
that are impossible in terms of classical information theory.

2.3 Entanglement and Bell inequalities

Before giving some examples of applications of quantum information processing, let’s describe more
deeply the feature of entanglement which is sometimes described as the most quantum feature. It
is a physical property with relevance in Quantum Information Theory and has a very important
role in understanding Quantum Mechanics. This is because all entangled pure states violate the so-
called Bell inequalities which are experimentally measurable conditions that allow to test quantum
mechanics against the set of local realistic models introduced by Einstein, Podolsky and Rosen
(EPR) in 1935.

In 1935, these three authors published a letter entitled ”Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete?”, where they raised doubts about the completeness of
QM as local-realistic theory. Their arguments were for a state in an infinite-dimensional composite
system, but can easily be adapted to the simplest case of two qubits.

First of all, they presented three requirements any physical theory should satisfy:

• Locality: Events in space-like separated regions cannot have causal relation.

• Reality: If, without in any way disturbing a system, we can predict with certainty the value
of a physical quantity, then there exists an element of physical reality corresponding to this
physical quantity.

• Completeness: Every element of the physical reality must have a counterpart in the physical
theory.

All these conditions seem intuitively natural and hardly restrictive. Let’s apply these requirements
to a quantum scenario. Consider two separate parties sharing an entangled singlet state,

|Ψ−〉 =
1√
2

(|01〉 − |10〉)

When both parties, Alice and Bob, measure in the computational basis, or z direction, they ob-
tain perfectly anti-correlated outcomes. Actually, this also happens for all possible bases. Denoting
by | ± n̂〉 any vector in the Bloch sphere and its orthogonal, one can see that

|Ψ−〉 =
1√
2

(|+ n̂〉| − n̂〉 − | − n̂〉|+ n̂〉)
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which follows from the fact that the singlet is rotationally invariant, it does not change when
the same unitary transformation is applied on both sites, i.e. |Ψ−〉 = U ⊗U |Ψ−〉. This implies that
perfect anti-correlation are observed for all bases. Therefore, when Alice measures in the direction
n̂ and obtains the result +(−), she knows the outcome of Bob’s measurement in the same direction
will be −(+). Imagine now an experiment where a source is preparing and sending a singlet state
to two distant parties. The parties choose between two non-commuting observables, say σx and
σz. The choices by Alice and Bob are such that they define space-separated event, i.e. they cannot
influence each other. If QM has to be consistent with the three previous postulates, it is necessary
that:

• After reading the outcome for her measurement, say z, Alice knows in a deterministic way
what the outcome of the same measurement by Bob is.

• Because of the space-like separation of events between the parties and relativity, Alice’s choice
of measurement cannot influence Bob’s result. Alice is able to predict the value of σz for Bob
without disturbing his system. Therefore σz on Bob’s side is an element of physical reality.
But one could have applied the same reasoning in the case Alice chooses σx and again conclude
that σx for Bob is another element of physical reality.

• These two elements of physical reality should be reflected by the physical theory. However,
QM cannot assign definite values to σx and σz because they are non-commuting observables.
Then, QM is not a complete theory.

The conclusion of the EPR program was that there should be a complete theory alternative to
QM.
J.Bell in 1964 ([10]) identified a series of conditions, the so-called Bell inequalities, that any local
realistic theory should satisfy and provided a quantum experiment that violated the inequalities. The
experimental demonstration of Bell inequalities violation closed the EPR program for the existence
of a local realistic theory alternative to QM. In the following lines, we present the most known Bell
inequality, the Clauser-Horne-Shimoni-Holt (CHSH) inequality, that will play a crucial role in the
protocol presented in chapter 5.

The CHSH inequality refers to a scenario where two separated parties can choose between two
measurements of two outcomes on two particles they receive from a common source (see Fig. 2.2). In
a local theory, the outcome of the measurement by one of the parties, say Alice, has to be independent
of Bob’s measurement. It can only depend on the choice by Alice, x, and the common preparation
at the source, denoted by λ. Therefore, if one denotes by ax (by) the outcome for measurement Ax
(By), one has p(ax|Ax, By, λ) = p(ax|Ax, λ). In this simplest scenario, any deterministic preparation
at the source should specify the outcomes for the four possible measurements. An example of such
a preparation can be λ = (+,+;−,+), i.e. a0 = a1 = b1 = 1 and b0 = 0. It is simple to see that for
all these preparations

Figure 2.2: Experimental depiction of the CHSH inequality. Two separated parties measure 2 2-
outcome observables, A0 and A1 for Alice and B0 and B1 form Bob. The choice of measurement is
represented by a bit, x and y for Alice and Bob respectively. The two possible outcomes are labeled
±1
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B = a0(b0 + b1) + a1(b0 − b1) = ±2

Indeed since the outcomes are labeled by ±, one has two possibilities:

1. b0 = b1 and then B = 2a0b0 = ±2 or

2. b0 = −b1 and then B = 2a1b0 = ±2 again.

In the more more general situation where the source is sending different preparations, λ, with
some probability p(λ), one can bound the expectation value of the previous quantity

−2 ≤ 〈B〉 = 〈a0(b0 + b1) + a1(b0 − b1)〉 ≤ 2

where 〈〉 denotes expectation with probability p(λ). This is a condition that all theories with
the restrictions established by EPR should satisfy.

It is relatively easy to design a quantum experiment where this inequality is violated. Consider
the situation where the source is sending a pair of spin-one-half particles in the singlet state. Em-
ploying the algebra of Pauli matrices defined above, we have the following result: if Alice and Bob
measure in the n̂A and n̂B directions respectively, then 〈σn̂A ⊗ σn̂B 〉Ψ− = −n̂A · n̂B .

Doing some calculations, it is easy to see that

~σ ⊗ 1|Ψ−〉 = −1⊗ ~σ|Ψ−〉

Therefore,

〈σn̂A ⊗ σn̂B 〉Ψ− = 〈Ψ−|(σn̂A ⊗ σn̂B )|Ψ−〉 = −〈Ψ−|(n̂A · ~σ)(n̂B · ~σ))⊗ 1)|Ψ−〉 =

= −nAinBj tr(ρAσiσj) = −n̂A · n̂B

And that the density operator of Alice system can be expressed as ρA = 1
21

The projector of the singlet state can be expressed as

PΨ− = ρ = |Ψ−〉〈Ψ−| = 1

4
(1⊗ 1− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz)

Figure 2.3: Measurement setting for Alice and Bob in the CHSH scenario

If Alice and Bob apply the measurements in Figure 2.3 considering that ~ai = n̂Ai · ~σ and the

previous expression 〈~ai~bj〉 = −n̂Ai · n̂Bj = − cos(θ) where θ is the angle between the vectors,

〈~a0
~b0〉 = 〈~a0

~b1〉 = 〈~a1
~b0〉 = − cos(

3π

4
) =

1√
2

and
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〈~a1
~b1〉 = − cos(

π

4
) = − 1√

2

So we have that the value of the expected value 〈B〉Ψ− given a singlet is distributed and measured
according to Figure 2.3 is:

〈B〉Ψ− = 〈~a0
~b0〉+ 〈~a0

~b1〉+ 〈~a1
~b0〉 − 〈~a1

~b1〉 = 4
1√
2

= 2
√

2

This value is greater than 2, which means that Quantum Mechanics violates the condition that all
EPR theories satisfy. There is no Local Realistic theory able to reproduce all quantum predictions,
so either QM is wrong or the EPR program is not possible. Bell was then able to map all the EPR
debate into a measurable condition. The only thing left was to design the experimental situation
for testing the violation of any of these quantities. The rigorous experimental verification of the
violation of a Bell inequality came almost two decades after Bell seminal paper. Since then, other
experimental tests have been performed, all in favor of the quantum formalism.

Two facts should be mentioned that are important for the rest of development of the present
document:

• First, although only one inequality is here presented, there are many similar conditions that
characterize the set of probability distributions achievable in a local realistic theory, that read

P (ax, by | Ax, By, λ) =
∑
λ

P (λ)P (ax | Ax, λ)P (bx | Bx, λ)

The fact that quantum mechanics predicts a violation of a Bell inequality means that one
cannot write a vector of quantum probabilities violating an inequality in the previous form
(as a convex sum of separable correlations).

• Second, despite the fact that QM predicts the violation of these inequalities, no faster-than-
light communication is allowed in the quantum formalism. This would be the case if Alice’s
measurement could change Bob’s measurement statistics.

It is straightforward to prove that this is not possible. Consider the situation where Alice and
Bob share a quantum state ρAB on which they apply two measurements. These measurements
are described by a set of positive operators, {Ax} and {By}, that sum up to the identity. The
partial state ρA is defined below, for any measurement Ax on Alice’s particle. It must hold
that

trA(ρAAx) = trAB(ρAB(Ax ⊗ 1B)) =

=

dA∑
j=1

dB∑
k=1

〈aj , bk|ρAB(Ax ⊗ 1B)|aj , bk〉 =

=

dA∑
j=1

〈aj | trB(ρAB)Ax|aj〉 = trA(trB(ρAB)Ax) (2.2)

So by identification

ρA = trB(ρAB) =

dB∑
k=1

〈bk|ρAB |bk〉 (2.3)

This is the general definition of the partial state on A which is obtained by partial trace over
the other system B. Since the trace is an unitary invariant, it implies that whatever Bob does,
the partial state of Alice will remain unchanged.

The probability for Alice obtaining outcome x is

P (x) =
∑
y

P (x, y) =
∑
y

tr(Ax ⊗ByρAB) = tr(Ax ⊗ 1BρAB) = tr(AxρA)
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where we used that
∑
y By = 1B This means that Alice’s local measurement statistics cannot

be affected by any measurement by Bob (and viceversa), so no faster-than-light communication
is possible. This is known as the no-signaling through entanglement principle, Bob cannot use
entanglement to send any message to Alice.

As already stated, the concept of entanglement arises from the structure of quantum systems
in Hilbert spaces. Considering a multipartite system consisting of n subsystems, the total state
space is described in classical terms as the cartesian product of the n subsystems. This implies that
the total state is always a product state of the n separate systems. Notwithstanding in quantum
terms, the total Hilbert space H is a tensor product of the n subsystems, H = ⊗nl=1Hl. Then, the
superposition principle allows to write the total state of the system as:

|ψ〉 =
∑

i1,i2...,in

ci1 · ci2 · · · ci1 |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 =
∑
in

cin |in〉 (2.4)

The total state of the system cannot be, in general, described as a product of states of individual
subsystems, i.e. |ψ〉 6= |ψ1〉⊗|ψ2〉⊗· · ·⊗|ψn〉. This means, that it is in general not possible, to assign
a single state vector to any of n subsystems. It expresses formally a phenomenon of entanglement,
which in contrast to classical superposition, allows to construct exponentially large superposition
with only linear amount of physical resources. It is just what allows to perform nonclassical tasks
employing quantum features of nature.

In the case of a bipartite pure system, all the entanglement properties of a given state |ψ〉 ∈ CdA⊗
CdB can be derived from its Schmidt decomposition, obtained from the singular value decomposition
of the matrix of coefficients of the bipartite state in a given basis. Given the bases {|j〉A} and {|k〉B},
then the state can be written as:

|ψ〉 =

dA∑
j=1

dB∑
k=1

cjk|j〉A|k〉B (2.5)

And the matrix C of the coefficients cij can be decomposed in the form C = UDV where D is
diagonal, with Dij = λiδij and U and V are unitary matrices. The bipartite state can be expressed
in the orthonormal Schmidt bases |i〉A and |i〉B .

|ψ〉 =
∑
i

λi|i〉A|i〉B =
∑
i

λi|ii〉 (2.6)

The set of {λi} are called Schmidt coefficients. The Schmidt decomposition allows us detecting
when a given pure state is entangled: That is when its Schmidt decomposition has more than one
term.

Entanglement of mixed states is not longer equivalent to being non-product, as in the case of
pure states. Instead, one calls a mixed state of n systems entangled if it cannot be written as a
convex combination of product states. In classical terms, a probability distributions can always be
written as mixtures of product distributions.

ρ 6=
∑
i

piρ
i
1 ⊗ · · · ⊗ ρin (2.7)

The states which are not entangled are called separable. In practice it is hard to decide if a given
states is separable or entangled basing on the definition itself. Therefore one of the fundamental
problems concerning entanglement is the so called separability problem. We can define entangled
states as the ones that cannot be simulated by classical correlations.

This section, apart from its fundamental and historical importance, shows why entanglement is
so important in Quantum Mechanics and Quantum Information Theory. It is a concept that cannot
be explained by a standard (local) model. Quantum correlations have no classical analog, so one can
hope to find new information tasks exploiting these intrinsically quantum features. In the following
sections, we show some of these applications.
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2.3.1 A note on experiments and loopholes

Two possible loopholes have been identified in the experimental scrutinizing of quantum non-local
correlations.

• If one does not arrange the timing adequately, the detections may be attributed to sub-luminal
communication: this is called the locality loophole. In order to close this loophole, the events
must be ordered in space time in such a way that arrival and measurement of each particle on
Alice’s and Bob’s side must be performed before the light cone generated by the moment of
measurement choice arrives the other party.

• The other possible problem is known as detection loophole. In all experiments, the violation of
Bell’s inequalities is measured on the events in which both particles have been detected. Since
detectors don’t have perfect efficiency, there is also a large number of events in which only
one particle is detected, while the other has been missed. The detection loophole assumes a
form of conspiracy, in which the undetected particle “chose” not to be detected after learning
to which measurement it was being submitted. In this scenario, if the detection efficiency is
not too high, it is pretty simple to produce an apparent violation Bell’s inequalities with local
variables.

2.3.2 Local operations with classical communications

The set of local operations assisted with classical communication (LOCC) plays a fundamental role
in the characterization and quantification of entangled states. The only way these correlations can
be created between two separated parties is

1. by sending quantum particles though a quantum channel or

2. meeting together and performing a global quantum operation.

If these two operations are not possible, it is clear that no entanglement can be created. In other
words, if two parties, Alice and Bob, share a quantum state, the amount of entanglement in this
state cannot be increased if they exchange classical communication or perform operations on their
local systems. It is then said that Entanglement is a quantum resource that cannot increase under
LOCC.

Assume now one has to compare two states, ψ1 and ψ2, in terms of their entanglement properties.
If ψ1 can be transformed into ψ2 by LOCC, then ψ1 is at least as entangled as ψ2. Indeed, any
Quantum Information processing task by Alice and Bob using ψ2 can be performed if they start
from ψ1. Consequently, one can say that the study of the entanglement properties of quantum
states, then, can be rephrased as the study of their interconversion by LOCC. The following section
gives examples of these tasks.

2.4 Some examples of Quantum information theory

This section exposes different applications of quantum mechanics to information processing tasks,
concentrating on communication applications where separated parties send information encoded on
quantum states.

First, dense coding and quantum teleportation are introduced as examples of intrinsically quan-
tum information tasks without classical analog. Then the quantum no-cloning theorem is derived
and is used to introduce Quantum Cryptography.

2.4.1 Dense coding

Suppose that two separate parties, Alice and Bob, are willing to interchange information through
quantum states. It is known that if Alice can only send a qubit, she cannot transmit more than one
classical bit. If Alice and Bob share the following entangled state:
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|Φ+〉 =
1√
2

(|0A〉|0B〉+ |1A〉|1B〉)

Alice and Bob’s quantum systems are correlated, they share a maximally entangled state of
two qubits (called 1 entangled bit). Alice wants to send classical information to Bob by sending a
quantum particle. As it is shown below, she can indeed transmit 2 classical bit by sending her half
of the shared state. Alice applies on her local state one of the following unitary operations: 1, σx,
iσy or σz. The resulting states are:

|Φ+〉 = (1⊗ 1)|Φ+〉 =
1√
2

(|00〉+ |11〉)

|Ψ−〉 = (iσy ⊗ 1)|Φ+〉 =
1√
2

(|01〉 − |10〉)

|Ψ+〉 = (σx ⊗ 1)|Φ+〉 =
1√
2

(|01〉+ |10〉)

|Φ−〉 = (σz ⊗ 1)|Φ+〉 =
1√
2

(|00〉 − |11〉) (2.8)

As already discussed in 2.1, these four states form a basis in C2 ⊗ C2, the so-called Bell basis
(Eq. 2.1). Now, after its processing, Alice sends her particle to Bob. Bob has to distinguish between
four orthogonoal two-qubit states, so he only has to measure in the Bell basis. He can then read
the two bits of information encoded by Alice in a deterministic way. These steps are the so-called
dense coding protocol.

The sharing of an entanglement state at the beginning of the protocol is what allows to commu-
nicate 2 bits sending one qubit. This protocol is not useful in a practical way, but its fundamental
interest is in showing how entanglement is at the core of a lot of quantum information processing
tasks. This can be expressed in the following terms3:

1 ebit+ 1 qubit→ 2 cbits

2.4.2 Quantum teleportation

Quantum teleportation can be seen as the process complementary to dense coding but is a much
more important communication scheme, from a fundamental and applied point of view.

The scheme assumes as usual two separate parties. Alice receives an unknown qubit, e.g. a
spin-one-half particle pointing into an unknown direction. She has to transmit this particle to
Bob. Assume she cannot transmit the particle directly because the channel is noisy and quantum
information can’t be reliably transmitted through it. Alice could try to read her quantum state
and send the information acquired by the measurement to Bob, who could prepare a quantum state
accordingly. However, this procedure is invalid: Alice’s state is unknown and her measurement will
perturb it. Additionally, if her measurement could provide her full information about her state, she
would require an infinite number of bits to describe it to Bob and help him prepare the state (in
general). If Alice and Bob share at the beginning a maximally entangled state of two qubits, as
in the dense coding situation, they can improve their situation. Denoting by P the particle in the
unknown state |ψ〉 to be transmitted, where |ψ〉 = α|0〉+ β|1〉, the global initial state reads:

|Ψ〉 = |ψ〉P |Φ+〉AB

After some algebra, one can rewrite the previous state as:

|Ψ〉 =
1

2
(|Φ+〉PA(α|0〉+ β|1〉)B + |Φ−〉PA(α|0〉 − β|1〉)B+

+ |Ψ+〉PA(α|1〉+ β|0〉)B + |Ψ−〉PA(α|1〉 − β|0〉)B) (2.9)

3ebit stands for pair of entangled bits and cbit stands for classical bit
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Alice then measures employing the Bell basis defined in equation 2.1. Bob’s state changes
depending on Alice’s result. For instance, if Alice projects her two-qubit state onto |Ψ+〉, Bob’s
state is α|1〉 + β|0〉. For all possible results from Alice’s measurement, Bob’s state resembles the
initial state of P. Alice communicates the result to Bob and since the four possible outcomes have
the same probability, she has to send two bits to identify her result. Depending on the information
he receives, Bob then applies a unitary operation that transforms his state into |ψ〉 as:

1((α|0〉+ β|1〉)B) = |ψ〉
σz((α|0〉 − β|1〉)B) = |ψ〉
σx((α|1〉+ β|0〉)B) = |ψ〉

σzσx((α|1〉 − β|0〉)B) = |ψ〉

After applying the corresponding operation, Bob’s particle is in P ’s unknown state.

It is important to notice that no quantum particle is sent through the channel. Indeed, the two
bits Alice sends do not contain information on |ψ〉. The quantum information on the state travels
through the correlations on |Φ+〉. This does not mean that two classical bits are sufficient to send all
the information contained on a quantum state; the process of quantum teleportation is impossible
if the parties don’t share an entangled state. After the information processing, no correlations are
left between Alice and Bob (their final state is product). It is said that entanglement is consumed.
The process here presented does not contradict Einstein’s special relativity, there is no faster than
light communication. Bob’s must receive Alice’s information on her measurement result in order
to correct his quantum state choosing which unitary transformation apply. Before acquiring this
information, Bob’s state is a mixture of the four states described, which gives a complete noisy state
(ρB = 1

21). Finally, once the task is completed, Alice does not keep any information on the initial
state |ψ〉. So, teleportation is consistent with the following property of Quantum Information, the
no-Cloning theorem. It can be expressed as:

1 ebit+ 2 cbits→ 1 qubit

2.4.3 Quantum No Cloning Theorem

The previous sections have shown Quantum Information applications that exploit quantum effects
with no classical analog. Quantum teleportation also improves the understanding of the coexistence
of Quantum Mechanics and Special Relativity. However, the encoding of information on quantum
states suffer from limitations that do not appear in classical information theory. The most important
one, here presented, is given by the quantum no cloning theorem. It states that quantum informa-
tion cannot be copied. At first sight this can be considered as a serious drawback for information
processing. However there are ways to circumvent this problem (with quantum error correction
techniques) and, moreover, this limitation can be turned in an advantage in the form of Quantum
Cryptography. To prove the No-cloning theorem. let’s first assume that there is a machine dupli-
cating the quantum state of a system, i.e. for any incoming state |ψ〉 ∈ C2, the machine outputs
|ψ〉|ψ〉. In sake of simplicity, let’s assume the system to be of dimension 2. This quantum process
has to be mathematically described by a linear map L

L(|ψ〉 ⊗ |C〉) = |ψ〉 ⊗ |ψ〉

where |C〉 is the state of the machine where the clone is produced. Since it is assumed that the
machine works for any initial state,

L(|0〉 ⊗ |C〉) = |0〉 ⊗ |0〉
L(|1〉 ⊗ |C〉) = |1〉 ⊗ |1〉 (2.10)

Since L is linear,
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L(
1√
2

(|0〉+ |1〉)⊗ |C〉) =
1√
2

(L(|0〉 ⊗ |C〉) + L(|1〉 ⊗ |C〉))

=
1√
2

(|0〉|0〉) + |1〉|1〉))

which is not equal to the searched state 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

Therefore, the linearity of Quantum Mechanics makes the cloning process impossible. One
can construct a cloning machine producing two copies of two orthogonal states but it will fail when
cloning any coherent superposition of these two states. Superposition principle and nonorthogonality
are at the core of the no-cloning theorem.

2.5 Introduction to Quantum Cryptography

From the viewpoint of this memoir, all the previous sections are the necessary steps to arrive to
this section, the description of the employment of quantum features to attain secrecy and achieve
secure key distribution. The presentation and understanding of the quantum formalism, quantum
measurement, entanglement and the quantum cloning theorem leads to the introduction of quantum
cryptography as it was originally developed.

The previous section, shows limitations of quantum information processing but also opens the
door to new possibilities. The No cloning theorem is connected to a more known limitation of the
quantum formalism: the measurement process perturbs the state of the system. Indeed, perfect
cloning would violate the fact that the state of a single quantum system cannot be perfectly known
(producing a clones and measuring them, one could know everything about the original system
without interacting with it). The perturbation of the state of a quantum system once one tries to
measure it can be employed to detect the action of any spy trying to read quantum information
propagating through a channel. Or in other words, the action of the spy, also known as eavesdropper,
is limited by the impossibility of producing a perfect copy of the quantum state. These two ideas lie
at the basis of any Quantum Cryptography protocol. Here, the first of these schemes, the so-called
BB84 protocol, invented in 1984 by Bennett and Brassard ([7]), is presented.

2.5.1 BB84 protocol

In any cryptographic scenario, two honest parties, Alice and Bob, want to exchange information
in a private way. There is also a third dishonest party, the eavesdropper, also called Eve, that
wants to read this information. Alice and Bob’s task in any standard cryptographic protocol for
key distribution is to establish a shared secret key, namely a list of perfectly correlated bits which
Eve has no information about. This secret key is later employed to encode information in a secure
way. In the case of the BB84 protocol, the key is established as follows:

1. Alice chooses randomly one of the four possible states:

| ± x〉 =
1√
2

(|0〉 ± |1〉) | ± y〉 = 1√
2
(|0〉 ± i|1〉) (2.11)

The bit 0 (1) is encoded onto |+ x〉 and |+ y〉 (| − x〉 and | − y〉). The vectors | ± x〉 and
| ± y〉 define the x and y basis.

2. Bob measures randomly in one of the two bases. He maps his result into a classical bit using
the same convention as Alice.

3. Alice broadcasts through a classical channel her basis preparation, x and y. In case Bob’s
measurement basis is the same as Alice’s, he keeps the symbol, else he rejects. This process is
called basis reconciliation.
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Note that if Alice and Bob’s bases agree, their bits are perfectly correlated. On the other hand,
if the bases are different, Alice’s preparation and Bob’s result are completely uncorrelated. Indeed,
assume that Alice has sent | ± x〉 and Bob measures in the y basis. He will obtain the outcome
corresponding to |+ y〉 with probability P (+y | +x) =| 〈+x|+ y〉 |2= 1

2 . This is equivalent to Bob
discarding Alice’s state and flipping a coin. Therefore, after the basis reconciliation, Alice and Bob
discard all the bad instances and share a list of perfectly correlated random bits.

Why Eve cannot break this protocol? In order to retrieve information, she has to interact with
the quantum particle transmitted (say a photon), encoding the information as it is propagating to
Bob By the No-Cloning theorem, she cannot make a perfect copy of the particle, forward the first
clone to Bob and keep the second one.

However, she can try to measure the quantum state of the particle and read the information.
At the moment she can make her measurement, she does not know the basis chosen by Alice, as it
is transmitted later. This strategy is called intercept-resend. This simple and even practical attack
consists in Eve measuring each qubit in one of the two bases, precisely as Bob does. Then, she
resends to Bob another qubit in the state corresponding to her measurement result. In about half
of the cases Eve will be lucky and choose the basis compatible with the state prepared by Alice.
In these cases she resends to Bob a qubit in the correct state and Alice and Bob won’t notice her
intervention. However, in the other 50% cases, Eve unluckily uses the basis incompatible with the
state prepared by Alice. This necessarily happens, since Eve has no information on Alice’s random
generator (hence the importance that this generator is truly random). Focusing on the cases where
Bob’s basis is the same as Alice’s (after all, these are the only cases that pass the basis reconciliation
process to generate a secret key), since Eve may have prepared a “wrong” state, Bob will obtain
the expected result with probability one half. That is, Eve’s strategy is introducing errors on Bob’s
side. Alice and Bob can detect Eve’s intervention by making public a fraction of the symbols where
their bases agree. If there are no errors, it is very likely that nobody has tried to eavesdrop their
communication, and they can safely employed the remaining bits as a secret key. If they see an
unexpectedly high amount of errors, someone is eavesdropping the channel, so they abort. Therefore,
what Quantum Cryptography prevents is that an eavesdropper reads the information Alice and Bob
are exchanging without being detected.
The next chapter introduces concepts from classical information theory that are able to increase
secrecy in a quantum key distribution protocol.

2.5.2 EPR Protocol and entanglement as source of secrecy

Before finishing this brief introductory chapter about quantum information theory and cryptography,
let’s explore the relationship between entanglement and quantum cryptography.

The key bits generated in the BB84 protocol may appear to have been originated by Alice.
However, it can be seen that the key can arise from a random process involving the properties of
entanglement. The following protocol illustrates this and is the motivation of the protocol discussed
ahead - that is a fundamental randomness with the same properties as entangled particles can be
employed to extract a secret key-.
Alice could have prepared the states and send half of each to Bob, or a third party could have
prepared the pairs of entangled states and send half to each of the parties. If we replace the
quantum channel carrying qubits from Alice to Bob by a channel carrying 2 qubits from a common
source, one qubit to Alice and one to Bob, a first possibility would be that the source emits the two
qubits always in the same state chosen randomly among the 4 states of the BB84 protocol. Alice
and Bob would then both measure their qubit in one of the two bases, again chosen independently
and randomly. The source then announces the bases and Alice and Bob keep the data only when
they happen to have done their measurements in the compatible basis. If the source is reliable, this
protocol is equivalent to the BB84 one: Everything is as if the qubit propagates backwards in time
from Alice to the source, and then forward to Bob. But better than trusting the source, which could
be in Eve’s hand, the EPR protocol assumes that the n qubits pairs are emitted in a maximally
entangled state like:

|Ψ+〉 =
|00〉+ |11〉√

2
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In his 1991 paper Artur Ekert suggested to base the security of this 2−qubit protocol on Bell’s
inequality. For this, Alice and Bob have a third choice of basis then select a random subset of their
entangled pairs and test if they violate Bell’s inequality (to establish that they are not product
states). In this way the probability that they happen to choose the same basis is reduced from 1

2 to
2
9 , but at the same time as they establish a key they collect enough data to test Bell inequality. If
the test is passed, it means they hold sufficiently pure entangled states, placing a lower bound on
the fidelity of the remaining pairs. Then, when Alice and Bob happen to use the same basis, both
the x−basis or both the y−basis, i.e. in about half of the cases, their results are identical, providing
them with a common key.

Although the exact relation between security and Bell inequality is not yet fully known, there
are clear results establishing fascinating connections. The protocol analyzed in chapter 5 was a step
forward to deepen the understanding of this relationship.



Chapter 3

Information theory for secret key
agreement

This chapter provides the definitions and results from an information-theoretic security standpoint
that will be employed in the no-signaling key distribution protocols of chapter 5. The concepts of
advantage distillation, privacy amplification and intrinsic information are described.

One of the basic problems in cryptography is to transmit a message securely from a sender,
Alice, to a receiver, Bob, over an insecure channel overheard by an adversary/eavesdropper, Eve, in
such a way that Eve does not learn any information about the message. One possibility for solving
this problem is that the parties generate a secret key by means of insecure communication and then
use this key as the private key of a classical cryptosystem (e.g. a one-time pad) for transmitting in
a secure way the message. This is the motivation behind the problem of secret key agreement by
insecure communication.

Quantum cryptography has triggered since its origins research in security key agreement based in
information theory. This will be the framework that we will employ to study the protocol presented
in chapter 5. The security of an information-theoretically-secure scheme is based in statements from
information theory, initiated in 1948 by Claude Shannon, the mathematical theory of information
and communication based on probability theory and statistics.

As a sort of introduction to the rest of the chapter, let’s give some details about the relationships
between quantum cryptography and security information theory that are relevant for this project.
The best known example of this relationship is probably the development of privacy amplification
algorithms. This in turn triggered the development of new cryptosystems based on weak but classical
signals, emitted for instance by satellites (Maurer 1993). These new developments required secret
key agreement protocols that can be used even when Eve has more information than the honest
parties. Such protocols, called advantage distillation, necessarily use two way communication and are
much less efficient than privacy amplification. It is somewhat surprising that secret key agreement
is possible even if Alice and Bob start with less mutual (Shannon) information than Eve. However,
they can take advantage of the authenticated public channel: Alice and Bob can decide which series
of realizations to keep, whereas Eve can’t influence this process. (Maurer 1993, Maurer and Wolf
1999). A second remarkable connection between quantum and classical secret key agreement is: If
Eve follows the strategy which optimizes her Shannon information, under the assumption that she
attacks the qubit one at a time (the so-called individual attacks, that we will define in chapter 5),
then Alice and Bob can use advantage distillation if and only if Alice and Bob’s qubits are still
entangled. This connection between the concept of entanglement, central to quantum information
theory, and the concept of intrinsic classical information, central to classical information based
cryptography (Maurer and Wolf 1999), has been shown to be general (Gisin and Wolf 2000). This
chapter will deal with the definition of these concepts.

3.1 Classical Information theory and Entropy

For the rest of this chapter, we will use the following definitions and notation:

A discrete random experiment is a pair (Ω, P ), where Ω is a finite or countably-infinite set, called

29
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sample space and P is a function
P : Ω→ [0, 1]

called the probability function, such that ∑
ω∈Ω

P (ω) = 1

An element ω ∈ Ω is called an elementary event. A set A ⊆ Ω is an event. The mapping P is
extended to the set of parts of Ω, i.e. P(Ω) = 2Ω

P [A] =
∑
ω∈(A)

P (ω)

The properties of the probability function are the described, for example in [31].

X denotes a random variable with values in X . Its associated probability distribution is defined
as PX(x) =

∑
ω:X(ω)=x P (ω).

Let’s give definitions and properties about classical information theory.

Definition 3.1 The (Shannon) entropy H(X) of a random variable X with probability distribution
PX is

H(X) ≡ −
∑
x∈X

PX(x) log(PX(x)) = E [− logPX ] (3.1)

we denote by log the binary logarithm.

The units of the entropy are measured in bits. The entropy of a binary random variable with
probability distribution [p, 1− p] is given by the binary entropy function

h(p) ≡ −p log p− (1− p) log(1− p) (3.2)

The joint entropy of random variables X1, X2, . . . , Xn is the entropy of the joint distribution
H(X1X2 · · ·Xn) = H(PX1X2···Xn)

Proposition 3.1 The entropy has the following properties

0 ≤ H(X) ≤ log |X |

with equality in the following cases:

• H(X) = 0 if and only if ∃x ∈ X tal que PX(x) = 1

• H(X) = log |X | iff ∀x ∈ X we have p(x) = 1
|X | , i.e. X is uniformly distributed.

For random variables X and Y , we have

H(XY ) ≤ H(X) +H(Y )

with equality if and only if X and Y are statistically independent. The quantity H(XY )−H(X)
can be interpreted as the entropy of the random variable Y when X is given.

Definition 3.2 The conditional entropy of Y when given X is defined as

H(Y |X) ≡ H(XY )−H(X) (3.3)

This entropy is not the entropy of a specific probability distribution, but the expectation of
entropies H(Y |X = x)

H(Y |X) ≡ EX [H(Y |X = x)] (3.4)
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The conditional entropy satisfies

0 ≤ H(Y |X) ≤ H(Y ) (3.5)

This inequality can be intepreted as the fact that additional knowledge can never increase un-
certainty. We define the quantity

Definition 3.3 The mutual information between X and Y is defined as:

I(Y ;X) ≡ H(Y )−H(Y |X) = H(X) +H(Y )−H(XY ) ≥ 0 (3.6)

The following holds
I(Y ;X) = I(X;Y )

Analogously, the quantity I(Y ;X|A) ≡ H(X|A)−H(X|Y,A) can be defined

Definition 3.4 The conditional mutual information between X and Y , given Z is defined as:

I(X;Y |Z) ≡ H(X|Z)−H(X|Y,Z) = EZ [I(X;Y |Z = z)] (3.7)

The Figure 3.1 represents the different quantities defined for two random variables in a graphical
way.

Figure 3.1: Graphical representation of mutual information for two random variables

For three random variables, the graphical representation is shown in figure 3.2.

Figure 3.2: Graphical representation of mutual information for three random variables and respective
conditional mutual information.

The quantity represented in the region in the middle

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z)
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is symmetric in X, Y and Z and can be negative. the other regions represent information-theoretic
quantities that are always positive.

This brief description of the definitions from information theory is a prerequisite to the results
of unconditionally secure key agreement of the following sections.

3.2 Unconditionally secure key agreement

The field of information theoretic perfect secrecy and unconditionally secure key agreement began
with the publication of Shannon’s seminal paper [20]. The result of perfect secrecy and the im-
practicality of secret key extraction derived from Shannon’s theorem was subsequently averted due
to modifications in the models and security requirements to achieve practical information theoretic
security in realistic scenarios.

The classical scenario of symmetric cryptosystems is as follows: a message M , a key K and a
ciphertext C; and the trusted parties Alice and Bob, and the attacker Eve.

Definition 3.5 A cipher is called perfectly secret if the ciphertext reveals no information about the
message, that is, if I(M ;C) = 0.

The one-time pad which consists in the use of a uniformly distributed key independent of M and
with its same length is perfectly secure. The ciphertext is obtained as C = M ⊕K. To prove this,
note that the key is uniquely determined when given the message an ciphertext, i.e. H(K,MC) = 0.
Additionally, we have I(K;C|M) = H(K|M) −H(K|CM) = H(K) + I(K;M) = N , being N the
message length. It follows that I(M ;C) = H(C) − H(C|M) and since H(C) ≤ log |C| = N and
H(C|M) = H(C|KM) + I(C;K|M) we have 0 ≤ I(M ;C) ≤ 0.

For perfect secrecy, a secret key as long as the message must be shared and used once. Shannon’s
theorem asserts the optimality of this cryptosystem respect to key length.

Theorem 3.1 For every perfectly secret uniquely decodable cryptosystem we have

H(K) ≥ H(M)

This theorem implies that perfect secrecy is possible only between parties who share a secret key
of length at least equal to the entropy of the message transmitted. Thus every perfectly secret cipher
has the impracticality of the one time pad. However, the assumption that the adversary has perfect
access to the ciphertext is too pessimistic and unrealistic. Thus analyzing secret agreement models
in which the information the adversary obtains is limited in some way, translates into deriving
information-theoretically-secure key agreement and secret message transmission. The condition of
the existence of a bound in the adversary’s knowledge can be achieved on the presence of noise
in the communication channel, the fact that the adversary’s memory capacity is limited or on the
principles of quantum mechanics.

The general scenario for an interactive model of secret key agreement by public discussion and
common information is described as:

• The parties Alice and Bob who want to establish a mutual secret key have access to the
realizations of random variables A and B respectively.

• The adversary Eve knows a random variable E

• PABE is the joint distribution of the random variables.

• The legitimate partners are connected by an unsecure but authentic channel: it can be pas-
sively overheard by Eve but over which no undetected active attacks are possible.

Assuming that the parties have access to a number of independent realizations of the correspond-
ing random variables, the secret key rate in this model is defined as the maximal rate at which Alice
and Bob can generate a highly secret key by communication over the insecure channel, depending
on the amount of randomness (number of realizations of X and Y ) necessary. The secret key rate
is denoted by S(A;B ‖ E).
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Let’s describe each of the phases of secret-key-agreements protocols with a realistic scenario
described in figure 3.3. A source sends out random bits and the three parties Alice, Bob and Eve
receive this bits over independent binary symmetric channels with error probabilities εA, εB and εE
respectively1.

Figure 3.3: Secret key agreement by public communication from common information: the source of
randomness can be a satellite or a source distributing quantum states or a supra-quantum attacker
distributing local and non-local strategies (as we will see in chapter 5)

Assuming that Eve’s error rate is lower than the honest parties, secret key agreement is sur-
prisingly possible (unless Eve has noiseless access to the source’s bits). We are going to describe
the three phases of a secret key agreement protocol. As mentioned, Alice and Bob can start in a
situation where the adversary has an advantage in terms of information retrieval. The objective of
the first phase of advantage distillation is to generate an advantage over the opponent by exploiting
the authenticity of the public channel. However, Alice and Bob do not generally share a mutual
string after this phase. Hence a possibly interactive error correction phase called information rec-
onciliation can be necessary. Finally, the resulting mutual but only partially secret string must be
transformed into a shorter and highly secret key. This is privacy amplification. In the illustration
3.4, this process is shown graphically, with the relations between the amounts of information that
Bob and Eve have of Alice’s string.

In the following sections we develop each one of these phases, with special emphasis in advantage
distillation that will be employed in the protocol described in chapter 5

3.2.1 Advantage distillation

The idea of advantage distillation is that Alice picks out several instances where she got the same
bit and communicates the instances - but not the bit - to Bob. Bob replies yes only if it happens
that for all these instances he also has the same bit value. For large error rates this is unlikely,
but when it happens there is a large chance that both have the same bit. Eve can’t influence the
choice of the instances. All she can do is to use a majority vote for the cases accepted by Bob. The
probability that Eve makes an error can be much larger than the probability that Bob makes an
error (i.e. that all his instances are wrong), even if Eve’s initial information is larger than Bob’s.

Let’s assume the scenario described in figure 3.3 with error probabilities 0 < εA, εB < 1
2 and

0 < εE < min{εA, εB}. In this case, the adversary has an initial advantage over the trusted parties
in terms of the error probabilities. Considering N independent realizations of the random variables,
we have

I(AN ;BN ) =
∑N
i=1 I(Ai;Bi) = N(1− h(εA(1− εB) + (1− εA)εB))

I(AN ;EN ) =
∑N
i=1 I(Ai;Ei) = N(1− h(εA(1− εE) + (1− εA)εE))

I(BN ;EN ) =
∑N
i=1 I(Bi;Ei) = N(1− h(εB(1− εE) + (1− εB)εE))

1This scenario is described on Maurer’s paper [12]
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Figure 3.4: Phases of a secret-key agreement protocol: A first phase, advantage distillation, to
generate an advantage over the opponent by exploiting the authenticity of the public channel. A
second phase, a (possibly interactive) error-correction phase, information reconciliation, is required.
Finally, the resulting mutual but only partially-secret string must be transformed into a (shorter)
highly- secret string. This final phase is called privacy amplification.

and we have

I(AN ;BN ) < min{I(AN ;EN ); I(BN ;EN )} (3.8)

The basic idea of the advantage distillation phase is that Alice and Bob in this setting use
the public communication authenticated channel to exchange information about their bits in an
insecure way to identify bits that are correct with a higher probability than others. the effect
of advantage distillation can be seen as transforming a situation I(AN ;BN ) < I(BN ;EN ) into a
situation I(Ã; B̃) > I(B̃; Ẽ) where Ã, B̃ represent the result of the processing made by the parties.

Advantage distillation: example 1

In order to introduce the application of advantage distillation to the protocol in chapter 5, let’s
develop the example from above to obtain the bounds necessary for advantage distillation to work.

Let’s suppose that the scenario from figure 3.3 has the following properties:

• There is symmetry in the errors made by Alice and Bob (εA = εB) and thus PA|R(0, 0) =
PB|R(0, 0) = 1− εA. In the case of Eve, we have PE|R(0, 0) = 1− εE

• Alice sends a randomly chosen bit C and computes and sends over the public channel AN =
[C ⊕A1, . . . , C ⊕AN ], with N fixed.

• Bob computes BN = [(C ⊕A1)⊕B1, . . . , (C ⊕AN )⊕BN ] and accepts if this is equal to either
[0, 0, . . . , 0] or [1, 1, . . . , 1]

Bob accepts only if Alice and Bob have the same bit in all positions AN = BN or opposite values
in each position AN = BN ⊕ [1, 1, . . . , 1]. This way, they improve their position compared to the
opponent’s by accepting only in situation of highly reliable transmission. In Eve’s case, she can
compute (CN ⊕ AN ) ⊕ EN and guess C = 0 if at least half of the bits in the string are 0 or 1
otherwise. The idea behind this process is that, for all possible choices of εA and εE , even if Eve’s
error is lower than Alice’s and Bob’s, Bob’s error probability βN about a bit sent by Alice decreases
for N → ∞ asymptotically faster than Eve’s average error probability γN when Eve’s uses the
strategy described, which is optimal.
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Proposition 3.2 For the protocol described, there exist real-valued positive constants b and c with
b < c such that βN ≤ bN and γN ≥ cN for sufficiently large N

Proof: In order to prove the statement we must use(
N

N/2

)
=

N !

((N/2)!)2
≥ 1

2

NN
√

2πNeN

eN (N/2)NπN
=

1√
2πN

2N (3.9)

which is derived from Stirling’s formula limn→∞
n!

(n/e)n
√

2πn
= 1. Let αrs(r, s ∈ 0, 1) be the proba-

bility that the single bit 0 is received by Bob as r and by Eve as s Then we have,

α00 = (1− εA)2(1− εE) + ε2AεE

α01 = (1− εA)2(εE + ε2A(1− εE)

α10 = α11 = (1− εA)εA

(3.10)

Let pα,N be the probability that Bob accepts the message sent by Alice. Assuming that N is even,
then

βN = 1
pα,N

(α10 + α11)N =
1

pα,N
(2εA − 2ε2A)N (3.11)

γN ≥ 1
2

1
pα,N

(
N
N/2

)
α
N/2
00 α

N/2
01 (3.12)

The last expression is half of the probability that Bob receives the correct codeword and that Eve
receives the same number of 0’s and 1’s given that Bob accepts. It gives a lower bound on Eve’s
average error probability when she guesses C for all possible strategies because in this case, she does
not obtain information about the bit C and half of the guesses will be incorrect. Employing the
previous result, we have

γN ≥ 1
2

1
pα,N

1√
2πN

2N
√
α00α01

N =
K(2
√
α00α01)N√
Npα,N

for some constant K and sufficiently large N . For 0 < εE ≤ 1
2 we have

√
α00α01 =

√
(1− 2εA + ε2A − εE + 2εAεE)(ε2A − 2εAεE + εE) > εA − ε2A (3.13)

From

(1− 2εA + 2ε2A)N ≤ pα,N = (1− 2εA + 2ε2A)N + (2εA − 2ε2A)N < 2(1− 2εA + 2ε2A)N (3.14)

We conclude that βN ≤ bN and γN ≥ cN for N large enough and for

b =
2εA−2ε2A

1−2εA+2ε2A

c =
2
√
α00α01

1−2εA+2ε2A
− δ

where δ can be arbitrarily small for large N . This concludes that c > b 2

The fact that Eve’s error probability is greater than Bob’s does not automatically imply that a
key rate can be generated. We will see in the next section for this example the condition fulfilled to
generate a secret key.

Advantage distillation: example 2

In a different setup where the information is not coming from a source but instead shared by Alice
and Bob, we will not use εA and εB but instead eAB as the error probability between Alice and Bob.
This situation is the one that we will employ in chapter 5. For this version of advantage distillation,
Alice reveals N instances such that her N bits are equal: ai1 = ... = aiN = α. Bob looks at the
same instances, and announces whether his bits are also all equal. If indeed bi1 = ... = biN = β,
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which happens with probability (1−eAB)N +eNAB , Alice and Bob keep one instance; otherwise, they
discard all the N bits. Bob’s error on Alice’s symbols becomes

ẽAB =
eNAB

(1− eAB)N + eNAB
≈
(

eAB
1− eAB

)N
. (3.15)

Notice that ẽAB → 0 in the limit N → ∞: this means that α = β almost always, for N
sufficiently large. This remark is used to estimate Eve’s probability of error.

As in the previous example, one finds that Eve’s error on Bob’s symbols goes as

ẽE & C (f(eAB))
N

(3.16)

with f(.) some function which depends on the probability distribution under study. Now, as long
as the condition

f(eAB) >
eAB

1− eAB
(3.17)

is fulfilled, Eve’s error at the end of advantage distillation is exponentially larger than Bob’s for
increasing N : there exists always a finite value of N such that Eve’s error becomes larger than
Bob’s. The bound on the tolerable error after advantage distillation is then computed by solving
eq. 3.17.

3.2.2 Privacy amplification and information reconciliation

After advantage distillation, Alice and Bob have computed strings SA and SB respectively and Bob
has more information about Alice’s string than the adversary. However, Eve also has information
about the content of the strings and the goal of the key-agreement protocol is that Alice’s and Bob’s
strings are equal and secure with high probability.

Information reconciliation is error-correction conducted over a public channel, which reconciles
errors between SA and SB to obtain a shared bit string S while divulging as little as possible to Eve.
After this procedure, suppose Eve has obtained a random variable E which is partially correlated
with S.

Since Alice and Bob must share a common string after information reconciliation, this leads to
a lower bound on the amount of error-correction information C that must be exchanged. Bob has
to know SA exactly with high probability after this step, given SB and C, therefore

0 ≈ H(SA|SB , C) ≥ H(SA|SB)−H(C)

And hence,

H(C) & H(SA|SB))

And the uncertainty about SA that Eve has can as well be reduced by H(C) when she learns C.
A good protocol for information reconciliation should minimize the amount of information leaked
to the adversary and be efficient.

The next step is privacy amplification: shrink a partially-secure string S of length n to a highly-
secret string S′ by public discussion.
Proposed protocols for privacy amplification consists on Alice choosing a suitable number of random
bits and sending them publicly to Bob. From these bits, Alice and Bob then compute a compressed
string. One way to compute the string S′ uses the class of universal hash functions G, which map
the set of n-bit strings A to the set of r-bit strings B, such that for any distinct S1, S2 ∈ A, when
g is chosen uniformly at random from G, then the probability that g(a1) = g(a2) is at most 1/|B|.
The central question is thus how long the virtually secure string S′ can be depending on the hashing
technique and on the type and amount of Eve’s knowledge about S. We can express that Eve has
some information about S as given Eve’s entire knowledge U = u about S, the random variable
S is not uniformly distributed and thus H(S|U = u) < n. Eve has then n − H(S|U = u) bits of
information about S. The resulting string must satisfy H(S′|C,U = u) ≈ r where r is the length
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of S′ and C is the communication between the parties. Therefore, if Eve has t bits of information
about S, the length of the resulting string S′ can be n− t. This fact was shown to be correct in the
case if Eve has deterministic information about S. However if Eve information is not deterministic,
it is not true in general n − t bits can be extracted when Eve has t bits of Shannon information.
In the case of universal hash functions it was shown that the Renyi entropy2 H2(S|U = 0) is the
right measure for the adversary’s information. We don’t detail anymore these phases of secret key
agreement because they are out of the scope of the work done for the analyzed protocol.

3.3 Key-Rate bound for secrecy extraction

The knowledge of the exact relationship between the secret key rate S(A;B ‖ E) and the joint
probability distribution PABE is a challenging problem, to determine the value of S(A;B ‖ E) or
at least decide whether this rate is non-zero.

We will describe the Csiszár-Körner (CK) bound for secret key rate that will be useful to obtain
bounds in the protocol presented. We assume that the parties are connected with conditional
output distribution PBE|A. The ability of generating mutual mutual secret information is quantified
as follows

Definition 3.6 Consider a channel characterized by the conditional joint distribution PBE|A. The
secrecy capacity

CS(PBE|A)

of the channel is the maximal real number R ≥ 0 such that for every ε > 0 and for K = d(R− ε)Ne,
there exist a possibly probabilistic (additionally depending on some random bits) encoding function

ξ : 0, 1K → AN

together with a decoding function

ν : BN → 0, 1K

such that if S is uniformly distributed over 0, 1K , we have AN = ξ(S), S′ = ν(BN ) and PBN |AN =

PNB|A (being PNB|A the marginal of PBE|A)

P [S 6= S′] < ε

and

1

K
H(S|EN ) > 1− ε (3.18)

The result proved by Csiszár-Körner in [32] is that

CS(PBE|A) ≥ max
PA

(I(A;B)− I(A;E)) (3.19)

This result will be employed in chapter 5 in the following way: in the case that Eve knows more
about Alice’s symbol than about Bob’s, the C-K bound can be expressed as

RCK = sup
(B′,T )←B

[
I(A;B′)− I(B′;E)

]
= sup

(B′,T )←B

[
H(B′|E, T )−H(B′|A, T )

]
(3.20)

employing I(X;Y ) = H(X) − H(X|Y ) and where B → (B′, T ) is called pre-processing: from his
initial data B, Bob obtains some processed data B′ that he does not reveal, and some other processed
data T that are broadcasted on a public channel. For classical distributions, bitwise pre-processing
is already optimal.

We define next the secret key rate for a secret-key agreement protocol.

2It is defined from the collision probability of a random variable X, PC(X) =
∑
x∈X PX(x)2, as H2(X) =

− log(PC(X))
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Definition 3.7 A (PABE , r, ε) protocol for secret key agreement is defined by two phases:

1. A communication phase where Alice and Bob exchange messages C1, C2, . . . over the public
channel. We assume that Alice sends odds messages and Bob even messages. A message sent
at some point in the protocol can only depend on the sender’s knowledge at that moment and
possibly some locally generated random bits RA or RB. We have for odd i

H(Ci|A,C1, . . . , Ci−1, RA) = 0 (3.21)

and for even i

H(Ci|B,C1, . . . , Ci−1, RB) = 0 (3.22)

If t messages are shared during this communication phase, let

C = [C1, C2 . . . , Ct]

be the collection of all messages.

2. A key generation phase where Alice and Bob compute keys S and S′ respectively. Their goal
is to minimize the probability that S 6= S′ and the information that the attacker obtains about
S. We can write this as follows:

H(S|CARA) = 0,

H(S′|CBRB) = 0,

H(S) ≥ r,

P [S 6= S′] ≤ ε,
I(S;EC) ≤ ε

for some independent random bit strings RA and RB.

We define the secret key rate as follows

Definition 3.8 The secret key rate S(A;B ‖ E) is the least upper bound of the set of real numbers
R ≥ 0 such that for every large N = N(ε), there exists a

(PNABE , (R− ε)N, ε)

protocol3 for secret key agreement such that it satisfies that Alice and Bob can compute strings S
and S′ respectively such that

H(S)/N ≥ R− ε,
P [S 6= S′] ≤ ε,
I(S;ENC) ≤ ε

H(S) ≥ log|S| − ε,

The value of the secret key rate is an intrinsic property of the joint distribution of three random
variables. In [12] the following bound was proved that states that is impossible to generate a greater
amount of key from A and B than the mutual information between A and B (given E)

S(A;B ‖ E) ≤ min I(A;B), I(A;B|E) (3.23)

The following result states a nontrivial lower bound on the secret key rate. If either Eve has less
information on B than Alice or symmetrically less information on A than Bob, then this difference
in information can be exploited.

Theorem 3.2 For every distribution PABE,

S(A;B ‖ E) ≥ max{I(A;B)− I(A;E), I(A;B)− I(B;E)} (3.24)

3We are employing a large number of repetitions of the same random experiment and PNABE = ΠNi=1PAi,Bi,Ei
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The proof of the previous theorem is referenced in [14].

At last we will prove the result previously stated in the advantage distillation example 1, that the
bounds expressed lead to the extraction of a secret key. We provide this result to give an example of
how to obtain the bound calculation that is useful for the non-signaling protocol analysis in chapter
5.

Proposition 3.3 In the conditions described in advantage distillation example 1, let C the random
bit selected by Alice and M the message generated from AN and C such that Bob accepts publicly
and computes a bit C ′ with some probability Pα,N , such that P [C 6= C ′] ≤ bN for some b ≥ 0.
If in addition given that Bob accepts, for every strategy for guessing C when given M and EN ,
Eve’s average error probability γN is at least cN for some c > b and sufficiently large N , then
S(A;B ‖ E) ≥ 0

Proof: From the previous theorem, it must be proved that for sufficiently large N

I(Â; B̂)− I(Â; Ê) > 0

with Â and B̂ being random variables constructed after the interaction and Ê =
[
EN , V

]
where V

is the collection of all messages sent over the public channel. Defining Â = C and B̂ = C ′ if Bob
accepts and Â = B̂ = reject if Bob rejects. If Bob accepts, we have,

H(C|C ′) ≤ h(bN ) ≤ 2bN log(1/bN ) = 2bNN log(1/b) < cN

for N sufficiently large. The first inequality comes from Jensen’s lemma and the second one is
because for p ≤ 1/2 we have −p log p ≤ −(1 − p) log(1 − p). The third inequality is obtained for a
large N .

H(C|Ê) =
∑
ê∈E×V PÊ(ê)H(C|Ê = ê) = EÊ(h(pε,Ê)) ≥ EÊ(pε,Ê) = γN ≥ cN (3.25)

where pε,Ê is the probability that Eve guesses incorrectly C with her optimal strategy given Ê = ê.

As pε,Ê ≤ 1/2 then h(pε,ê) ≥ pε,ê for all ê. Given that Bob publicly rejects then H(Â|B̂) =

H(Â|Ê) = H(Â|V ) = 0. As the probability that Bob accepts some C is > 0, then I(Â; B̂) −
I(Â; Ê) = H(Â|Ê)−H(Â|B̂) > 0 2

3.4 Intrinsic information

In this section, we describe a information measure called the intrinsic conditional information, that
is an upper bound for the secret-key rate and useful for distinguishing between cases where secret-
key agreement is possible from those where it is impossible. This section is based in the references
[14] and [33].

Definition 3.9 Let PXY Z a discrete probability distribution. Then we can define the intrinsic
conditional mutual information between X and Y given Z as

I(X;Y ↓ Z) = inf
XY→Z→Z̄

{I(X;Y | Z̄) : PXY Z̄ =
∑
z∈Z

PXY ZPZ̄} (3.26)

where the infimum is taken over all possible conditional distributions PZ̄|Z

This measure has the following properties

0 I(X;Y ↓ Z) ≤ I(X;Y ) ≥
I(X;Y ↓ Z) ≤ I(X;Y |Z) ≥
I(X;Y ↓ Z) ≤ I(X;Y ↓ Z̄) ≥

where Z̄ is generated by sending Z over an arbitrary channel (that is XY → Z → Z̄ is a Markov
chain 4. The idea behind the measure is that giving the side information Z in some way destroys

4We recall that a sequence of random variables X1, X2, . . . , XN is called a Markov chain, denoted by X1 → X2 →
. . .→ XN if for all i > 1, we have PXi|X1X2...Xi−1

= PXi|Xi−1
).
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all the information between X and Y but generates new conditional information that cannot be
employed to generate a secret key. Instead, I(X;Y ↓ Z) measure only the remaining conditional
mutual information between X and Y but not the additional information brought in by Z.

The figure 3.5 represents the idea behind this measure. The particular Z̄ represented is the one
that minimizes the region and therefore I(X;Y | Z̄) and fulfills I(X;Y ↓ Z̄).

Figure 3.5: Representation of intrinsic information I(X;Y ↓ Z)

We now state two theorems that are important related to this measure. The first one gives the
relationship with the secret-key rate, where we employ the notation typical for a secrecy extraction
scenario and we write the intrinsic information as

I(A : B ↓ E) = min
E→Ē

I(A : B|Ē), (3.27)

Theorem 3.3 For arbitrary random variables A,B, and E representing the three parties in a secret
key agreement scenario, we have

S(A;B ‖ E) ≤ I(A;B ↓ E) (3.28)

This theorem implies that secret-key agreement can be possible only if I(A;B ↓ E) > 0. Then
it is a necessary condition to obtain secrecy (whether it is sufficient will be discussed at the end of
the section). Therefore computing this measure can help in discarding possible candidate protocols,
but the intrinsic information is hard to compute given that the minimization is calculated over
all discrete random variables Ē such that AB → E → Ē is a Markov chain, i.e. in all discrete
conditional distributions or discrete channels PĒ|E .

The following theorem proved in [33] offers a simplification to calculate this measure in the case
of finite alphabets. In the theorem it is stated that the minimization in Eq. (3.27) can be restricted
to variables Ē of the same size as the original one, E. This allows a numerical approach to this
problem.

Theorem 3.4 If the range E of E is finite, then there exists a finite random variable having the
same range E, such that AB → E → Ē is a Markov chain and

I(A;B ↓ E) = I(A;B | Ē)

and then

I(A;B ↓ E) = min
Ē

I(A;B | Ē)

The intrinsic information can be understood as a witness of secret correlations in P (a, b, e).
Indeed, a probability distribution can be established by local operations and public communication
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if, and only if, its intrinsic information is zero [34]. It is then clear why the positivity of the intrinsic
information is a necessary condition for positive secret-key rate. Whether it is sufficient is at present
unknown: strong support has been given to the existence of probability distributions such that the
secret key rate R = 0 and I(A;B ↓ E) > 0. These would constitute examples of probability
distributions containing bound information [35], that is non-distillable secret correlations. The
existence of bound information has been proven in a multipartite scenario consisting of N > 2
honest parties and the eavesdropper [36]. However, it (still) remains as an open problem for the
more standard bipartite scenario.

In this chapter we have provided the tools from information-theoretic secret key agreement to
analyze the protocol in chapter 5.



Chapter 4

Non-locality and non-signaling

This chapter provides the framework developed in [15] (and previous papers) to study non-locality
and non-signaling in a more general framework than Quantum Mechanics. It is a theoretical frame-
work for a physical theory that do not allow superluminal signaling and predict the violation of Bell
inequalities, i.e. a non-signaling non-local theory.

The constancy of the speed of light in any reference frame implies that no signal carrying infor-
mation can propagate faster than light (no signaling principle).
The existence of correlations between spacelike separated events that violate Bell inequalities can-
not contradict the no signaling principle and such correlations are called non-local. The idea to
develop a physical theory that is consistent with the two principles can be very useful to understand
Quantum Mechanics from the outside and gain more knowledge about the paper of the combination
of these 2 principles in quantum mechanics. From an information-theoretical point of view, it is
worth looking at a framework more general than Quantum Mechanics to analyze the use of nonlocal
correlations as an information resource. The aim of the present chapter is to provide the theoretical
foundations for the Secret Key Distribution protocol developed in the next chapter.

The kind of experiment-setup we are considering onwards is sketched in Fig. 4.1. A source sends
out two particle to two distant locations. In each location, a user chooses a possible measurement
(x, y) and registers the outcome (a, b). The procedure is repeated a large number of times.

Figure 4.1: The setup to be kept in mind for Bell-type experiments: a source S distributed two
quantum systems to separated locations. On each location, the physicist is free to choose which
measurement to perform (x, y); as a result, they obtain outcomes a, b. Of course, this setup can be
generalized to more parties, or to the case where the number of outcomes is different between the
parties.

Later, the two users come together, compare their results and derive the probability distribution

P (a, b|x, y) . (4.1)

This probability distribution, here written as a conditional probability, can also be written as
Pxy(a, b). This last notation can be employed to stress that the origin of the statistics on (a, b)
is the quantum randomness (or more nonlocal, as we will see in the following pages) we want to
query, while the statistics on (x, y) are of a very different nature (just the choice of the users on how
often to perform each measurement).

By defining measurement in this way, we are in some way generalizing some aspects that were
introduced in chapter 2: the correlations that arise in entangled states between two parties can be
in this way studied independently of the particularities of such states as these particularities are
contained in the probability distributions obtained.

A few crucial remarks:

42
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(i) We can say that there is a conceptual distinction between the users and the physicists who
have constructed the whole setup. To perform the task, the users do not even have to know
what state the source has prepared, what physical systems are sent, which measurements
are being performed. For the users, the measurement is just a knob they can freely set at
any position; x and y refer to the label of the scale in their instruments. As in a secret key
agreement protocol, the names of Alice and Bob will be always referring to the users. This
assumption of lack of knowledge of the users of such a device is necessary to derive its use in
cryptographic applications1.

(ii) The number of possible outcomes a and b plays an important role, but the labeling of the
outcomes does not matter: the probability distribution P (a, b) fully characterizes the process
of measuring x and y, irrespective of whether the outcomes are real numbers, multiples of ~,
complex numbers, colors... Because of this, we are free to choose the most convenient labeling
without loss of generality. For instance, if the number of outcomes is two on both sides, then
the correlation coefficient is defined as

Cxy = P (a = b|x, y)− P (a 6= b|x, y) . (4.2)

This definition is unambiguous and always valid. If in addition, one chooses the labeling
a, b ∈ {−1,+1}, then one obtains the relation Cxy = 〈ab〉xy the average of the product of the
outcomes.

4.1 Classical mechanisms for correlations

In the setup defined are dealing with a family of probability distributions: Alice picks up mea-
surement x, Bob picks up measurement y, and the outcomes a, b are guaranteed to be distributed
according to the probability distribution P (a, b|x, y). Now, in general, P (a, b|x, y) 6= P (a|x)P (b|y)
where P (a|x) =

∑
b P (a, b|x, y) and P (b|y) =

∑
a P (a, b|x, y) are the marginals of the probability

distribution. In other words, random variables distributed according to P (a, b|x, y) are correlated.
The question that we are going to study is: can these correlations be ascribed to a classical mech-
anism? The question seems quite open, but it becomes more concrete once one takes into account
that there are only two classical mechanisms for distributing correlations.

• The first and most obvious is communication: for instance, the information about Alice’s
choice of measurement x is available Bob when he measures his particle. This mechanism can
be checked by arranging what is known as space-like separation: loosely speaking, if the two
particles reach the measurement devices at the same time and the choice of measurement is
done at the very last moment, a signal informing a particle about what is happening in the
other location should travel faster than light. If the correlations persist in this configuration,
the mechanism of communication can’t explain such correlations.

• The second mechanism consists in using pre-established strategies: each particle might have
left the source with a set of instructions, specifying how it should behave in any measurement.
Interestingly, this mechanism can explain the behavior of the singlet state in the cases where
Alice and Bob choose to perform the same measurement (PMM = P (·|M,M)). Indeed, assume
that the particles are carrying lists of pre-determined results λx = {aM}M and λy = {bM}M
such that aM = −bM for each measurement M : one always gets PMM (a 6= b) = 1, and the
local randomness can be easily accounted for by varying the lists at each run. However, it
is the milestone result by John Bell in 1964 to prove that the whole family of probabilities
predicted by quantum physics cannot be reproduced with pre-established strategies [10], as
we described in chapter 2.

Let’s detail more properties about pre-established strategies that will be useful for the purpose of
our cryptographic protocol.

1As we will explore in the next chapter, this lack of knowledge is, from a cryptographic point of view, a necessary
assumption as the devices could be provided by the eavesdropper Eve. Additionally, the prerequisite “must know
experimental quantum physics before using” is not the best way to commercialize quantum key distribution systems.
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Pre-established strategies (“Local variables”)

By definition, a pre-established strategy is some hypothetical information λ that the particles carry
out with themselves from the source. Each particle is supposed to produce its outcome taking into
account only this λ and the measurement to which it is submitted. In other words, for given λ,
the two random processes are supposed to be independent: P (a, b|x, y, λ) = P (a|x, λ)P (b|y, λ). The
only freedom left is the possibility of changing the information λ at each run. If λ is drawn from a
distribution ρ(λ), the observed probability distribution will be2

P (a, b|x, y) =

∫
dλ ρ(λ)P (a|x, λ)P (b|y, λ) . (4.3)

Here comes an important mathematical characterization:

Theorem 4.1 P (a, b|x, y) can be obtained by pre-established strategies if and only if it can be written
as a convex sum of local deterministic strategies.

Proof: A deterministic strategy is a strategy in which, for each possible measurement, the result
is determined. A local deterministic strategy is defined by P (a|x, λ) = δa=f(x,λ) and P (b|y, λ) =
δb=g(y,λ). The “if” implication is therefore trivial.

The “only if” implication stems from the fact that any classical random process can be mathe-
matically decomposed as a convex sum of deterministic processes. We are going to construct a deter-
ministic model that gives the same statistics as the initial stochastic model. Let’s label the possible
values of a as {1, 2, . . . ,mA}. We define the cumulative distribution as F(a) =

∑
α≤a P (α|x, λ).

Adding a new local parameter µA, distributed as a uniform distribution between 0 and 1, then
output a according to the following deterministic rule:

Pd(a|x, λ, µ) =

{
1 if F(a− 1) ≤ µA < F(a)

0 otherwise
(4.4)

As µ is drawn with uniform distribution, the original stochastic distribution is recovered

∫ 1

0

dµPd(a|x, λ, µ) =

∫ F(a)

F(a−1)

dµ = P (a|x, λ)

Equation 4.3 can be rewritten as

P (a, b|x, y) =

∫
dλρ(λ)

∫ 1

0

dµA

∫ 1

0

dµBPd(a|x, λ, µA)Pd(b|y, λ, µB) (4.5)

which is the sum of local deterministic strategies, for the enlarged variable λ′ ≡ (λ, µA, µB) dis-
tributed as ρ′(λ′)dλ′ = ρ(λ)dλdµAdµB .

In other words, for each λ, there exist an additional random variable µ = µ(λ) with distribution
ρ′(µ) such that P (a|x, λ) =

∫
dµρ′(µ)δa=f(x,λ,µ). One can therefore just “enlarge” the definition of

the local variable to λ′ = (λ, µ(λ)).

2

This theorem is a purely mathematical result: no restriction on the family of pre-established
strategies under study is being made. It is useful because it allows deriving results by arguing with
deterministic strategies, that are very easy to handle; if the result is stable under convex combination,
it is automatically guaranteed to hold for all possible pre-established strategies, deterministic or not.

2This can also be expressed equivalently in terms of sums in the discrete case: P (a, b|x, y) =∑
λ P (λ)P (a|x, λ)P (b|y, λ)



4. NON-LOCALITY AND NON-SIGNALING 45

History and terminology

Historically, λ was called “local hidden variable”. While the expression “local variable” is ultimately
convenient, the adjective “hidden” is definitely superfluous and even misleading: quantum physics
is at odds with local variables, irrespective of whether they are supposed to be hidden or not. For
instance, the local variable may be a description of the total quantum state. Much more recently, in
the interaction between physicists and computer scientists, the name of “shared randomness” has
also become fashionable to denote pre-established strategies. We will use the term “non-locality”
and talk about to “non-local correlations” as a shortcut for “probability distributions that cannot
be reproduced by pre-established agreement”.

CHSH inequality, revisited

We have already stated the CHSH inequality as a Bell inequality whose violation exposes the nonlocal
nature of quantum physics. Let’s derive its expression attending to the previous notation. The
definition of this inequality is based in the fact that Alice and Bob can make only two possible
measurements and the outcomes are binary. Let’s label the measurements options as x,x′ for Alice
and y, y′ for Bob. The outcomes are labeled as a, b ∈ +1,−1.
We consider a local deterministic strategy λL, which is just a list λL = (a, a′, b, b′) specifying the two
outcomes of Alice and Bob. The number S(λL) = (a+ a′)b+ (a− a′)b′ is defined. Substituting the
different possible values of a and b, by inspection it is clear that −2 ≤ S(λL) ≤ 2. If we take a convex
combination of local deterministic strategies, with distribution ρ, the value 〈S〉 =

∫
dλLρ(λD)S(λD)

must lie between -2 and 2.
Since we have:

〈S〉 = 〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉
and with the labeling employed we have that the averaged products are the correlation coefficients
Cxy = 〈ab〉 and Cx′y′ = 〈a′b′〉, therefore

| 〈S〉 |=| Cxy + Cx′y + Cxy′ − Cx′y′ | (4.6)

This is the CHSH inequality. By the theorem 4.1, it holds for all pre-established strategies.
When we employ the outcomes labeled as +1 and -1, the derivation of this inequality is simple. But
the inequality is independent of this choice. For the general definition of the correlation coefficients
4.2, the inequality still holds.

4.2 The mathematics of no-signaling

The definition of quantum physics is a description of its formalism. There is a long list of “typically
quantum features”: intrinsic randomness, incompatible measurements and uncertainty relations,
no-cloning, non-local correlations... Popescu and Rohrlich ([13]) asked the following question for
non-locality without signaling: does quantum physics define the set of all probability distributions
that are possibly non-local but are compatible with the non-signaling condition? The answer is:
NO. Consider the following probability distribution for binary input x, y ∈ {0, 1} and binary output
a, b ∈ {0, 1}

P (a⊕ b = xy|x, y) = 1, P (a|x, y) = P (b|x, y) =
1

2
(4.7)

Explicitly, each of the probabilities can be expressed as

PPR : P (a, b|0, 0) = P (a, b|0, 1) = P (a, b|1, 0) = 1
2δa=0,b=0 + 1

2δa=1,b=1 (4.8)

P (a, b|1, 1) = 1
2δa=0,b=1 + 1

2δa=1,b=0 (4.9)

the distribution is non-signaling: the marginal of Alice does not depend on Bob’s measure-
ment (nor on Alice’s in this case) and the same for Bob. The correlation says that for (x, y) ∈
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{(0, 0), (0, 1), (1, 0)} one has a = b (perfect correlation) while for (x, y) = {(1, 1) one has a = b ⊕ 1
(perfect anti-correlation). Let’s reobtain the CHSH inequality in order to calculate the value pro-
vided by this distribution.

If one consider the CHSH inequality, expressed as

|〈S〉| = |C00 + C10 + C01 − C11| (4.10)

where we recall, Cxy = P (a = b|x, y)− P (a 6= b|x, y) and labeling a, b = 0 as +1 and a, b = 1 as
-1 (in order to make it compatible with the inequality). With the distribution proposed, one has:

C00 = 1 , C01 = 1 , C10 = 1 , C11 = −1

Therefore if one evaluates the CHSH expression on this distribution, one finds 〈S〉 = 4.

This innocent-looking probability distribution reaches the largest possible value of CHSH, while
we saw in section 2.3 that quantum physics cannot go beyond the Tsirelson bound 〈S〉 = 2

√
2. The

hypothetical resource that would produce the probability distribution in 4.7 has been called PR-box
(or non-local machine). After some time remaining in the shadows, it was hoped initially that the
PR-box could be a building block for all non-local distributions. This was shattered as it was shown
that the PR-box was not the only non-signaling resource outside of quantum physics.
This chapter provides the formal framework to study non-signaling distributions. It will be shown
with an example the structure of such a distribution and afterwards it will be generalized. But to
form the intuition of what we’re talking about when we’re talking about non-signaling non-local
correlations, let’s have a playful interlude:

4.2.1 3 games

Let’s consider 3 games3 in which two players, Alice and Bob, after learning the rules are sent to two
different locations. There, each of them receives an external input and has to react. The game is
won if the reactions are in agreement with the rules fixed at the beginning of the game.

Game 1: each of the players receives a stock to invest in. The game is won if, whenever the
two players receive the same stock, they produce the same answer (that is, they either both accept it
or both reject it).

This game is easy to win: Alice and Bob can agree in advance that whatever stock they receive,
they will accept it. This strategy is boring and they can refine it a little more, as accept in even
numbers and reject in odd numbers or establish a more elaborate strategy (as accept whenever [ the
first letter is between A-F] AND [ the stock is from Japan], reject otherwise).
These are pre-established strategies and there are uncountably many of them.

Game 2: each of the players receives a stock to invest in. The game is won if the two players
produce the same answer only when they receive the same stock, otherwise they produce different
answers.

If the set of possible inputs consists only on two stocks, the game can still be won by pre-
established strategies: They agree previously which stock accept and which reject. If there are more
than two possible inputs, however, pre-established strategies cannot win the game with certainty.
For example, the case with 3 stocks and two possible outcomes, there will be uncertainty in 2 of the
stocks. In this case, no local deterministic strategy can win the game.

To win this game, one needs in the classical world to use communication as a resource. But
communication is an exaggerated resource, as with communication one can say that every game can
be won. However, with what we know about the quantum world, there can be strategies that can
make winning the game without communication (non local strategies).

Game 3: each of the players receives a stock to invest in. The game is won under the condition:
Alice invests in its stock if and only if the stock received by Bob is from Spain.

Game 3 is more extreme than Game 2 because Alice must learn specific information about the
input received by Bob, while in Game 2, winning criteria involves relations between Alice’s and

3This is based in a course by Prof. V.Scarani in which this chapter is in part based but I preferred to change the
scope of the game from papers to stocks, just for fun.
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Bob’s inputs.
Communication is required to win Game 3 but one might hope to win Game 2 without communi-
cation, only with no-signaling resources.

4.2.2 Formalization of no signaling principle and Bell-type experiments

The situation that one must keep in mind is a Bell-type experiment, that is, the measurement of
non locality between two parties, Alice and Bob. Let’s formalize the situation under study:

Alice and Bob receive several pairs of entangled quantum particles. On each particle, Alice
performs the measurement x randomly drawn from a finite set of mA possibilities; as a result, she
obtains the output a out of a discrete set containing nA symbols. Independently from Alice, Bob
performs the measurement y randomly drawn from a finite set of mB possibilities; as a result, he
obtains the output b out of a discrete set containing nB symbols. The results of such an experiment
are characterized by the family of probabilities

P (a, b, x, y) = P (a, b|x, y)P (x)P (y) . (4.11)

There are D = mAmB nA nB such numbers, so each experiment can be described by a point in
a D-dimensional space; more precisely, in a region of such a space, bounded by the conditions
that probabilities must be positive and sum up to one. By imposing further restrictions on the
possible probability distributions, the region of possible experiments shrinks, thus adding non-trivial
boundaries.

The three important restrictions to be considered in order to limit the structure of such region
of probabilities are the following:

• The first restriction is the requirement that the probability distribution must be built without
communication, only with shared randomness. These are the conditions described in section
4.1 The bounded region, which contains all probability distributions that can be obtained by
shared randomness, forms a polytope, that is a convex set bounded by a finite number of
hyperplanes (”facets”); therefore we refer to it as to the local polytope. The vertices of the
local polytope are the points corresponding to deterministic strategies, that is, strategies in
which a = a(x) and b = b(y) with probability one; that is, P (a, b|x, y) = δa,a(x)δb,b(y). There
are clearly mnA

A mnB
B such strategies. The vertices are thus easily listed, but to find the facets

given the vertices is a computationally hard task. The importance of finding the facets is
pretty clear. If a point, representing an experiment, lies within the polytope, then there exists
a strategy with shared randomness that produces the same probability distribution. If on the
contrary a point lies outside the local polytope, then the experiment cannot be reproduced
with shared randomness only. The facets of the local polytope are Bell’s inequalities. We shall
call non-local region the region which lies outside the local polytope.

• The second restriction is the requirement that the probability distribution must be obtained
from measurements on quantum bipartite systems. The bounded region thus obtained shall
be called the quantum region. It is not a polytope, since there is not a finite set of extremal
points. It is a convex set if one really allows all possible measurements on all possible states
in arbitrary-dimensional Hilbert space. The quantum region contains the local polytope, but
is larger than it: measurement on quantum states can give rise to non-local correlations (Bell
inequalities are violated).

• The third and more general restriction is the requirement that the probability distribution
must not allow signaling from Alice to Bob or viceversa. The no-signaling requirement is
fulfilled if and only if Alice’s marginal distribution does not depend on Bob’s choice of input,
and viceversa: that is, the probability distributions must fulfill∑

b

P (a, b|x, y) = P (a|x) , (4.12)∑
a

P (a, b|x, y) = P (b|y) . (4.13)

These conditions define again a polytope, the no-signalling polytope, which contains the quan-
tum region. The deterministic strategies are still vertices for this polytope; to these, one must
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add other vertices which represent, loosely speaking, purely non-local no-signalling strategies,
as the PR-box.

Figure 4.2: Figurative representation of the nonlocal polytope. The base represents the local poly-
tope and the black box represents the nonlocal machine (or PR-box). The quantum boundary is
schematically represented.

4.2.3 Local and no-signaling polytopes, case d = 2

Let’s consider in first place the case nA = nB = 2 and mA = mB = d = 2 to introduce the no-
signaling polytope and a useful notation that we will use for the case where d > 2. Let’s suppose
that Alice and Bob each have two inputs x, y ∈ {0, 1} and two outputs a, b ∈ {0, 1}. What we want
to characterize is the joint probability conditioned to the inputs P (a, b | x, y). The first element to
be studied is the dimensionality of the probability space: how many numbers are required to specify
the four no-signaling probability distributions P (a, b | x, y) completely? There are 16 probabilities,
but since

∑
a,b P (a, b | x, y) = 1 for each x, y it reduces to 12 the number of probabilities.

A subsequent reduction can be made to only eight parameters exploiting the no-signaling condition.
Indeed, note first that the three numbers needed to specify P (a, b | x, y) can be chosen as being
P (a = 0 | x, y), P (b = 0 | x, y) and P (a = 0, b = 0 | x, y), since P (a = 0, b = 1 | x, y) = P (a = 0 |
x, y)− P (a = 0, b = 0 | x, y) because P (a = 0 | x, y) = P (a = 0, b = 0 | x, y) + P (a = 0, b = 1 | x, y).
Furthermore, P (a = 1, b = 0 | x, y) = P (b = 0 | x, y) − P (a = 0, b = 0 | x, y) and P (a = 1, b = 1 |
x, y) follows by normalization. Because of no-signaling, P (a = 0 | x, y) = P (a = 0 | x) for all x and
P (b = 0 | x, y) = P (b = 0 | y) for all y, that is Alice’s marginal distribution does not depend on
Bob’s choice of input and viceversa.

Therefore, there are eight probabilities left that can be conveniently arranged as a table:

P =

A \B P (b|0) P (b|1)
P (a|0) P (a, b|0, 0) P (a, b|0, 1)
P (a|1) P (a, b|1, 0) P (a, b|1, 1)

(4.14)

Employing the restrictions between probabilities, this is equivalent to:

P =
A \B P (b = 0|0) P (b = 0|1)

P (a = 0|0) P (0, 0|0, 0) P (0, 0|0, 1)
P (a = 0|0) P (0, 0|1, 0) P (0, 0|1, 1)

. (4.15)

For instance, the probability distribution of a PR-box and the one associated to the best mea-
surements on a maximally entangled state (see 2.3) read respectively

PPR =
1/2 1/2

1/2 1/2 1/2
1/2 1/2 0

, PME =

1/2 1/2

1/2 1+1/
√

2
4

1+1/
√

2
4

1/2 1+1/
√

2
4

1−1/
√

2
4

. (4.16)
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Since we have already derived the CHSH inequality in a different way, we can study here how
the inequality looks like in this notation. Noting that Cxy = 1 − 2[P (0, 1|x, y) + P (1, 0|x, y)] =
4P (0, 0|x, y)− 2P (a = 0|x)− 2P (b = 0|y) + 1, since P (a = 0|x) = P (0, 0|x, y) + P (0, 1|x, y) we find

〈S〉 = 4 [P (0, 0|0, 0) + P (0, 0|0, 1) + P (0, 0|1, 0)− P (0, 0|1, 1)− P (a = 0|0)− P (b = 0|0)] + 2 .

Remembering that the inequality is −2 ≤ 〈S〉 ≤ 2, by simply rearranging the terms we find

−1 ≤ P (0, 0|0, 0) + P (0, 0|0, 1) + P (0, 0|1, 0)− P (0, 0|1, 1)− P (a = 0|0)− P (b = 0|0) ≤ 0

i.e. the inequality known as Clauser-Horne (CH) — which is strictly equivalent to CHSH, under the
assumption of no-signaling. Written as a table, we have

TCH =
−1 0

−1 1 1
0 1 −1

(4.17)

and the inequality reads

−1 ≤ 〈TCH , P 〉 ≤ 0 (4.18)

where 〈, 〉 represent term-by-term multiplication (as a scalar product). For instance, 〈TCH , PPR〉 = 1
2

and 〈TCH , PME〉 = 1√
2
− 1

2 .

Local deterministic points (vertices of the local polytope)

The next step consists in identifying all the local deterministic strategies. There are only four
deterministic functions a = f(x) from one bit to one bit: f1(x) = 0, f2(x) = 1, f3(x) = x and
f4(x) = x⊕1. Therefore, there are sixteen local deterministic strategies Lijxy(a, b) = δa=fi(x)δb=fj(y).
Let us write down explicitly:

L11 =
1 1

1 1 1
1 1 1

, L12 =
0 0

1 0 0
1 0 0

, L13 =
1 0

1 1 0
1 1 0

, L14 =
0 1

1 0 1
1 0 1

,

L21 =
1 1

0 0 0
0 0 0

, L22 =
0 0

0 0 0
0 0 0

, L23 =
1 0

0 0 0
0 0 0

, L24 =
0 1

0 0 0
0 0 0

,

L31 =
1 1

1 1 1
0 0 0

, L32 =
0 0

1 0 0
0 0 0

, L33 =
1 0

1 1 0
0 0 0

, L34 =
0 1

1 0 1
0 0 0

,

L41 =
1 1

0 0 0
1 1 1

, L42 =
0 0

0 0 0
1 0 0

, L43 =
1 0

0 0 0
1 1 0

, L44 =
0 1

0 0 0
1 0 1

,

According to the theorem shown in Theorem 4.1, we know that the set of local distributions
(distributions that can be obtained with pre-established strategies) is the convex set whose extremal
points are the deterministic strategies, that forms a polytope, the local polytope. The extremal
points of a polytope are called vertices.

Facets of the local polytope: Bell’s inequalities

The vertices of the local polytope define its facets, i.e. the planes that bound the set. If a point is
below the facet, the corresponding probability distribution can be reproduced with local variables;
if a point is above the facet, it cannot. Therefore, the facets of the polytope are the geometric
representation of Bell’s inequalities. Actually, in addition to Bell’s inequalities, there are many
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facets that are trivial and can never be violated: conditions like P (a, b|x, y) = 0 or P (a, b|x, y) = 1
obviously define boundaries within which every local distribution must be found.

The local polytope for this case is a polygone in an 8-dimensional space, so its facets are 7-
dimensional planes. One has to identify the sets of eight points that define one of these planes,
then write the equation that define each plane. This can be done by brute force, but we just use
some intuition and then quote the known result. The CH inequality indeed defines facets: we have
〈TCH , L〉 = 0 for L ∈ {L11, L13, L22, L24, L31, L34, L42, L43}; these eight points indeed define a
plane of dimension 7. Above this facet, the most non-local point is the PR-box (4.7).

These local strategies can also be expressed in the following way4:

Lr1 = {a(x) = r, b(y) = r}
Lr2 = {a(x) = x+ r, b(y) = r}
Lr3 = {a(x) = r, b(y) = y + r}
Lr4 = {a(x) = x+ r, b(y) = y + r + 1} (4.19)

with the equivalences with the previous notation:

L0
1 = L11 L1

1 = L22

L0
2 = L31 L1

2 = L42

L0
3 = L13 L1

3 = L24

L0
4 = L34 L1

4 = L43

(4.20)

Also, TCH ·L = −1 for the other eight deterministic points: this facet is “opposite”to the previous
one, with the local polytope between the two. The most non-local point above this facet is also a
PR-box, the one defined by the rule a ⊕ b = xy ⊕ 1. Note that this PR-box is obtained from the
“original” one by trivial local processing: e.g. Alice flips her outcome.

A simple argument of symmetry gives us immediately six other equivalent facets. Indeed, given
a Bell inequality, a relabeling of the inputs and/or the outputs provides another Bell inequality.
Their number is most easily counted by studying how many different rules for PR-boxes one can
find, and these are obviously a⊕ b = (x⊕ 1)y, a⊕ b = x(y⊕ 1) and a⊕ b = (x⊕ 1)(y⊕ 1), with the
corresponding opposite facets obtained as before by adding 1 on either side.

Now, it can be proved that there are no other Bell’s inequalities for this case: only eight versions
of CHSH, each with eight extremal points on the corresponding facet and one single PR-box on
top. All these facets being equivalent to the others up to trivial relabeling of the inputs and/or the
outputs, are CHSH inequalities.

The no-signaling polytope and the quantum set

We have studied at length the set of local distributions. Now we have to say a few words about the
two other meaningful sets, namely the no-signaling distributions and the distributions that can be
obtained with quantum physics. The image of the probability space is usually drawn5 as in Fig. 4.3.

The no-signaling conditions define a convex set (if two distributions are no-signaling, any convex
combination will also be no-signaling). It turns out that this set is also a polytope, i.e., it has a finite
number of extremal points; obviously, it is called no-signaling polytope. All the local deterministic
points are also extremal for the no-signaling polytope; but in addition to those, of course, there are
some non-local ones, that can in principle be found6. For the simple example we studied, the only
additional extremal points are the eight PR-boxes defined above.

The quantum set is also convex, but is not a polytope: it has an uncountable number of ex-
tremal points. Interestingly, at the moment of writing, the shape of this convex body has not been

4We introduce this notation because it’s the one that we will employ in chapter 5 for describing the d = 2 protocol.
The notation in arrays is more useful to generalize the protocol to the d > 2 case, thus its detailed exposition.

5This drawing is a poor representation of an 8-dimensional object.
6To characterize the facets of the no-signaling polytope, one has to consider that they are facets that satisfy the

no-signaling condition.
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Figure 4.3: Representation of the local polytope, the set of quantum correlations and the no-signaling
polytope, for the case under study (2 parties, 2 inputs and 2 outputs per party). The local polytope
(inner square) is delimited by versions of the CHSH inequality; the quantum set (round body)
exceeds the local polytope, and is contained in the no-signaling polytope (external square), whose
extremal points are PR-boxes. Local deterministic points (L) are extremal points of all three sets
(not obvious in the drawing, which is just a projection on a two-dimensional slice: the deterministic
points do not lie on this slice).

characterized in full generality yet, not even for the simple case under study here. A necessary con-
dition is the following for any probability distribution coming from quantum physics, the correlation
coefficients must satisfy an inequality that reminds of CHSH, namely

|arcsin(Cxy) + arcsin(Cxy′) + arcsin(Cx′y)− arcsin(Cx′y′)| ≤ π . (4.21)

However, this condition is provably not sufficient in general: there are probability distributions that
satisfy this inequality but cannot be produced with quantum states [17].

4.2.4 Non-signaling polytope, in d > 2

We present in this section the generalization of the non-signaling polytope that will be employed
for the explicit analysis of the protocol in the case d = 3 in chapter 5. This generalization of the
previous results consists on binary inputs and d-nary outputs: mA = mB = 2, nA = nB = d; that
is, x, y ∈ {0, 1} and a, b ∈ {0, 1, ..., d − 1}. Below, all the sums involving dits are to be computed
modulo d.

While the full probability space is 4d2-dimensional, one can verify that only 4d(d − 1) pa-
rameters are needed to characterize completely a no-signalling probability distribution — in other
words, D = 4d(d − 1) is the dimension of the space in which the no-signalling and the local poly-
topes are embedded. We choose the {P (a|x), a = 0, 1, ..., d− 2; x = 0, 1} (d − 1 numbers for each
value of x), the {P (b|y), b = 0, 1, ..., d− 2; y = 0, 1} (d − 1 numbers for each value of y), and the
{P (a, b|x, y), a, b = 0, 1, ..., d− 2; x, y = 0, 1} ((d − 1)2 numbers for each value of x, y). This we
arrange in arrays as follows, as in the d = 2 example:

P =

A \B P (b|0) P (b|1)
P (a|0) P (a, b|0, 0) P (a, b|0, 1)
P (a|1) P (a, b|1, 0) P (a, b|1, 1)

(4.22)

Note that this array has 2(d− 1) lines and as many columns: information on the values a, b = d− 1
is redundant for all inputs because of no-signalling. Of course, there is no problem in working with
the ”full” array with 2d × 2d if one finds it more convenient, provided the additional entries are
filled consistently because these parameters are not free.

As in the case of d = 2, this notation will also be used for inequalities: in this case, the numbers
in the arrays are the coefficients which multiply each probability in the expression of the inequality.

In order to describe this generalization of the non-signaling polytope, a more general type of Bell
inequalities must be described.
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CGLMP inequalities

We introduce a general Bell inequality for any possible number of outcomes d. This generalization,
the so-called Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality, was first introduced in [21]
and its explanation is crucial for the presentation of the protocol for d = 3 in the next chapter.
The idea behind the derivation of this inequalities is exploiting a logical constraint that all local
variables must satisfy. Let’s describe in the following lines the procedure derived in the original
article. Alice’s two possible measurements are labeled a0, a1 anb Bob’s b0, b1. Each measurement
has d possible outcomes a0, a1, b0, b1 = 0, . . . , d − 1. The local correlation can be described by d4

probabilities cjklm (j, k, l,m = 0, . . . , d−1) such that Alice’s measurements a0 and a1 give outcomes
j, k respectively, and equivalently for Bob. We have that cjklm ≥ 0 and

∑
jklm cjklm = 1. The joint

probabilities are of the form P (a0 = j, b0 = l) = P (j, l|0, 0) =
∑
km cjklm and similarly for the rest

of measurements.
Given a choice of local variables jklm, the following differences are defined

r′ ≡ b0 − a0 = l − j
s′ ≡ a1 − b0 = k − l
t′ ≡ b1 − a1 = m− k
u′ ≡ a0 − b1 = j −m

(4.23)

That gives the following constraint

r′ + s′ + t′ + u′ = 0 (4.24)

The relation between three pairs of operators can be freely chosen but the fourth is constrained. The
Bell inequalities here presented exploit the violation of such constraint. The simplest Bell expression
derived in this way is:

B ≡ P (a0 = b0) + P (b0 = a1) + P (a1 = b0) + P (b1 = a1 + 1) =
∑
x,y

P (a+ b = xy|x, y) (4.25)

where we represent the probability P (ax = by + k) that the measurements ax and by have outcomes
that differ k mod d:

P (ax = by + k) ≡ P (a = b+ k|x, y) ≡
d−1∑
j=0

P (a = j, b = j + k mod d|x, y) (4.26)

Evaluating the differences between outcomes modulo d involves a symmetrization that is key to
reducing the Bell inequalities to the logical constraint 4.24. Therefore, imposing this constraint
implies that any choice of local variables only can satisfy three of the four relations appearing in
4.25 and consequently B(local) ≤ 3. However, nonlocal correlations can attain B = 4 as they can
satisfy all 4 relations. In the case d = 2, the inequality B(local) ≤ 3 is equivalent to the CHSH
inequality described profusely in this memoir. This reformulation is useful for two reasons:

• In the following chapter we will employ this formulation of the CHSH inequality for d = 2 in
order to measure the violation of the inequality in terms of a parameter that is crucial in the
protocol described.
In this case, the maximal violation is 4 and the violation that bounds the quantum region is
B(quantum) ≤ 2 +

√
(2)

• It can generalize the CHSH equation to higher dimensions and represents already known Bell
inequalities in this form and specify new Bell inequalities.

Without giving further details about its derivation, we give the following generalizations of these
so-called CGLMP inequalities

Ĩ3 = [P (a = b|0, 0) + P (b = a+ 1|0, 1) + P (a = b|1, 1) + P (a = b|1, 0)]

− [P (a = b− 1|0, 0) + P (a = b|0, 1) + P (a = b− 1|1, 1) + P (b = a− 1|1, 0)] (4.27)
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The maximum value attainable for non-local theories is 4, since a non local theory could satisfy
all the 4 relations with a + sign in the previous expression. For local correlations, the maximal
violation is Ĩ3 ≤ 2. This is different to the local limit established in (4.25), due to the negative signs
in (4.27) (only 3 relationships in (4.25) could be satisfied by local correlations, but in (4.27) if 3
with + sign are satisfied, one with - sign is also satisfied).
For d = 2, the inequality Ĩ3(local) ≤ 2 is equivalent to the CHSH inequality. However, the gener-
alization of Ĩ3 for higher dimensional outcomes, Ĩd, is more robust as it is expressed in [21]. The
expression for this generalization is

Ĩd =

[d/2]−1∑
k=0

(
1− 2k

d− 1

) {[
P (a = b− k|0, 0) + P (a = b+ k|0, 1) + P (a = b+ k|1, 0) + P (a = b− k − 1|1, 1)

]
−
[
P (a = b+ k + 1|0, 0) + P (a = b− k − 1|0, 1) + P (a = b− k − 1|1, 0) + P (a = b+ k|1, 1)

]}
(4.28)

This is the CGLMP inequality.

Non-signaling polytope, case d

To describe the non-local distributions that lie above the facets given by CGLMP inequalities and to
explicit the structures that will be employed to develop the protocol in the next chapter, we consider
a modified version of the CGLMP inequality (4.28), employing the notations already discussed in
the case d = 2.

Id =

A \B −1 −1 . . . −1 0 0 . . . 0
−1 1 1 . . . 1 1 0 . . . 0
−1 0 1 . . . 1 1 1 . . . 0
...

...
. . .

...
...

. . .
...

−1 0 0 . . . 1 1 1 . . . 1
0 1 0 . . . 0 −1 0 . . . 0
0 1 1 . . . 0 −1 −1 . . . 0
...

...
. . .

...
...

. . .
...

0 1 1 . . . 1 −1 −1 . . . −1

≤ 0 . (4.29)

The link between Ĩd and this definition of Id is provided by

Id =
d− 1

2d

(
−2 + Ĩd

)
. (4.30)

This is a generalization of the transformation of CHSH inequality into CH seen before.

The highest violation of CGLMP is provided by the extremal point

PR2,d =
1

d
δ(b− a = xy) , (4.31)

whose corresponding array is

PR2,d =
1

d

A \B 1 1 . . . 1 1 1 . . . 1
1 1 0 . . . 0 1 0 . . . 0
1 0 1 . . . 0 0 1 . . . 0
...

...
. . .

...
...

. . .
...

1 0 0 . . . 1 0 0 . . . 1
1 1 0 . . . 0 0 1 . . . 0

1 0 1 . . . 0 0 0
. . .

...
...

...
. . .

...
...

. . .
. . . 1

1 0 0 . . . 1 0 0 . . . 0

. (4.32)
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The violation of the inequality can be rapidly calculated by a term-by-term multiplication (a
formal scalar product as describe in the case d = 2) of the two arrays (4.29) and (4.32), yielding

〈Id, PR2,d〉 =
d− 1

d
. (4.33)

However, PR2,d is not the only non-local extremal point which lies above a CGLMP facet: in
fact, for all d′ < d, there is at least one PR2,d′ above the facet. For instance, a possible version of
PR2,2 ≡ PR reads (boldface 0 standing for matrices filled with zeros)

PR =
1

2

A \B 1 1 0 1 1 0
1
1

1 0
0 1

0
1 0
0 1

0

0 0 0 0 0
1
1

1 0
0 1

0
0 1
1 0

0

0 0 0 0 0

, (4.34)

whence a violation 〈Id, PR〉 = 1
2 .

For d = 3, we shall give below (5.4.2) some additional elements on the structure of the no-
signalling polytope.

A slice in the non-local region

As we said, a no-signalling probability distribution is characterized by 4d(d−1) parameters. However,
when one reviews the results obtained for the CGLMP inequality in the context of quantum physics
7, one finds that the probability distributions associated to the optimal settings belong to a very
symmetric family. Specifically, these distributions are such that

1. for fixed inputs x and y, P (a, b|x, y) depends only on ∆ = a− b; and

2. the probabilities for the different inputs are related as P (∆|0, 0) = P (−∆|0, 1) = P (−∆|1, 0) =
P (∆− 1|1, 1).

Compactly:

P (a, b = a−∆|x, y) =
1

d
pf (4.35)

with f = (−1)x+y∆ + xy and pf =
∑
a P (a, b = a− f |0, 0). The corresponding array is

P =
1

d

A \B 1 1 . . . 1 1 1 . . . 1
1 p0 p−1 . . . p2 p0 p1 . . . p−2

1 p1 p0 . . . p3 p−1 p0 . . . p−3

...
...

. . .
...

...
. . .

...
1 p−2 p−3 . . . p0 p2 p3 . . . p0

1 p0 p1 . . . p−2 p1 p0 . . . p3

1 p−1 p0 . . . p−3 p2 p1 . . . p4

...
...

. . .
...

...
. . .

...
1 p2 p3 . . . p0 p−1 p−2 . . . p1

. (4.36)

This family defines a slice in the no-signalling polytope. Note that all the marginals are equal, that
is, P (a|x) = P (b|y) = 1

d . Moreover, the d numbers pf define uniquely and completely a point P in
the slice; thus, given the constraint

∑
f pf = 1, the slice defined by (5.53) is (d − 1)-dimensional.

A single extremal non-local point belongs to the slice, namely PR2,d, obtained by setting p0 = 1
(4.31); in fact, none of the PRd′ with d′ < d has the correct marginals.

7Details are provided in Appendix B of [18] and are out of the scope of this memoir
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In the following chapter, a depolarization procedure that maps any probability distribution onto
this slice will be described. This depolarization protocol consists on local operation and public com-
munication and guarantees that the violation of the correspondent CGLMP inequality is conserved
(that is 〈Id, P 〉 = 〈Id, P2〉, where P2 is the mapping into the slice).

The derivation of this slice is fundamental to the protocol developed in the next chapter for
d > 2 outcomes.

4.3 Non locality as an information resource

We expose the formalism to study non-signaling theories and describe the results that allows us to
derive information theory results equivalent to the developed for quantum information theory.
This section is based in the paper [15]. The notation employed is the same of the rest of the chapter
and some results will be detailed as they are important foundations for the next chapter. Along the
following sections, the Bell inequalities for correlations will be supposed to be normalized, that is
that a Bell inequality B̃ is transformed linearly as B = αB̃+β in order to have the local correlations
bounded by 0, B(Plocal) ≤ 0 and the maximal violation compatible with no signaling expressed as
B(Pmax) = 1 8

4.3.1 Monogamy, m-shareability and No-cloning

Classical correlations can be shared by an indefinite number of parties but quantum correlation
cannot. This is called monogamy of entanglement and can be generalized to all non-signaling
theories. The first result to consider is that all Bell inequalities with a unique distribution being
the maximal violation consistent with no signaling have monogamy constraints. That is, if B is a
Bell inequality with a unique maximal violator Pmax and Alice and Bob maximally violate a Bell
inequality, B(P (a, b|x, y)) = 1, then Alice and, say, Claire are completely uncorrelated. To derive
this result, one must take into account that Pmax must be an extremal point of the Alice-Bob
polytope, since all Bell inequalities are linear in P , that is B(αP1 + βP2) = αB(P1) + βB(P2). If
this were not the case, then the maximal violator would not be unique. Decomposing Pmax in the
following way, applying definition of conditional probabilities and no signaling principle:

Pmax(a, b|x, y) =
∑
c P (a, b, c|x, y, z) =

∑
c P (a, b|x, y, z, c)P (c|z)∀z (4.37)

But being Pmax(a, b|x, y) extremal, the decomposition is composed of only one term and thus
Claire is uncorrelated with Alice and Bob.
A bipartite probability distribution P (a, b|x, y) is said to be m-shareable with respect to Bob if there
exists an (m+1)-partite distribution, P (a, b1, . . . , bm|x, y1, . . . , ym) symmetric respect to (bi, yi)∀i ∈
{1, . . . ,m}, whose marginals P (a, bi|x, yi) are equal to the original distribution P (a, b|x, y).

The following result establishes the link between shareability and locality

Proposition 4.1 If P (a, b|x, y) is m-shareable with respect to Bob, then it satisfies all Bell inequal-
ities with m different values of the input y

Proof: The proof is based in the construction of a local model for P (a, b|x, y) having y con-
strained to y = 1, . . . ,m. The distribution P (a, b1, . . . , bm|x, y1, . . . , ym) exists and the probabilities
P (b1, . . . , bm|y1, . . . , ym) and the conditional P (a|x, b1, . . . , bm, y1, . . . , ym) do also exist. The local
variable defined as λ = (b1, . . . , bm) is the information shared by the parties, when the corresponding
inputs are fixed as y1 = 1, . . . , ym = m. Employing the decomposition

P (a, b|x, y) =
∑
b1,...,bm

P (b1, . . . , bm|y1 = 1, . . . , ym = m) (4.38)

P (a|x, b1, . . . , bm, y1 = 1, . . . , ym = m)δb,by (4.39)

where δb,by is 1 for the variables b and y appearing in P (a, b|x, y). This decomposition is the definition
of local correlations P (a, b|x, y) =

∑
λ P (λ)P (a|x, λ)P (b|y, λ)

8This is exactly the procedure employed to derive the CGLMP inequalities Id.
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2

The consequence of the equivalence between shareability and locality is that any non signaling
theory has a no cloning theorem as in the Quantum Mechanics case. The no cloning theorem of
Quantum Mechanics, which is one of the cornerstones of Quantum Information Theory is explained
as a consequence of nonorthogonality of quantum states and linearity of evolution (this is the way
it was shown in chapter 2). The existence of a no cloning theorem for more general no signaling
theories is based on the no shareability of non local correlations.

Proposition 4.2 All non-signaling theories predicting the violation of Bell inequalities have a no-
cloning theorem

Proof: Suppose there exist a machine to which we can input a physical system in a given state and it
outputs two systems in exactly the same state as the original one. This is a perfect cloning machine.
If Alice and Bob share a nonlocal distribution P (a, b|x, y), let’s assume the following situation and
arrive to a contradiction.

• Alice chooses input x0 and obtains output a0

• Bob creates m clones of its original system

From the point of view of an observer that first witnesses Alice’s measure, the description of
Bob’s system is P (b|y, x0, a0). After cloning, this distribution becomes

P (b|y, x0, a0)→ P (b1, . . . , bm|y1 . . . , ym, x0, a0) (4.40)

The marginal P (bi|yi, x0, a0) is the same as the original P (b|y, x0, a0). For an observer that first
sees Bob’s operation, the distribution is

P (a, b1, . . . , bm|x, y1 . . . , ym) (4.41)

But both descriptions have to give consistent predictions and thus must be the same up to condi-
tioning on a. This implies that the original distribution is shareable and thus local. 2

The existence of both monogamy and impossibility of cloning is related to the concept of secrecy
extraction. In the next section we explore this relationship.

4.3.2 Nonlocality and secrecy extraction

The relationship between general non-locality and secrecy extends the results that are known be-
tween entanglement and secrecy (as the EPR protocol described in Chapter 2). That general non
signaling theories exhibit the same properties as quantum mechanics, gives the intuition that they
can be employed as a source of secrecy between two parties. If two honest parties share correlations
with certain degree of monogamy, they can estimate and bound their correlations with an adver-
sary, the eavesdropper. The correlations between the two parties and the adversary are described
by a probability distribution PABE where E stands for the eavesdropper random variable, with the
notation employed in chapter 3.

This distribution contains secrecy if it cannot be generated by local operations and public com-
munication (LOPC), that is, it requires private channels or secret bits for its formation. We say
that PABE contains secrecy if there doesn’t exist a stochastic map E → E′ such that

PAB|E′ = PA|E′PB|E′

This does not automatically imply that the distribution between the three parties can later be
employed to generate a secret key, as there are probability distributions containing secrecy from
which a secret key cannot be distilled (the situation where there is bound information [35]). Alice
and Bob share a distribution P (a, b|x, y) and decide their inputs according to uniform distributions
P (x) = 1

X and P (y) = 1
Y . The random variables A = (a, x) and B = (b, y) are correlated as:

PAB = P (a, b|x, y)
1

XY
(4.42)
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These correlations can be extended to the distribution including the eavesdropper Eve assuming
non-signaling into P (a, b, e|x, y) and therefore

PABE = P (a, b, e|x, y)
1

XY
(4.43)

where E = e. We say that P (a, b|x, y) contains secrecy if all its associated PABE contain secrecy.
The equivalence between no secrecy content and locality of correlations is derived from the fact that
a probability distribution P (a, b|x, y) is local when there is an extension P (a, b, e|x, y) such that

P (a, b|x, y, e) = P (a|x, e)P (b|y, e) (4.44)

As already stated the bipartite distribution doesn’t have secrecy content if there is an extension

PAB|E = PA|EPB|E

Both equations are equivalent as the arbitrariness of the extension P (a, b, e|x, y) includes any trans-
formation E → E′. What we are implying here is that PABE has no secrecy if and only if there
exists an extension of P (a, b|x, y) satisfying 4.44, that is that the distribution is local.

We have described in this chapter a generalization of non local correlations and Bell inequalities
and the formalism of the non-signaling polytope. The results presented are the foundations in which
the protocol described in the next chapter is based.

The next chapter deals with the exposition of a protocol based on non signaling correlations in
which a secret key can be extracted.



Chapter 5

Secrecy extraction from
non-signaling correlations

In the previous chapter, the non-signaling polytope was introduced as an information resource. In
the present chapter we develop a key distribution protocol based on the violation of a Bell inequality
and study its properties.

5.1 Introduction

In this chapter we present a cryptographic protocol initially developed by A. Aćın, N. Gisin and
LL. Masanes ([2]) which is based on the violation of a CHSH-type inequality. It has been my job
during the development of this project to study interesting characteristics of this protocol -such as
positivity of intrinsic information, minimum bound of key rate in individual attacks in its d = 2 and
d = 3 versions and advantage distillation techniques.

The idea of a protocol which is based on physical principles beyond quantum formalism, is
motivated by the fact that its assumptions are less restrictives. QKD is not only based on the
validity of quantum formalism, there is also an intrinsic extra assumption: Alice and Bob know how
they have done their measures -i.e. how they obtained their correlations P (a, b | x, y). As in the
photon-polarization implementation of BB84 protocol provided in chapter 2, Alice knows she sends
photons in two polarization bases, z and x, that are measured by Bob in the same bases.

As it was explained in the introduction, this assumption means that the dimension of the Hilbert
space of the state employed in generating the key is under control and not a resource that could be
exploited by the eavesdropper.

In order to circumvent this assumption and as the initial steps in developing Device Independent
Quantum Key Distribution, a protocol assuming just the violation of a Bell inequality was proposed.
The motivation behind this protocol was a non-signaling protocol proposed in [5]. However, this
protocol was not suited to extract a secret key.

5.2 Secrecy of probability distributions and individual eaves-
dropping strategies

Alice and Bob have realized the measurement several times and share an arbitrary number of
realizations that are distributed as P (a, b|x, y). By revealing some of their results, they can establish
the degree of violation of the CHSH inequality (thus if the probability distribution that they share
is inside the local polytope or in the non-local region). The goal is to study whether Alice and Bob
can extract secrecy out of their data with this knowledge only.

Let’s consider the BB84 protocol described in chapter 2 under this point of view. In this protocol,
a, b ∈ {0, 1} and x, y ∈ {X,Z} are both binary. In the absence of errors, perfect correlations
when x = y and no correlations when x 6= y are distributed. Expressed in terms of conditioned

58
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probabilities, that is:

P (0, 0|X,X) = P (1, 1|X,X) =
1

2

P (0, 0|Z,Z) = P (1, 1|Z,Z) =
1

2

P (a, b|X,Z) = p(a, b|Z,X) =
1

4
(5.1)

If Alice and Bob have obtained their results by measuring qubits, the correlations obtained generate
secrecy under the assumption that the eavesdropper is limited only by the laws of quantum physics.
However, the distribution can also be obtained with shared randomness: if Alice and Bob would share
randomly distributed pairs of classical bits (rX , rZ), they simply have to output rZ (respectively
rX) if they are asked to measure Z (respectively X). The additional assumption on the physical
realization is what makes the protocol secure, as Alice and Bob are both measuring a qubit. The
correlations that they share are not secure per se. The exploration that follows is motivated to
provide correlations that are secure by themselves without having to make any extra assumption in
the way they were generated or shared.

This first step in studying a protocol based in the violation of Bell inequalities was made with
the following assumptions:

• the eavesdropper Eve is not even limited by quantum physics, but only by the no-signalling
constraint

• the eavesdropper Eve is limited to adopt an individual strategy (that is, she cannot correlate
her outputs)

Let’s detail each one of the assumptions.

The generation of secrecy from non-local correlations was easier to analyze by considering that
the eavesdropper Eve is only limited by the non-signaling constraint. This ”supra-quantum” prop-
erty of the eavesdropper means that Eve can distribute any many-instances probability distribution
P (~a,~b|~x, ~y) that lies within the no-signalling polytope (including the region beyond the quantum
limit); Alice and Bob have the freedom of choosing their sequence of measurements, ~x and ~y re-
spectively, and will obtain the corresponding outcomes. This is in fact the scheme described in the
Introduction. This assumption is indeed conservative (although it was easier to study it than the
quantum case), if a secret key can be extracted in this case, with a more realistic adversary the
secret key extraction will be at least as efficient.

As we already described in the previous chapter, the secrecy in this case relies in the non-locality
of the correlations.

Barrett, Hardy and Kent [5] showed an example of a protocol, in which quantum correlations can
provide secrecy against the most powerful attack by a no-signaling Eve. This is the first example that
one can achieve security even against a supra-quantum Eve, showing that security in key distribution
arises from general features of no-signalling distributions rather than from the specificities of the
Hilbert space structure. However, their example had important limitations: actually, it provides a
protocol to distribute a single secret bit (hence zero key rate) in the case when Alice and Bob share
correlations that can be ascribed to noiseless quantum states.

The work here presented provides an alternative to the above mentioned protocol but, as already
stated, limiting the eavesdropper to adopt an individual strategy. The classification of different kinds
of attacks from the point of view of the eavesdropper is in synthesis as follows:

• Individual attacks

– Eve sends independent identically distributed signals

– She tries to guess each bit of the raw key without performing correlations between in-
stances (after classical post-processing between the parties). At the beginning of the
classical post processing, Alice, Bob and Eve share a probability distribution of classical
symbols.
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• Collective attacks

– Eve sends independent identically distributed signals

– She tries to guess the final key and can correlate different instances of measurements.

• General or coherent attacks

– Eve sends the most general signals (she may entangle systems, modify her attack accord-
ing to some measurement)

– She tries to guess the final key.

We will center the following discussions in individual attacks. This means that Eve follows
the same procedure for each instance of measurement, she is not allowed to correlate different
instances. Moreover, Eve is asked to put her input z before any error correction and privacy ampli-
fication. Consequently, any individual attack is described of a three-partite probability distribution
P (a, b, e|x, y, z) such that

P (a, b|x, y) =
∑
e

P (e|z)P (a, b|x, y, e, z) . (5.2)

Note that Eve is also limited by no-signalling, that is why the left hand side does not depend on z.
One can see that this is an individual attack by looking at it as follows: when Eve gets outcome e
out of her input z, she sends out the point P (a, b|x, y, e, z).

Now we demonstrate two similar, important results about individual eavesdropping strategies
related to her strategies involving the non-signaling polytope. These results make easier to analyze
the probability distributions involved in the protocol.

Theorem 5.1 Eve can limit herself in sending out extremal points of the no-signalling polytope.

Proof: Suppose that an attack is defined, in which one of the P (a, b|x, y, e, z) is not an extremal
point. Then, this point can be itself decomposed on extremal points:

P (a, b|x, y, e, z) =
∑
λ

P (λ)P (a, b|x, y, e, z, λ)

where the P (a, b|x, y, e, z, λ) are all extremal. But the knowledge of λ must be given to Eve: by
redefining Eve’s symbol as (e, λ)→ e′, we have an attack which is as powerful as the one we started
from, and is of the form (5.2) while having only extreme points in the decomposition. 2

Theorem 5.2 Suppose that Alice and Bob can transform P (a, b|x, y) into P̃ (a, b|x, y) by using only
local operations and public communication independent of a, b, x, y. Then there exist a purification
of P̃ (a, b|x, y) that gives Eve as much information as the best purification of P (a, b|x, y).

Proof: Suppose (5.2) is the best purification of P from Eve’s point of view; for clarity, let’s use
Theorem 1 to say that the P (a, b|x, y, e, z) are extremal points. The procedure of Alice and Bob
can be described as follows: for each realization of the variables (a, b, x, y), Alice draws a random
number and reveals publicly its value j; then, she and Bob apply the local transformation Tj on
which they have previously agreed, transforming x→ Xj , a→ Aj etc. Since there is no correlation
between j and (e, z), each extremal point Pε(a, b|x, y, e, z) is transformed into

P̃ (a, b|x, y, e, z) =
∑
j

P (j)P (Aj , Bj |Xj , Yj , e, z)

=
∑
j,ε

P (j)P (ε|e, j)P (a, b|x, y, ε, z) . (5.3)

Consequently, P̃ (a, b|x, y) is a mixture of the extremal points P (a, b|x, y, ε, z) with weight P (ε|z) =∑
j,e P (e|z)P (j)P (ε|e, j). To conclude the proof, just notice that Eve has been able to follow the

full procedure, because she has learnt j and the list of the Tj is publicly known. Thus, there exist a

decomposition of P̃ (a, b|x, y) onto extremal points that gives Eve as much information as the best
decomposition of P (a, b|x, y). 2
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5.3 CHSH protocol

We present here the version of the protocol for binary outcomes (that can be implemented with
qubits), and explore the results and extract some characteristics. In the case of qubits, we will talk
about CHSH protocol. We have already characterized the non-signaling polytope for this case in
chapter 4. We take the following representative of the CHSH inequality

B =

1∑
x,y=0

P (a+ b = xy | xy) ≤ 3 (5.4)

based in the CGLMP inequality in (4.25).

In order to analyze the properties of the protocol, we are going to explicitly express the probabil-
ity distribution in terms of each of the vertices of the no-signaling polytope. To study the possibility
of secret key extraction, we can restrict ourselves to the non-local region that lies above the facet of
the local polytope determined by the local strategies in 4.19 and the PR-Box (4.9) that is above the
the facet given by CHSH inequalities. Any point in this sector, by definition, can be decomposed as
a convex combination of the PR-box and some of the eight deterministic strategies on the facet

Lr1 = {a(x) = r, b(y) = r}
Lr2 = {a(x) = x+ r, b(y) = r}
Lr3 = {a(x) = r, b(y) = y + r}
Lr4 = {a(x) = x+ r, b(y) = y + r + 1} (5.5)

described in the previous chapter. As shown in the previous theorems, without loss of generality,
Eve distributes these nine strategies. The notation employed in this section is different than the
developed when presenting the no-signaling polytope in the case d = 2 in chapter 4, but it is more
suited to the calculations that we will develop onwards.

1. We shall write pNL (for “non-local”) the probability that Eve sends the PR-box to Alice and
Bob;

2. and prj the probability that Eve sends the deterministic strategy Lrj . We shall also write
pL =

∑
j,r p

r
j = 1− pNL.

The statistics generated by Eve sending the extremal points are summarized in the Table 5.1.

Let’s give some examples about the information given by the table. for example P (a = b =
0|x = y = 0) = pNL/2 + p0

1 + p0
2 + p0

3. To obtain the P (a, b, x, y), one must multiply the entries of
the Table by P (x)P (y). Since we are supposing that the extremal points are sent to Alice and Bob
by Eve, the label of each point can be considered also as Eve’s symbol.

Finally, we note that if we substitute the probabilities given by Table 5.1 in the CHSH inequality
(5.4), one finds

pNL = CHSH − 3 . (5.6)

This means that the value pNL measures directly the violation of the CHSH inequality and
therefore is indicating the degree of nonlocality. It follows that for the quantum region, the violation
is bounded by

pNL ≤
√

2 − 1 ≈ 0.414. (5.7)

The probability distribution that reaches this maximum is the one obtained by measuring observables

on a maximally entangled state, whose probability distribution is P (a + b = xy|x, y) =
1+ 1√

2

2 .
Whenever Eve distributes the PR-box, she has no information at all about the bits received by Alice
and Bob, because of the monogamy of those correlations. On the contrary, when she distributes a
deterministic strategy, she has some information, depending on the cryptographic protocol.
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A \B y = 0, b = 0 y = 0, b = 1 y = 1, b = 0 y = 1, b = 1

x = 0, pNL/2 (PR) pNL/2 (PR)
a = 0 p0

1 (L0
1) p0

1 (L0
1)

p0
2 (L0

2) p0
2 (L0

2)
p0

3 (L0
3) p0

4 (L0
4) p0

4 (L0
4) p0

3 (L0
3)

x = 0, pNL/2 (PR) pNL/2 (PR)
a = 1 p1

1 (L1
1) p1

1 (L1
1)

p1
2 (L1

2) p1
2 (L1

2)
p1

4 (L1
4) p1

3 (L1
3) p1

3 (L1
3) p1

4 (L1
4)

x = 1, pNL/2 (PR) pNL/2 (PR)
a = 0 p0

1 (L0
1) p1

2 (L1
2) p0

1 (L0
1) p1

2 (L1
2)

p0
3 (L0

3) p0
3 (L0

3)
p1

4 (L1
4) p1

4 (L1
4)

x = 1, pNL/2 (PR) pNL/2 (PR)
a = 1 p0

2 (L0
2) p1

1 (L1
1) p0

2 (L0
2) p1

1 (L1
1)

p1
3 (L1

3) p1
3 (L1

3)
p0

4 (L0
4) p0

4 (L0
4)

Table 5.1: Table of the distribution Alice-Bob-Eve for the raw data case d = 2. The entries are the
P (a, b|x, y). In parentheses, we indicate Eve’s symbol from the no-signaling polytope.

In order to extract a secret key from the distribution presented in Table 5.1, a protocol was
proposed which was a reasonable candidate for optimality in secret key generation. The premises
of a good protocol are to maximize the correlations between Alice and Bob at the same time that
the information received by Eve is reduced. Observing the raw data, it can be noticed that Alice
and Bob are highly anti-correlated when x = y = 1: it is thus natural to devise a procedure that
allows them to transform these anti-correlations in correlations, revealing the least information in
the public channel.

The following steps are the so-denominated CHSH protocol analyzed in this memoir:

1. Distribution. Alice and Bob repeat the measurement procedure on arbitrarily many instances
and collect their data.

2. Parameter estimation. By revealing publicly some of their results, they estimate the parame-
ters of their distribution, in particular, they measure the fraction pNL of intrinsically non-local
correlations.

3. Pseudo-Sifting. For each instance, Alice reveals the measurement she has performed (x = 0
or x = 1). Whenever Alice declares x = 1 and Bob has chosen y = 1, Bob flips his bit. Bob
does not reveal the measurement he has performed. This is the procedure which transforms
anti-correlations into correlations while revealing the smallest amount of information on the
public channel. We call it pseudo-sifting, because it enters in the protocol at the same place
as sifting occurs in other protocols, but here all the items are kept.

4. Classical processing. Here, classical techniques of secrecy extraction are employed in order to
generate a key. The details depend on whether one considers one-way post-processing (”error
correction and privacy amplification”, efficient in terms of secret key rate) or two-way post-
processing (”advantage distillation”, inefficient for small errors but tolerating larger errors).
The two cases will be analyzed in detail in the following sections.

Once pseudo sifting is performed, denoting the probability of each of Bob’s measurements as
ξj = P (y = j), the Alice-Bob-Eve probability distribution can be written as it is shown in Table
5.2. In this table, the values of the probabilities of each symbol are split for each value of x. In
order to understand the content of the distributions, let’s analyze an example. If Eve sends out
the deterministic point L0

1 and Alice announces in the pseudo-sifting phase x = 0 then Eve knows
for sure both Alice’s and Bob’s outcomes, in this particular case a = 0 and b = 0. For x = 0 it
is the only result given by the strategy L0

1. However, in the case that Eve sends out L0
3 and Alice

announces x = 0, Eve still knows for sure Alice’s outcome (a = 0), but Bob’s symbol is totally
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dependent on his input, that is b = 0 if y = 0, b = 1 if y = 1. For x = 1, the roles are reversed L0
3

produces only a = 0 and b = 0; while L0
1 gives a = 0, b = 0 if y = 0 and b = 1 if y = 1.

All local points present the same behavior:

(i) Alice’s outcome a is always known to Eve, because the setting used by Alice is publicly known.

(ii) If a local point employed by Eve gives her full information about Bob’s outcome b when x = 0,
the same point leaves her uncertain about b when x = 1 and viceversa.

Eve’s uncertainty is maximal when Alice’s and Bob’s settings are chosen at random, therefore
we set from now on

P (x = i) =
1

2
P (y = j) ≡ ξj =

1

2
. (5.8)

This feature that the change of setting of measurement enlarges Eve’s uncertainty is different from
what is found in a traditional quantum cryptography setup. In this latter case, Eve’s information
does not depend on the frequency with which each setting is used, and in fact Alice and Bob can
use almost always the same setting, provided they use the other one(s) sometimes in order to check
coherence.

The pseudo-sifting phase of the protocol corrects the anti-correlation in the case x = y = 1 and
although it increases information about Alice’s symbol in the case of deterministic strategies, it keeps
some uncertainty for Eve on Bob’s result. The partial information about the setting is crucial to this
point, if Alice and Bob would reveal both their settings, x and y, Eve would have total information
on their respective symbols for all the deterministic strategies Lrj . Table 5.2 contains the probability
distribution Alice-Bob-Eve after pseudo-sifting. It is necessary to study the extraction of a secret
key from this distribution using classical pre- and post-processing methods.

x = 0 b = 0 b = 1

a = 0 pNL/2 (PR)
p0

1 (L0
1)

p0
2 (L0

2)
p0

3ξ0 (L0
3) p0

3ξ1 (L0
3)

p0
4ξ1 (L0

4) p0
4ξ0 (L0

4)
a = 1 pNL/2 (PR)

p1
1 (L1

1)
p1

2 (L1
2)

p1
3ξ1 (L1

3) p1
3ξ0 (L1

3)
p1

4ξ0 (L1
4) p1

4ξ1 (L1
4)

x = 1 b = 0 b = 1

a = 0 pNL/2 (PR)
p0

1ξ0 (L0
1) p0

1ξ1 (L0
1)

p1
2ξ1 (L1

2) p1
2ξ0 (L1

2)
p0

3 (L0
3)

p1
4 (L1

4)
a = 1 pNL/2 (PR)

p1
1ξ1 (L1

1) p1
1ξ0 (L1

1)
p0

2ξ0 (L0
2) p0

2ξ1 (L0
2)

p3
1 (L3

1)
p0

4 (L0
4)

Table 5.2: Probability distributions Alice-Bob-Eve for the data sifted according to the CHSH pro-
tocol, conditioned to the knowledge of x = 0 or x = 1.

5.3.1 Uncertainty relations in the probability distribution

One feature that is worth noting about the probability distribution that is created by the protocol
is that the eavesdropper gains information on a “basis” at the expense of increasing its errors in the
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complementary one. This feature is similar to what happens in a traditional quantum cryptography
setting (the choice of a basis increases Eve’s information if this setting is chosen, as we saw in the
explanation of the BB84 protocol in chapter 2).

Assuming maximal uncertainty in the election of settings, ξ0 = ξ1 = 1
2 , The probabilities p(a 6=

b|x) = eAB|x of error between Alice and Bob when x = 0 and x = 1 are respectively

eAB|0 =
1

2

(
p0

3 + p1
3 + p0

4 + p1
4

)
, (5.9)

eAB|1 =
1

2

(
p0

1 + p1
1 + p0

2 + p1
2

)
. (5.10)

Eve’s uncertainty on Bob’s symbol, measured by conditional Shannon entropy, is obtained em-
ploying the formula

H(B|E, x = 0) =
∑
b,e

P (b, e, x = 0) log
P (e, x = 0)

P (b, e, x = 0)

where e represents each of the strategies distributed.

H(B|E, x = 0) = 1−
(
p0

1 + p1
1 + p0

2 + p1
2

)
(5.11)

H(B|E, x = 1) = 1−
(
p0

3 + p1
3 + p0

4 + p1
4

)
. (5.12)

Thus, the following uncertainty relation appear as a result of the protocol

H(B|E, x) = 1− 2eAB|x+1 . (5.13)

In terms of mutual information it can be expressed as

I(B : E|x = 0) = h

(
1

2
+
p1

1 − p0
1 + p1

2 − p0
2

2

)
− 1 + p0

1 + p1
1 + p0

2 + p1
2 (5.14)

I(B : E|x = 1) = h

(
1

2
+
p1

3 − p0
3 + p1

4 − p0
4

2

)
− 1 + p0

3 + p1
3 + p0

4 + p1
4 . (5.15)

We can write this mutual information shortly as:

I(B : E|x) = h(
1

2
+
p1

2x+1 − p0
2x+1 + p1

2x+2 − p0
2x+2

2
)− 1 + 2eAB|x+1 . (5.16)

This relationship between the information retrieved by Eve and the local strategies determined
is explained analyzing Table 5.2. The pseudo-sifting phase aims to extract optimal correlation from
the non-local strategy (distributing the PR-box, noted as PR) by reversing the anti-correlation of
x = y = 1. But the consequence in the local deterministic strategies is that Eve learns everything
for one Alice’s setting and for the other an error between Alice and Bob occur in half of the
measurements. Explicitly, for Lr1 and Lr2, after the pseudo-sifting phase Bob’s symbols are:

• b(y = 0) = b(y = 1) = a when x = 0: There is no error between Alice and Bob and Eve has
full information.

• b(y = 0) 6= b(y = 1) when x = 1: There is error in half of the measurements between Alice
and Bob and Eve has no information about b.

For Lr3 and Lr4, the situation is reversed, Eve has full information in x = 1 and no knowledge on
Bob’s symbol when x = 0, where there is error between Alice and Bob half of the time.

The interest of this relationship is purely theoretical: it is the first evidence of an analogue of
quantum mechanical uncertainty relations in a generic non-local theory.
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5.3.2 One-way classical post-processing

General case

As already discussed in chapter 3, the bound for the length of the achievable secret key rate under
individual attacks is the Csiszár-Körner (CK) bound [32].

In the study of this protocol the possible use of additional data T described in (3.20) was not
explored, the pre-processing consisting just in a bit flip with probability q (That is for Bob, b→ b+1
with probability q ).

Consequently, we have an estimate rCK ≤ RCK for the achievable secret key rate. Recalling
that mutual information is I(X : Y ) = H(X) − H(X|Y ), the estimate for the CK bound can be
written as

rCK = max
B′←B

[
I(A : B′)− I(B′ : E)

]
=

1

2

∑
x=0,1

max
B′←B

[
I(A : B′|x)− I(B′ : E|x)

]
. (5.17)

Let’s sketch the computation explicitly. In Table 5.2, one reads for p(a, b) = 1
2P (a, b|x = 0) +

1
2P (a, b|x = 1):

P (0, 0) = 1
2

(
pNL

2 + p0
1 + p0

2 +
p03+p04

2

)
+ 1

2

(
pNL

2 + p1
4 + p0

3 +
p01+p12

2

)
=

= 1
2 +

p01+p03−p
1
2−p

0
4−2p13−2p11

4

P (0, 1) =
p01+p12+p03+p04

4

P (1, 0) =
p11+p02+p13+p14

4

P (1, 1) = 1
2

(
pNL

2 + p1
1 + p1

2 +
p13+p14

2

)
+ 1

2

(
pNL

2 + p1
3 + p0

4 +
p11+p02

2

)
=

= 1
2 +

p11+p13−p
0
2−p

1
4−2p03−2p01

4

. (5.18)

We can also calculate explicitly the local probabilities for Alice and Bob.

PA(0) =
1

2
+
p0

1 + p0
3 − p1

1 − p1
3

2

PA(1) =
1

2
+
p1

1 + p1
3 − p0

1 − p0
3

2
(5.19)

PB(0) =
1

2
+
p0

1 + p0
2 + p0

3 + p1
4 − p1

1 − p1
2 − p1

3 − p0
4

4

PB(1) =
1

2
+
p1

1 + p1
2 + p1

3 + p0
4 − p0

1 − p0
2 − p0

3 − p1
4

4
(5.20)

We observe that the case of marginal where local probabilities are uniform is produced by the same
probability of local strategies with r = 0, 1, i.e. p0

j = p1
j = 1

2 j = 1, 2, 3, 4
These probabilities allow us to calculate the mutual information

I(A;B) =
∑
a∈A

∑
b∈B

P (a, b) log
P (a, b)

PA(a)PB(b)
(5.21)

Being q the probability that Bob flips his bit in the pre-processing, then the probability of each
pair of symbols is:

P (a, b′) = (1− q)P (a, b = b′) + qP (a, b = b′ + 1) . (5.22)

These four probabilities allow to compute the mutual information in case of pre-processing I(A;B′) =
H(A)−H(A|B′).
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Turning to Eve: before pre-processing, she has full knowledge on Bob’s symbol for Lr1 and Lr2,
and no knowledge for Lr3 and Lr4. Consequently

I(B′ : E|x = 0) = I(B : E|x = 0)
[
1− h(q)

]
(5.23)

where h is binary entropy.

The calculation is of course identical for x = 1 and this allows to compute rCK for any probability
distribution. Equivalently one can express this as:

H(B′|E) = H(B|E) +
[
1−H(B|E)

]
h(q) (5.24)

In the following paragraphs, we will focus on two cases and will explicitly derive this calculations.

Isotropic distribution

Let’s consider the probability distribution of the form

P (a, b|x, y) =
1 + pNL

4
δ(a+ b = xy) +

pL
8
. (5.25)

This distribution is called an isotropic probability distribution. The forced symmetry in the
distribution necessarily implies prj = pL/8 for all j, r, since the Lrj are linearly independent. Note

that the point of highest violation in the quantum region is of this form, with pNL =
√

2−1 ' 0.414

and probability distribution P (a+ b = xy|x, y) =
1+ 1√

2

2 .

Remarkably, Alice and Bob can transform any distribution with a given pNL to the isotropic
distribution defined by the same pNL (or the same degree of violation of the CHSH inequality)
with local operations and public communication. This procedure is called ”depolarization” (which
was introduced in [15]) and is implemented employing three bits of shared randomness and local
operation with the following steps:

1. Alice and Bob perform one of the following operations with probability 1
2

• Do nothing

• Flip a and b, that is a = a+ 1 mod 2 and b = b+ 1 mod 2

This procedure unbias the correlations.

2. With probability 1
4 they perform one of the following operations

• Do nothing

• a→ a+ x mod 2 and y → y + 1

• b→ b+ y mod 2 and x→ x+ 1

• a→ a+ x+ 1 mod 2, b→ b+ y mod 2 and x→ x+ 1

This implies that the results of this subsection are in some sense generic. In fact, by Theorem
2 of section 5.2, Eve’s best individual eavesdropping strategy for a fixed value of pNL consists in
preparing an isotropic distribution. Alternatively, we can modify the protocol to add the fact that
Alice and Bob apply systematically the depolarization procedure.

For isotropic distributions, the two tables for x = 0 and x = 1 become identical, and we can
rewrite them as Table 5.3. In this Table, we have changed the notation for Eve’s knowledge, and
have written (a, b) when Eve knows both outcomes, (a, ?) when she knows only Alice’s, and (?, ?)
when she knows none.

This distribution has p(a = 0) = p(a = 1) = 1
2 . Before pre-processing, the error between

Alice and Bob is eAB = pL/4; after pre-processing, the quantity to be corrected in error correction
is e′AB = (1 − q)eAB + q(1 − eAB). As stated in the previous section, we can use to obtain the
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[isotropic] b = 0 b = 1

a = 0 pNL/2 (?, ?)
pL/4 (0, 0)
pL/8 (0, ?) pL/8 (0, ?)

a = 1 pNL/2 (?, ?)
pL/4 (1, 1)

pL/8 (1, ?) pL/8 (1, ?)

Table 5.3: Probability distribution Alice-Bob-Eve for the CHSH protocol, in the case of isotropic
distribution.

mutual information I(A;B) =
∑
a∈A

∑
b∈B P (a, b) log

P (a, b)

PA(a)PB(b)
. In the case of I(A;B′) we have

inspecting table 5.3

P (0, 0) =
1

2
− pL

8

P (0, 1) =
pL
8

P (1, 0) =
pL
8

P (1, 1) =
1

2
− pL

8

And considering pre-processing:

P (0, 0′) = (1− q)(1

2
− pL

8
) + q

pL
8

P (0, 1′) = (1− q)pL
8

+ q(
1

2
− pL

8
)

P (1, 0′) = (1− q)pL
8

+ q(
1

2
− pL

8
)

P (1, 1′) = (1− q)(1

2
− pL

8
) + q

pL
8

Thus, we have

I(A;B′) = 2

[
(1− q)(1

2
− pL

8
) + q

pL
8

]
log

[
(1− q)( 1

2 −
pL
8 ) + q pL8

1
2 ·

1
2

]
+

+2

[
(1− q)pL

8
+ q(

1

2
− pL

8
)

]
log

[
(1− q)pL8 + q( 1

2 −
pL
8 )

1
2 ·

1
2

]
=

=
[
(1− q)(1− pL

4
) + q

pL
4

]
log
(

2(1− q)(1− pL
4

) + q
pL
4

)
+

+
[
(1− q)pL

4
+ q(1− pL

4
)
]

log
(

2(1− q)pL
4

+ q(1− pL
4

)
)

=

= 1− h(e′AB) (5.26)

Eve’s information can be obtained as I(B′ : E|x = 0) = I(B : E|x = 0)
[
1− h(q)

]
. We compute

explicitly the mutual information between Eve and Bob with the information in Table 5.3, for
each symbol (b,e), we have the following terms in the mutual information formula (each term is

p(b, e) log p(b,e)
pB(b)pE(e) ) (we explicitly show case for b = 0) ):

(0, (?, ?)) : pNL
2 log

pNL
2

1
2pNL

= 0

(0, (0, 0)) : pL
4 log

pL
4

1
2

pL
4

= pL
4

(0, (0, ?)) : pL
8 log

pL
8

1
2

pL
4

= 0

(0, (1, ?)) : pL
8 log

pL
8

1
2

pL
4

= 0
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Therefore, Eve’s mutual information in the isotropic case is pL
2 [1− h(q)]. We can now explicitly

calculate the CK bound defined previously

rCK = max
q∈[0, 12 ]

[
1− h(e′AB)− pL

2
[1− h(q)]

]
. (5.27)

This quantity is plotted in Fig. 5.1 as a function of the local probability pL = 1 − pNL. We
see that rCK > 0 for pL ≤ 0.764, i.e. pNL & 0.236 for the optimal pre-processing. Without
pre-processing, the bound becomes pL ≤ 0.682, i.e. pNL & 0.318. The important remark is that
both these values are inside the quantum region. This means that using quantum physics, one can
distribute correlations which allow (at least against individual attacks) the extraction of a secret
key without any further assumption about the details of the physical realization.

Figure 5.1: Achievable secret key rate for the CHSH protocol, after one-way post-processing against
a no-signalling Eve for individual attacks, isotropic distribution

In the paper derived from this work [18], the CHSH protocol was analyzed with the standard
approach of quantum cryptography. The details will not be exposed here (see Appendix A of [18])
but it is interesting to show the results. In this approach Alice and Bob share a quantum state of
two qubits and have agreed on the physical measurements corresponding to each value of x and y;
Eve is constrained to distribute quantum states, of which she keeps a purification.

The resulting bound on the achievable secret key rate is plotted in Fig. 5.2. This quantity
is plotted as a function of the disturbance D defined by pNL =

√
2(1 − 2D) − 1. This parameter

characterizes the properties of the channel linking Alice and Bob: it is therefore useful for comparison
with a quantum realization of the CHSH protocol and with BB84. It turns out that the CHSH
protocol is equivalent to the BB84 protocol plus some classical pre-processing. In particular, the
robustness to noise is the same for both protocols. For low error rate, BB84 provides higher secret-
key rate; however, BB84 cannot be used for a device-independent proof, since (as we noticed above)
its correlations become intrinsically insecure if the dimensionality of the Hilbert space is not known.

Reaching the Bell limit

Another interesting case is to explore if one can find one-parameter families of probability distri-
butions for which RCK > 0 as soon as pNL > 0. This means finding distributions for which one
can extract a secret key out of one-way processing down to the limit of the local polytope. There
are distributions of such type and even a secret key can be extracted even without pre-processing.
Here is an example: set p0

1 = p0
2, p1

1 = p1
2, and pr3,4 = 0. For both x = 0 and x = 1 we have

p(a = 0) = p(a = 1) = 1
2 . For x = 0, Alice and Bob make no errors (eAB|0 = 0), and Eve’s

information is I(B : E|x = 0) = pL; for x = 1, the errors of Alice and Bob are eAB|1 = pL
2 and Eve

has no information. In summary, even neglecting pre-processing,

rCK = 1− 1

2
h(pL/2)− pL

2
(5.28)
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Figure 5.2: Achievable secret key rate for the CHSH protocol, after one-way post-processing: against
a no-signalling Eve for individual attacks, isotropic distribution (5.3.2) and against a quantum Eve,
in a two-qubit implementation

which is strictly positive in the whole region pL < 1.

However, the distributions described here cannot be broadcasted using quantum states. The
reason is that the quantum intersection with the non-local region is strictly inside this region: as
soon as pNL > 0, all the prj must be non zero, because the Lrj are linearly independent to consider
a point in the quantum set. On the contrary, here we have set pr3,4 = 0. Anyway, in spite of the
fact that we are not able to broadcast this distribution with known physical means, it is interesting
to notice that there exists a family of probability distributions that can lead to a secret key under
one-way post-processing, for any amount of non-locality.

5.3.3 Two-way classical post-processing

Contrary to the one-way case, no tight bound like the Csiszár-Körner bound is known when two-way
classical post-processing is allowed; nor is the optimal procedure known. The best-known two-way
post-processing is advantage distillation, described in chapter 3. Forgetting about pre-processing,
one can see the effect as follows: starting from a situation where I(A : B) < I(B : E), one makes
a processing at the end of which the new variables satisfy I(Ã : B̃) > I(B̃ : Ẽ); at this point, one
applies the one-way post-processing.

We apply the procedures described in 3.2.1 to the isotropic correlations described above (5.3.2),
first without pre-processing, then by allowing Alice and Bob to perform some bit flip before starting
the advantage distillation. We anticipate the result: we find that a key can be extracted for pNL &
0.09; that is, even with two way post-processing we are not able to reach the Bell limit for isotropic
correlations.

Advantage distillation without pre-processing

We refer to Table 5.3. We have, as above, eAB = pL
4 . We must now estimate Eve’s error on Bob’s

symbol after AD. Eve knows α as soon as she knows one of Alice’s symbols aik , and recall that
asymptotically the guess β = α is correct. The only situation in which Eve is obliged to make a
random guess is therefore the case in which all the N instances correspond to Eve’s symbol (?, ?).
The probability that Eve’s guess of Bob’s symbol is wrong is therefore

ẽE &
1

2

(
pNL

1− eAB

)N
(5.29)

where the denominator comes from the fact that we must condition on the bit’s acceptance. Using
(3.17), we obtain that secrecy can be extracted as long as pNL > pL/4 that pNL > 1/5. This is
lower than the bound obtained for one-way post-processing, as expected.
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Advantage distillation with pre-processing

The previous bound can be further improved by allowing Alice and Bob to pre-process their lists of
symbols before starting the advantage distillation procedure.

For two-way post-processing, it is not known whether bitwise pre-processing is already optimal;
but we restricted to it in this work.

Let’s analyze in first instance, one way pre-processing, an then generalize the results to two-way
pre processing. This result is based on the paper [3] where a bound for advantage distillation is
derived for the two-qubit entanglement case.
If Alice performs some pre-processing, where she flips her measurement with probability qA, other-
wise she keeps it (with probability q̄A = 1− qA), the resulting probability distribution becomes

b = 0 b = 1

a = 0 q̄A
pNL

2 (?, ?) qA
pNL

2 (?, ?)
q̄A

pL
4 (0, 0) qA

pL
4 (1, 1)

q̄A
pL
8 (0, ?) pL

8 q̄A (0, ?)
qA

pL
8 (1, ?) qA

pL
8 (1, ?)

a = 1 qA
pNL

2 (?, ?) q̄A
pNL

2 (?, ?)
qA

pL
4 (0, 0) qA

pL
4 (1, 1)

qA
pL
8 (0, ?) qA

pL
8 (0, ?)

q̄A
pL
8 (1, ?) q̄A

pL
8 (1, ?)

Table 5.4: Probability distribution Alice-Bob-Eve for the sifted data, in the case of isotropic distri-
bution, after Alice’s pre-processing.

Since the initial error probability was eAB = pL
4 , with preprocessing, the error probability

becomes eA′B = q̄ApL/4 + qA(1 − pL/4). After advantage distillation with a block of N bits, the
resulting error probability satisfies, as already stated

ẽA′B &

(
eA′B

1− eA′B

)N
(5.30)

Concerning Eve’s error, we can restrict the considerations to the cases where there is no error
between Alice and Bob. As already assumed, as soon Eve guesses correctly Alice’s symbol (α),
she guesses Bob’s (β). The question here is to derive a condition stronger than (5.29), having
into consideration the uncertainty introduced by Alice’s pre-processing in Eve’s knowledge. Eve’s
situation is such that, even if she has a symbol (a, b) or (a, ?) she cannot be completely sure of
Alice’s symbol. In order to bound her error probability, we can restrict our considerations to the
cases where a = b, since eA′B → 0.

The relevant terms to focus on in order to bound Eve’s error are for instance the probability
that Eve has the symbol (0, 0) and the bits are accepted

Peq(0, 0|0) = P (e = (0, 0)|a = 0, b = 0) =
q̄ApL
4νq

(5.31)

(5.32)

where νq is the probability of acceptance of the bit, that is νq = 1−eA′B
2 .

νq = P (a = 0, b = 0) = P (a = 1, b = 1) =
pL
8

+ q̄A(
pL
4

+
1− pL

2
) (5.33)

In order to bound Eve’s error probability after advantage distillation, one concentrates in instances
where

1. The number of zeros and ones in the vector ~x used for advantage distillation is the same

2. No (0, 0) or (1, 1) appears and therefore Eve has no deterministic information.

3. In all the positions where Eve expects to have the same symbol, the number of (0, ?) and (1, ?)
is the same.
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One can derive the following expression

ẽE &
1

2

1

2N

∑
nNL0,nNL1,nL0,nL1

N !

nNL0!nNL1!(nL0!)2(nL1!)2
Peq(?, ?|0)nNL0Peq(?, ?|1)nNL1

Peq(0, ?|0)nL0Peq(1, ?|0)nL0Peq(0, ?|1)nL1Peq(1, ?|1)nL1 (5.34)

Where nNL0 and nNL1 denote the number of terms where the term (?, ?) appears in the zeros
and ones of the vector ~a. In the zeros (ones) of ~a, Eve has nL0 (nL1) terms of (0,?) and (1,?). So,
we have nNL0 +nNL1 +2(nL0 +nL1) = N . In these cases, Eve has no information about the symbol
used for advantage distillation and she has to guess.
We explicitly express the previous expression, considering that:

Peq((?, ?)|0) = Peq((?, ?)|1) =
q̄A(1− pL)

2νq

Peq((0, ?)|0) = Peq((1, ?)|1) =
q̄ApL
8νq

Peq((0, ?)|1) = Peq((1, ?)|0) =
qApL
8νq

Therefore,

ẽE &
1

2

1

2N

∑
nNL0,nNL1,nL0,nL1

N !

nNL0!nNL1!(2nL0)!(2nL1)!

(
q̄A(1− pL)

2νq

)nNL0
(
q̄A(1− pL)

2νq

)nNL1

(
2nL0

nL0

)(
q̄ApL
8νq

)nL0
(
qApL
8νq

)nL0
(

2nL1

nL1

)(
q̄ApL
8νq

)nL1
(
qApL
8νq

)nL1

(5.35)

The term 1
2N

appears because we are considering all the possible vectors of size N . Employing

that for large n, (2n)!
(n!) ' 22n, we have:

ẽE &
1

2

∑
nNL0,nNL1,nL0,nL1

N !

nNL0!nNL1!(2nL0)!(2nL1)!

(
q̄A(1− pL)

4νq

)nNL0
(
q̄A(1− pL)

4νq

)nNL1

(√
q̄AqApL
8νq

)2nL0
(√

q̄AqApL
8νq

)2nL1

(5.36)

In the limit, as N increases, employing a multinomial expansion in even values, this expression can
be approximated by:

ẽE &
1

2

1

4

(
q̄A(1− pL)

2νq
+

√
q̄AqApL
4νq

)N
(5.37)

Combining this expression with equation (5.30), we have that the key distillation is possible
whenever:

eA′B
1− eA′B

<
q̄A(1− pL)

2νq
+

√
q̄AqApL
4νq

(5.38)

If qA = 0, one obtains pL < 0.8 as was already stated in the previous section. If we optimize q̄A
as a function of pL, we obtain the critical value pL ' 0.845294 to obtain a key1.

1In order to optimize this quantity, one finds that the optimal qA for these expressions is of the form:

q̂A =
10p2L ±

√
2
√

45p4L − 228p3L + 440p2L − 384pL + 128− 24pL + 16

4(5p2L − 12pL + 8)
(5.39)
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Let’s develop the two-way pre processing, changing the notation employed but with the same
technique in order to obtain a bound for Eve’s error and thus the condition to distill a secret key.
We suppose that Alice flips her bit with probability qA, Bob with probability qB . By inspection, one
finds that the probability distribution obtained from Table 5.3 after this two-way pre-processing is
the one of Table 5.5.

b = 0 b = 1

a = 0 pNL
2 (q̄Aq̄B + qAqB) (?, ?) pNL

2 (qAq̄B + q̄AqB) (?, ?)
pL
4 q̄Aq̄B (0, 0) pL

4 q̄AqB (0, 0)
pL
4 qAqB (1, 1) pL

4 qAq̄B (1, 1)
pL
8 q̄A (0, ?) pL

8 q̄A (0, ?)
pL
8 qA (1, ?) pL

8 qA (1, ?)
a = 1 pNL

2 (qAq̄B + q̄AqB) (?, ?) pNL
2 (q̄Aq̄B + qAqB) (?, ?)

pL
4 qAq̄B (0, 0) pL

4 qAqB (0, 0)
pL
4 q̄AqB (1, 1) pL

4 q̄Aq̄B (1, 1)
pL
8 qA (0, ?) pL

8 qA (0, ?)
pL
8 q̄A (1, ?) pL

8 q̄A (1, ?)

Table 5.5: Probability distribution Alice-Bob-Eve for the sifted data, in the case of isotropic distri-
bution, after Alice’s and Bob’s pre-processing.

As in the case of pre-processing of Alice, just by looking at the Table, one can guess the interest
of pre-processing: the five possible symbols for Eve are now spread in all the four cells of the table.
For instance, Eve’s symbol is (0, 0) was present only in the case a = b = 0 in Table 5.3, that is,
whenever she had this symbol Eve had full information; this is no longer the case in Table 5.5. Note
also that the roles of qA and qB are not symmetric, because only qA mixes the strategies for which
Eve does not know Bob’s symbol.

The distribution of Table 5.5 is such that

e′AB =
(
pNL +

pL
2

)
(qAq̄B + q̄AqB) +

pL
4
. (5.40)

The estimate of Eve’s error is derived in a similar way as in the case where only Alice flipped
her symbol. Eve’s situation now is such that, even if she has a symbol (a, b) or (a, ?), she cannot be
completely sure whether α = a or not.

Suppose that among her N symbols, modifying the previous notation, Eve has n0 times the
symbol (?, ?), n0

1 times the symbol (0, ?), n1
1 times the symbol (1, ?), n0

2 times the symbol (0, 0), and
n1

2 times the symbol (1, 1). Eve cannot avoid errors when p(a = 0|e) = p(a = 1|e), that is when
n0

1 = n1
1 ≡ n1 and n0

2 = n1
2 ≡ n2. We have therefore the bound

ẽ′E &
1

2

∑
n0,n1,n2

N !

n0!(n1!)2(n2!)2
γn0

(?,?) γ
2n1
1 γ2n2

2 (5.41)

where the sum is taken under the constraint n0 + 2n1 + 2n2 = N , γe is the probability that Eve has
symbol e conditioned on the bit’s acceptance, that is γe = Peq(e|0)+Peq(e|1) in the previous notation
and γ1 ≡

√
γ(0,?)γ(1,?), γ2 ≡

√
γ(0,0)γ(1,1). By using as before (n!)2 ∼ (2n)!/22n and summing the

multinomial expansion, we obtain

ẽ′E &
1

8

(
γ(?,?) + 2γ1 + 2γ2

)N
. (5.42)

The expressions for the γe are derived from Table 5.5. Suppose for definiteness that Alice and

Bob have accepted the bit α = β = 0: this happens with probability
1−e′AB

2 . The probability
that this happens and that Eve has got the symbol (?, ?) is pNL

2 (q̄Aq̄B + qAqB); whence γ(?,?) =
pNL(q̄Aq̄B+qAqB)

1−e′AB
. Similarly, the probability that Alice and Bob accept the bit 0 and that Eve has

got (0, ?), respectively (1, ?), is pL
8 q̄A, respectively pL

8 qA; whence by symmetry respect bit 1, γ1 =
pL
√
q̄AqA

4 (1−e′AB) . In a similar way, γ2 is computed having in consideration that probability of acceptance

of bit 0 with Eve having (0, 0) is pL
4 q̄Aq̄B and Eve having (1, 1) is pL

4 qAqB .
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To simplify calculations we write δe ≡ (1− e′AB)γe, we have then

δ(?,?) = pNL (q̄Aq̄B + qAqB) ,
δ1 = pL

4

√
q̄AqA ,

δ2 = pL
2

√
q̄AqA

√
q̄BqB

(5.43)

and the condition for extraction of a secret key becomes

δ(?,?) + 2δ1 + 2δ2 > e′AB . (5.44)

The optimization over qA and qB can be done numerically. The result is that a secret key can be
extracted at least down to pNL ≈ 0.0939, that is pL ≤ 0.9061.

Intrinsic information

We have already seen in chapter 2 the properties of intrinsic information and that for finite alphabets,
the optimization can be performed explicitly (as stated in 3.4). We are now able to consider its
calculation for the case of the isotropic probability distribution of the protocol. If we calculate
mutual conditioned information in the case of the original probability distribution (table 5.3) we
obtain that I(A;B | E) = pNL. The idea is to obtain a channel E → E which minimizes this
quantity, and prove that this quantity is always positive, given that this is a necessary condition for
a key be stablished. Let’s define the stochastic matrix of the channel:

PE|E(i, j) =


a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

 (5.45)

Where entries are considered such that 0 = (0, 0), 1 = (0, ?), 2 = (?, ?), 3 = (1, ?), 4 = (1, 1).
The intrinsic information is obtained minimizing mutual conditioned information under this map:

I(A;B ↓ E) = min
aij

I(A;B | E) (5.46)

One can see that mutual conditioned information can be expressed in terms of entropies:

I(A;B | E) = H(A | E)−H(A,B | E) = (H(A,E)−H(E))− (H(A,B,E)−H(B,E)) =

= H(A,E) +H(B,E)−H(A,B,E)−H(E)

Thus, we have to minimize the function:

I(A;B ↓ E) = minaij (−
∑
a,ē p(a, ē) log(p(a, ē))−

∑
b,ē p(b, ē) log(p(b, ē)) +

+
∑
a,b,ē p(a, b, ē) log(p(a, b, ē)) +

∑
ē p(ē) log(p(ē))) (5.47)

s.t.
∑
i aij = 1 ∀ j (5.48)

Where p(z, ē) =
∑
e p(z, e)pE|E(ē, e) being z = ∅, a, b, (a, b). We have done this optimization

numerically, and found out that the channel which gives us the intrinsic information is of the form:

(0, ?) (1, ?)

(0, ?) (1, ?)

(?, ?) (?, ?)

�
�
��q

@
@
@R

1−q

�
�
��q

@
@
@R

1−q
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with q = 1. The choice of this map is justified intuitively in terms of noising nonlocal correlations.
Considering the map, the stochastic matrix is of the form

PE|E(i, j) =


1 0 0 0 0
0 q 0 0 0
0 1− q 1 1− q 0
0 0 0 q 0
0 0 0 0 1

 (5.49)

defined like this trying to minimize the effect of (?,?)(We have that I(A : B | E) = pNL with the
original distribution). This map looks conter-intuitive from Eve’s point of view. Why should she
map (0, ?) and (1, ?), where she knows Alice’s variable, into (?, ?)? Recall however that this map is
only a mathematical tool for the computation of an upper bound on the secret-key rate. The new
probability distribution is

b 0 1
a (e)

(0,0) pL/4
0 (?,0) q · pL/8 (?,0) q · pL/8

(?,?) pNL/2 + (1− q) · pL/8 (?,?) (1− q) · pL/8
(1,1) pL/4

1 (?,1) q · pL/8 (?,1) q · pL/8
(?,?) (1− q) · pL/8 (?,?) pNL/2 + (1− q) · pL/8

The mutual conditioned information is then:

I(A : B | E)q = (1− (1 + q)pL2 )(1 + 1/2−(3+q)pL/8
1/2−(1+q)pL/4

log
(

1/2−(3+q)pL/8
1/2−(1+q)pL/4

)
+

(1−q)pL/8
1/2−(1+q)pL/4

log
(

(1−q)pL/8
1/2−(1+q)pL/4

)
)

= (1− (1 + q)pL2 )(1− h( 1/2−(3+q)pL/8
1/2−(1+q)pL/4

)) (5.50)

This function of q is increasing -it can be seen numerically, or from the fact that ∀pL ∈ (0, 1)
∂
∂q (1 − (1 + q)pL2 )(1 − h( 1/2−(3+q)pL/8

1/2−(1+q)pL/4
)) is positive. So the minimum of I(A : B | E)q is obtained

for q = 1. This is a good candidate for the intrinsic information I(A;B ↓ E).
If we consider the cases (0, 0)→ (0, 0) with probability q and (0, 0)→ (?, ?) with probability 1− q,
(and the symmetric with (1,1) simultaneously) we’ve seen numerically that it doesn’t optimize the
present result. We can combine this results and find that the present mutual conditioned information
is the minimum in the combination of channels of the form (x, x) →q (x, x) and (x, x) →1−q (?, ?)

E → E → E.
This candidate for intrinsic information is always positive. The mutual conditioned information
under this map is given by

I(A;B | E) = (1− pL
2 )(1 + 1/2−3pL/8

1/2−pL/4 log
(

1/2−3pL/8
1/2−pL/4

)
+ pL/8

1/2−pL/4 log
(

pL/8
1/2−pL/4

)
) (5.51)

= (1− pL
2 )(1− h

(
pL

4−2pL

)
) (5.52)

Interestingly, the quantity I(A;B | E) is positive whenever pNL > 0. If the conjecture is true,
it implies that either (i) it is possible to have a positive secret-key rate for the whole region of
Bell violation, using a new key-distillation protocol, or (ii) the probability distribution of Table 5.2
represents an example of bipartite bound information for sufficiently small values of pNL.

5.4 Protocol for Qudits

In this section we will continue the description from the previous chapter of the non-local polytope
for d > 2, describe a generalization of the CHSH protocol and study the best strategies from Eve’s
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Figure 5.3: Representation of Intrinsic information for d = 2 as a function of pL

viewpoint. Then, we will analyze in detail secrecy extraction in the case d = 3 following the same
steps as above, that is one-way post-processing, two-ways post-processing and study of the intrinsic
information measure.

We recall the slice described in 4.2.4, where the probability distributions associated to the optimal
settings belong to a very symmetric family. Specifically, these distributions are such that

(i) for fixed inputs x and y, P (a, b|x, y) depends only on ∆ = a− b; and

(ii) the probabilities for the different inputs are related as P (∆|0, 0) = P (−∆|0, 1) = P (−∆|1, 0) =
P (∆− 1|1, 1).

Compactly:

P (a, b = a−∆|x, y) =
1

d
pf (5.53)

with f = (−1)x+y∆ + xy and pf =
∑
a P (a, b = a− f |0, 0).

As it happened for the isotropic distributions for d = 2, there exists a depolarization procedure
that maps any probability distribution onto this slice by local operations and public communi-
cation, while keeping the violation 〈Id, P 〉 constant. As a consequence, Eve’s optimal individual
eavesdropping, for a fixed value of the violation of the inequality, consists in distributing a point in
the described slice. This protocol can be realized with dlog(d)e+ 2 bits of communication.

The procedure is:

• First of all we must uniformize locally Alice and Bob’s inputs. This is made by:

1. With probability 1
d : a→ a and b→ b (That is do nothing!)

2. With probability 1
d : a→ a+ 1 and b→ b+ 1

3.
...

4. With probability 1
d : a→ a+ (d− 1) and b→ b+ (d− 1)

This implements P → P1 which is such that P1(a, b|x, y) = 1
d

∑
k P (a + k, b + k|x, y) and is

consequently a function only of ∆ = a− b.

• Afterwards, we must obtain the probability distribution doing some operation on inputs and
outputs (we thought in first term to use some operations which conservated the nonlocal
machine PR2,d, but finally the transformations were different...)

1. With probability 1
4 : Do nothing
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2. With probability 1
4 :

Flip x y
a→ −a b→ −b+ y

3. With probability 1
4 :

x Flip y
a→ −a− x b→ −b

4. With probability 1
4 :

Flip x Flip y
a→ −a+ x b→ −b+ ȳ

where 0̄ = 1 and 1̄ = 0.
This implements P1 −→ P2 such that

4P2(a, b|0, 0) = P1(a, b|0, 0) + P1(−a,−b|0, 1)

+P1(−a,−b|1, 0) + P1(a, b+ 1|1, 1)

4P2(a, b|0, 1) = P1(a, b|0, 1) + P1(−a,−b+ 1|1, 1)

+P1(−a,−b|0, 0) + P1(a, b|1, 0)

4P2(a, b|1, 0) = P1(a, b|1, 0) + P1(−a− 1,−b|1, 1)

+P1(−a,−b|0, 0) + P1(a+ 1, b+ 1|0, 1)

4P2(a, b|1, 1) = P1(a, b|1, 1) + P1(−a,−b+ 1|0, 1)

+P1(−a− 1,−b|1, 0) + P1(a+ 1, b|0, 0) .

Because of the symmetry of P1, this implies P2(a, b|0, 0) = P2(−a,−b|0, 1) = P2(−a,−b|1, 0) =
P2(a, b+ 1|1, 1) which is nothing but the definition of the slice (5.53)

For example, none of the extremal points of the form PR2,d′ , with d′ < d, is on the slice. Let’s
then consider a realization of PR2,d′ , the one whose array is

P̂ (d′) =
1

d′

A \B 1 0 1 0
1 1d′ 0 1d′ 0
0 0 0 0 0
1 1d′ 0 Ud′ 0
0 0 0 0 0

(5.54)

where boldface numbers indicate arrays containing all ones or all zeros, 1d′ is the identity matrix of
dimension d′ × d′, and where Ud′ is the d′ × d′ matrix

Ud′ =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 0
...

...
. . .

0 0 0 0 · · · 1
1 0 0 0 · · · 0


. (5.55)

The arrays (4.29) and (5.54) allow to compute immediately the ”scalar product”〈
Id, P̂ (d′)

〉
= 1− 1

d′
(5.56)

generalizing the results we gave in the main text for d′ = 2 and d′ = d.

By following the steps of the depolarization protocol, one finds that P̂ (d′) goes to the distribution
in the slice which is given by

P̂ (d′) −→ P̂2(d′) ≡
{
p0 = 1− 1

4d′

pd′ = 1
4d′

(5.57)

and obviously all the other pf are zero. Using (5.64), one can verify that
〈
Id, P̂2(d′)

〉
= 1− 1

d′ : the

violation is preserved.
In general, the depolarization preserves the violation of the CGLMP inequality, that is

〈Id, P2〉 = 〈Id, P 〉 . (5.58)
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The easiest way is to write down Id as it appeared in the original paper [21], namely Ĩd ≤ 2 with

Ĩd =

[d/2]−1∑
k=0

(
1− 2k

d− 1

) {[
P (−k|0, 0) + P (k|0, 1)

+P (k|1, 0) + P (−k − 1|1, 1)
]
−
[
P (k + 1|0, 0)

+P (−k − 1|0, 1) + P (−k − 1|1, 0) + P (k|1, 1)
]}

where P (∆|x, y) ≡ P (a − b = ∆|x, y). Using the expression of Ĩd, the statement is clear. In fact,
Step 1 keeps by definition all the P (∆|x, y) constant, while Step 2 keeps both sums in [...] constant.

Thus, the generalized depolarization procedure is an analog of the one applied to obtain the
isotropic distribution. As in that case, we will be able to study a cryptographic protocol in a more
simplified way.

5.4.1 Cryptography

The protocol

We suppose from the beginning p(x = i) = p(y = j) = 1
2 . The protocol is the analog of the CHSH

protocol described above. When Alice announces x = 1 and Bob has measured y = 1, Bob corrects
his dit according to b → b − 1. In other words, the pseudo-sifting implements ∆ → ∆ − xy. The
Alice-Bob distribution after pseudo-sifting, averaged on Bob’s settings, becomes independent of x
(as in the case of isotropic distribution for d = 2):

P (a, a−∆|x) =
1

d

∑
y=0,1

p(−1)x+y∆ =
p∆ + p−∆

2d
. (5.59)

In a protocol with d-dimensional outcomes, Alice and Bob can estimate not just one, but several
error rates, one for each value of ∆. From the previous expression, we have that these error rates
exhibit the symmetry

eAB(∆) = eAB(−∆) =
p∆ + p−∆

2
. (5.60)

As in the case of bits, we think of Eve as sending either a local or a non-local probability
distribution. Let’s discuss in some detail the points which lie on and above a CGLMP facet.

Eve’s strategy: local points

In what follows, a characterization of the deterministic strategies that saturate the CGLMP inequal-
ity is detailed. It is not a full characterization as in the case of binary outcomes, but some facts are
necessary for the full characterization of the case d = 3.

Consider the array which represents the CGLMP inequality Id ≤ 0, eq. (4.29). It is more
convenient to analyze the deterministic strategies to look at it as having 2d× 2d entries. The array
has the same form as the added terms cancel out. Let I[i, j] denote an entry of this array. For the
deterministic strategy

{
a(0), a(1); b(0), b(1)

}
, the value of CGLMP can be written as:

Id = −2 +

1∑
x,y=0

I[a(x), b(y)] =

= −2 + δ[b(0) ≥ a(0)] + δ[a(0) ≥ b(1)] + δ[a(1) ≥ b(0)]− δ[a(1) ≥ b(1)] (5.61)

where the −2 comes from the marginals of a(0) and b(0), and where δ[C] is Kronecker’s delta.
The inequality is saturated by all the strategies such that Id = 0.

The first fact to be noted is that, for d > 2, the number of deterministic points on the CGLMP
facet is strictly larger than D = 4d(d−1), the dimension of the local and the no-signalling polytope.
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This implies that, for some points on the facet, more than one decomposition as a convex combination
of extremal points are possible. To prove this we consider the four ”natural” relations associated to
the CGLMP inequality, those that are simultaneously fulfilled by PR2,d,:

R00 : a(0) = b(0)
R01 : a(0) = b(1)
R10 : a(1) = b(0)
R11 : a(1) = b(1)− 1 .

(5.62)

It can indeed be verified using (5.61) that all the points that fulfill at least two among these
relations saturate the inequality. There are 4d strategies that fulfill three relations, that are
{R00, R01, R10}, {R00, R01, R11}, {R00, R10, R11}, {R01, R10, R11} for each value of d.

The number of strategies that fulfill exactly two relations is obtained from the groupings

{R00, R01} {R00, R10} {R00, R11}
{R01, R10} {R01, R11} {R10, R11}

(5.63)

in which the other two relationships are not fulfilled. That is, for example if a(0) = b(0) and
a(0) = b(1) then a(1) 6= b(0) and a(1) 6= b(1) − 1. This means that there are 6d(d − 2) such
strategies. Therefore, the number of strategies that fulfill at least two of the four relations in (5.62)
is 6d(d − 2) + 4d = 6d2 − 8d. This number of strategies on the CGLMP facet is larger than D for
d > 2. For the case d = 3, the list is exhaustive, but not in general.

The second fact is that no extremal deterministic strategy belongs to the slice (5.53), as the
marginals in the slice are completely random. Since it’s a requirement of the present work that
the final distribution belongs to the slice, Eve must manage to send deterministic strategies with
the suitable probabilities in order to pertain to the slice. Therefore, at least one local point on the
slice can be obtained by several different decompositions on extremal points and the decomposition
chosen must be the one that optimizes Eve’s information.

As a third fact, we analyze the deterministic strategies that are more interesting for Eve, in fact,
two kind of local points are of special interest for her:

(i) those for which b(0) = b(1), because Eve knows Bob’s symbol when Alice announces x = 0,
and which we denote by the set L0. In this case, looking at (5.61) the last two conditions
become equal and the δ’s compensate each other for all a(1), so the only way to saturate the
inequality is to fulfill both b(0) ≥ a(0) and a(0) ≥ b(1) = b(0); whence a(0) = b(0) = b(1).
These points are d2 in total: those for which a(0) = b(0) = b(1) and a(1) can take any value.
In other words, there are no points on the CGLMP facet such that b(0) = b(1) but a(0) is
different from this value: whenever Eve learns Bob’s symbol for x = 0, Alice and Bob make
no error for x = 0.

(ii) those for which b(0) = b(1)−1, because Eve knows Bob’s symbol when Alice announces x = 1,
and which we denote by the set L1. If one first considers b(0) < d − 1 then b(1) > b(0),
therefore the first two conditions cannot be simultaneously fulfilled, whatever a(0) is. One
can then verify that only the choice a(1) = b(0) leads to a saturation of the inequality, as the
last term of (5.61) is not fulfilled. The last remaining case is b(0) = d − 1, b(1) = 0: it can
be read directly from the array, and leads to the same conclusion. There are also d2 points in
L1: those for which a(1) = b(0) = b(1) − 1 and a(0) can take any value. This has a similar
interpretation as the statement above, in the case x = 1.

In all the other cases that are not in L ≡ L0 ∪ L1, Eve does not learn Bob’s symbol with
certainty. Now, since the error rate Alice-Bob depends only on P (a, b|x, y), and not on the particular
decomposition chosen by Eve to realize this distribution, it is obvious that Eve’s best strategy lies
in distributing local points that belong to L ≡ L0 ∪ L1 as often as possible. For d = 3, we shall
prove that she can prepare any point in the slice by distributing only these kind of local points. An
additional distinction within L will be explicitly detailed in the case d = 3. We shall call L3 the
subset of L, whose points satisfy three out of the four relations a(0) = b(0), a(0) = b(1), a(1) = b(0)
and a(1) = b(1)− 1; the complementary set, containing the points that satisfy two of the relations
(a(0) = b(0) = b(1) or a(1) = b(0) = b(1)− 1), is written L2.
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Eve’s strategy: non-local point

When we described the non-signaling polytope for d outcomes in chapter 4 we said that among
the extremal non-local points which lie above the CGLMP facet, the only one on the slice (5.53) is
PR2,d. However, it may be the case that mixtures of other extremal non-local points lie as well in
the slice. For d = 3, this is not the case.
In this study, we suppose that Eve sends a unique non-local strategy, namely PR2,d. Under this
assumption, we can define pNL as the probability that Eve sends PR2,d. To find the expression
of pNL, we notice that 〈Id, PR2,d〉 = d−1

d should correspond to pNL = 1, and that 〈Id, L〉 = 0 for
all local points on the CGLMP facet, should correspond to pNL = 0. Moreover, pNL measures the
geometrical distance from the facet and is therefore an affine function of the violation of CGLMP.
Thus for a generic distribution P of the form (4.36) we have

pNL =
d

d− 1
〈Id, P 〉 =

= −2 +

d−1∑
∆=0

(
1− ∆

d− 1

)
[3p−∆ − p∆+1] . (5.64)

Now we can present the results for the possibility of extracting a secret key from a detailed study
of the case d = 3.

5.4.2 Secret key extraction: d = 3

The slice of the polytope

The slice (5.53) is 2-dimensional for d = 3, we choose p0 and p1 as free parameters; this gives
p2 = 1− p0 − p1 and

pNL = −2 + (3p0 − p1) + p2 = 2(p0 − p1)− 1 . (5.65)

The full slice has a form of an equilateral triangle (Fig. 5.4), whose vertices V∆ are defined by p∆ = 1.
As mentioned, V0 = PR2,3. The vertex V2 is also a PR2,3, the one defined by b− a = x̄ȳ + 1 with
z̄ = 1 − z. On the contrary, V1 a mixture of deterministic strategies. The middle of the triangle,
p0 = p1 = p2 = 1

3 , is the completely random strategy.

2
M
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CGLMP
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? Id

1
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'
232

PRV =

Figure 5.4: The slice (5.53) of the no-signalling polytope, for d = 3. The full extent of the quantum
region is not known, it is represented by the dotted line with question marks. The full line is the
part of the quantum region that can certainly reach and that was described in detail in [18]
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Explicit analysis for d = 3

Deterministic strategies on the facet

We give here the explicit list of the 30 (6d2− 8d) deterministic strategies that saturate CGLMP.
As stated before, there are 4d = 12 strategies that fulfill three of the relationships and thus |L3| = 12.
As the size of L is 2d2, there are 6 strategies in L2. We note r = 0, 1, 2.

The twelve strategies in L3 are

L3
0 :

{
Lr3,1 = {a(x) = r, b(y) = r}
Lr3,2 = {a(x) = r − x, b(y) = r} (5.66)

L3
1 :

{
Lr3,3 = {a(x) = r, b(y) = r + y}
Lr3,4 = {a(x) = r − x, b(y) = r + y − 1} . (5.67)

The six strategies in L2 are

L2
0 : Lr2,1 = {a(x) = r + x, b(y) = r} (5.68)

L2
1 : Lr2,2 = {a(x) = r + x, b(y) = r + y + 1} . (5.69)

The twelve strategies outside L are:

Lre,1 = {a(x) = r, b(y) = r − y}
Lre,2 = {a(x) = r + x, b(y) = r − y}
Lre,3 = {a(x) = r + x, b(y) = r − y + 1}
Lre,4 = {a(x) = r − x, b(y) = r − y + 1} .

(5.70)

In Table 5.6 we give the probabilities of Alice’s and Bob’s symbols for each of the strategies that
can be sent by Eve.

Onwards, we are going to focus on the non-local region close to V0 (Fig. 5.5). The intersection
with the CGLMP facet is the segment p0 − p1 = 1

2 , whose ends are the points labeled M2 (p0 = 1
2 ,

p1 = 0) and M3 (p0 = 3
4 , p1 = 1

4 ). The decompositions chosen of these mixtures on the extremal
deterministic strategies are

M2 =
∑
L∈L2

1

6
L , M3 =

∑
L∈L3

1

12
L (5.71)

where the sets of local points L2 and L3 have been defined above.

In fact, the decomposition of M3 is unique; conversely, M2 can be decomposed in an infinity of
ways, but all the others involve also the points that don’t belong to L and are therefore sub-optimal
for Eve.

The general decomposition of M2 is defined by

M2 :

pr3,j = 0 ,
pr2,1 = pr2,2 ≡ pr2 free,
pre,1 free,
pre,2 = 1

6 − (pr2 + pre,1) ,

pre,3 = pr+1
e,1 ,

pre,4 = 1
6 − (pr2 + pr+1

e,1 ) .

(5.72)

There are thus six free parameters {pr2, pre,1}, constrained of course by the positivity of probabi-

lities (in particular, none of these parameters can exceed 1
6 ). A possible realization of M2 is the

equiprobable mixture of the eighteen points which are not in L3. The choice leading to (5.71) is the
equiprobable mixture of the six points in L2 that give Eve the highest advantage(pr2 = 1

6 , implying
automatically pre,j = 0).
The Table for the correlations Alice-Bob-Eve can be given in general as it is shown in Table 5.7,
where the notations

f(p) =
2p1

3
+ 2p2p , g(p) =

1− p0

3
− 2p2p . (5.73)
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A \B y = 0 y = 0 y = 0 y = 1 y = 1 y = 1
b=0 b=1 b=2 b=0 b=1 b=2

x = 0, pNL
3 (PR) pNL

3 (PR)
a = 0 p0

3,1 (L0
3,1) p0

2,2 (L0
2,2) p0

3,4 (L0
3,4) p0

3,1 (L0
3,1) p0

3,3 (L0
3,3) p0

2,2 (L0
2,2)

p0
3,2 (L0

3,2) p0
e,3 (L0

e,3) p0
3,2 (L0

3,2) p0
e,1 (L0

e,1)
p0

3,3 (L0
3,3) p0

e,4 (L0
e,4) p0

3,4 (L0
3,4) p0

e,2 (L0
e,2)

p0
2,1 (L0

2,1) p0
2,1 (L0

2,1)
p0
e,1 (L0

e,1) p0
e,3 (L0

e,3)
p0
e,2 (L0

e,2) p0
e,4 (L0

e,4)

x = 0, pNL
3 (PR) pNL

3 (PR)
a = 1, p1

3,4 (L1
3,4) p1

3,1 (L1
3,1) p1

2,2 (L1
2,2) p1

2,2 (L1
2,2) p1

3,1 (L1
3,1) p1

3,3 (L1
3,3)

p1
3,2 (L1

3,2) p1
e,3 (L1

e,3) p1
e,1 (L1

e,1) p1
3,2 (L1

3,2)
p1

3,3 (L1
3,3) p1

e,4 (L1
e,4) p1

e,2 (L1
e,2) p1

3,4 (L1
3,4)

p1
2,1 (L1

2,1) p1
2,1 (L1

2,1)
p1
e,1 (L1

e,1) p1
e,3 (L1

e,3)
p1
e,2 (L1

e,2) p1
e,4 (L1

e,4)

x = 0, pNL
3 (PR) pNL

3 (PR)
a = 2, p2

2,2 (L2
2,2) p2

3,4 (L2
3,4) p2

3,1 (L2
3,1) p2

3,3 (L2
3,3) p2

2,2 (L2
2,2) p2

3,1 (L2
3,1)

p2
e,3 (L2

e,3) p2
3,2 (L2

3,2) p2
e,1 (L2

e,1) p2
3,2 (L2

3,2)
p2
e,4 (L2

e,4) p2
3,3 (L2

3,3) p2
e,2 (L2

e,2) p2
3,4 (L2

3,4)
p2

2,1 (L2
2,1) p2

2,1 (L2
2,1)

p2
e,1 (L2

e,1) p2
e,3 (L2

e,3)
p2
e,2 (L2

e,2) p2
e,4 (L2

e,4)

x = 1, pNL
3 (PR) pNL

3 (PR)
a = 0, p0

3,1 (L0
3,1) p1

3,2 (L1
3,2) p2

2,1 (L2
2,1) p1

3,2 (L1
3,2) p0

2,1 (L0
2,1) p0

3,1 (L0
3,1)

p0
3,3 (L0

3,3) p2
e,2 (L2

e,2) p0
3,3 (L0

3,3) p0
e,1 (L0

e,1)
p1

3,4 (L1
3,4) p1

e,4 (L1
e,4) p1

3,4 (L1
3,4) p2

e,3 (L2
e,3)

p2
2,2 (L2

2,2) p2
2,2 (L2

2,2)
p0
e,1 (L0

e,1) p2
e,2 (L2

e,2)
p2
e,3 (L2

e,3) p1
e,4 (L1

e,4)

x = 1, pNL
3 (PR) pNL

3 (PR)
a = 1, p0

2,1 (L0
2,1) p1

3,1 (L1
3,1) p2

3,2 (L2
3,2) p1

3,1 (L1
3,1) p2

3,2 (L2
3,2) p0

2,1 (L0
2,1)

p0
e,2 (L0

e,2) p1
3,3 (L1

3,3) p2
3,2 (L2

3,2) p1
e,1 (L1

e,1) p1
3,3 (L1

3,3)
p2
e,4 (L2

e,4) p2
3,4 (L2

3,4) p0
e,3 (L0

e,3) p2
3,4 (L2

3,4)
p0

2,2 (L0
2,2) p0

2,2 (L0
2,2)

p1
e,1 (L1

e,1) p0
e,2 (L0

e,2)
p0
e,3 (L0

e,3) p2
e,4 (L2

e,4)

x = 1, pNL
3 (PR) pNL

3 (PR)
a = 2, p0

3,2 (L0
3,2) p1

2,1 (L1
2,1) p2

3,1 (L2
3,1) p1

2,1 (L1
2,1) p2

3,1 (L2
3,1) p0

3,2 (L0
3,2)

p1
e,2 (L1

e,2) p2
3,3 (L2

3,3) p2
3,3 (L2

3,3) p1
e,1 (L1

e,1)
p0
e,4 (L0

e,4) p0
3,4 (L0

3,4) p0
3,4 (L0

3,4) p1
e,3 (L1

e,3)
p1

2,2 (L1
2,2) p1

2,2 (L1
2,2)

p2
e,1 (L2

e,1) p1
e,2 (L1

e,2)
p1
e,3 (L1

e,3) p0
e,4 (L0

e,4)

Table 5.6: Table of the distribution Alice-Bob-Eve for the raw data. The entries are the P (a, b|x, y)
for d = 3 In parentheses, we indicate Eve’s symbol. I red we represent the effect of sifting in the
case x = y = 1 which implies b→ b− 1



82 Secrecy extraction from non signaling correlations

x b = 0 b = 1 b = 2

a = 0 pNL
3 (?, ?)

f(p0−x
2 ) (0, 0)

g(p0−x
2 ) (0, ?2) 1−p0

6 (0, ?2) 1−p0
6 (0, ?2)

a = 1 pNL
3 (?, ?)

f(p1−x
2 ) (1, 1)

1−p0
6 (1, ?2) g(p1−x

2 ) (1, ?2) 1−p0
6 (1, ?2)

a = 2 pNL
3 (?, ?)

f(p2−x
2 ) (2, 2)

1−p0
6 (2, ?2) 1−p0

6 (2, ?2) g(p2−x
2 ) (2, ?2)

Table 5.7: Probability distribution Alice-Bob-Eve for the sifted data, for d = 3 an Alice’s setting x,
for the general decomposition (5.72) of M2.
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Figure 5.5: Zoom of Fig. 5.4 on the non-local region close to V0. Only the part of the quantum region
that we consider is represented here. The transverse lines define the limits down to which secrecy
can be extracted for one-way post-processing (without and with pre-processing) and for two-way
post-processing without pre-processing. In the shaded region, the intrinsic information I(A;B ↓ E)
is zero. We stress that this figure is an exact plot, not just an ”artist view”. See text for the other
details.

are employed. This table is derived from Table 5.6 and the general decomposition of M2. Note
that, in each of the nine cells, the sum of the probabilities does not depend on the pr2, as f(p) + g(p)
does not depend on p. This is because the decomposition of M2 is known only to Eve and Eve
best strategy is maximizing the probability of knowing both symbols, measured by f(p); whence
the choice pr2 = 1

6 made. The symbol ?2 has been introduced to describe the situation where Eve is
uncertain on Bob’s symbol, but only among two possibilities: this is clearly the case whenever the
uncertainty derives from a deterministic strategy.

The quantum-mechanical studies (see Appendix B in [18] for more details) have singled out
two non-local probability distributions in this region. Their depiction is shown as an illustration
of quantum mechanical states in the slice of the polytope. The first one, Qmv, corresponds to the
maximal violation of CGLMP using two qutrits, pNL ≈ 0.4574. The second one, Qme corresponds
to the highest violation achievable with the maximally entangled state of two qutrits, pNL ≈ 0.4365.

One-way classical post-processing

The table for the correlations Alice-Bob-Eve with the specified decomposition of M2 showing the
corresponding information that Eve can extract is Table 5.8. This table is similar to the one given in
the case d = 2 but more assumptions and analysis of the structure of the polytope has been needed.

All the probabilities in a row/column sum up to 1
3 and we have the following values for the error

between Alice and Bob.

eAB(+1) = eAB(−1) =
1− p0

2
(5.74)
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b = 0 b = 1 b = 2

a = 0 pNL
3 (?, ?)
pL
6 (0, 0)

pL
12 −

p2
6 (0, ?2) 1−p0

6 (0, ?2) 1−p0
6 (0, ?2)

a = 1 pNL
3 (?, ?)
pL
6 (1, 1)

1−p0
6 (1, ?2) pL

12 −
p2
6 (1, ?2) 1−p0

6 (1, ?2)
a = 2 pNL

3 (?, ?)
pL
6 (2, 2)

1−p0
6 (2, ?2) 1−p0

6 (2, ?2) pL
12 −

p2
6 (2, ?2)

Table 5.8: Probability distribution Alice-Bob-Eve for the sifted data, for d = 3, assuming decompo-
sition (5.71) for M2.

as expected from (5.60). In all that follows, information is quantified in trits, and we write the
ternary entropy as h

(
[v1, v2, v3]

)
= −

∑
j vj log3 vj .

Therefore we can obtain the estimate for the CK bound can be obtained. We make the calculation
explicitly. We recall that in this case rCK = I(B;A) − I(B;E). In the case of I(A;B) employing

I(A;B) =
∑
a∈A

∑
b∈B P (a, b) log3

P (a, b)

PA(a)PB(b)
we obtain

I(A;B) = p0 log3(3p0) + (1− p0) log3

(
3

1− p0

2

)
. To obtain I(B;E), reviewing the table of correlations, one has to take into account that in the
absence of pre-processing we have the following:

• Eve in the cases where (b, e) = (x, (?, ?)) has no information and this happens probability pNL

• Eve has full information in the cases where (b, e) ∈ {(0, (0, 0)), (1, (1, 1)), (2, (2, 2))} which
happen with probability pL

2

• In the rest of cases, she is uncertain about Bob’s symbol between two possible values. There-
fore, when we compute for example the term in mutual information of (b, e) = ((0, (0, ?2)),
we have to consider just one of the possible values and both in P (e), therefore the term is

(pL12 −
p2
6 ) log3

( pL
12 −

p2
6

1
3 2·( pL12 −

p2
6 )

)
and therefore, as pL

12 −
p2
6 = p1

3 , the term becomes p1
3 log3( 3

2 ).

There are 3 of these terms.
In the cases of symbols of the form (b, e) = (x, (y, ?2) as for example (b, e) = (0, (1, ?2)), the
situation is analog: the term in the mutual information is 1−p0

6 log3( 3
2 ). There are 6 of these

terms. Adding the different terms, one has that the mutual information of theses cases is

p1 log3(
3

2
) + (1− p0) log3(

3

2
) =

pL
2

(1− log3 2)

That is, she has information 1− h
(
[1/2, 1/2, 0]

)
= 1− log3 2 with probability pL

2 .

Therefore

RCK(q = 0) ≥ rCK = 1 + log3 p0 + (1− p0) log3(
1− p0

2
)− pL

2
− pL

2
(1− log3 2)

= 1− h
([
p0,

1− p0

2
,

1− p0

2

])
− pL

(
1− 1

2
log3 2

)
. (5.75)

The curve rCK(q = 0) = 0 is shown in Fig. 5.5, it clearly cuts the quantum region.

A natural question is, which is the point that maximizes rCK(q = 0) under the requirement that
the correlations should belong to the quantum region. That is, the intersection between the known
quantum region and the line given by rCK(q = 0). In the slice under consideration, the rate was
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found in [18] rmax(q = 0) ≈ 0.09 trits ≈ 0.144 bits for the correlations defined by p0 = 0.8286,
p1 = 0.1093. These correlations can be obtained by measuring the quantum state

|ψ(γ)〉 =
1√

2 + γ2

(
|00〉+ γ|11〉+ |22〉

)
(5.76)

for γ ≈ 0.9875. This state is close to, but different from, the maximally entangled state.

Considering Bob’s pre-processing, we must first consider that for one-way post-processing, dit-
wise pre-processing is already optimal. One can define two different flipping probabilities q+1 and
q−1, associated respectively to b→ b+ 1 and b→ b+ 2. But inspecting the correlations and taking
into account their symmetries, the optimal is always obtained for q+1 = q−1 = q. Taking into
account this, we have that the error between Alice and Bob becomes:

e′AB(+1) = e′AB(−1) ≡ e′

2
= 3

(
(1− q)1− p0

6
+ q

p0

3
+

1− p0

6

)
=

1− p0

2
+ q

3p0 − 1

2

where we have used that pNL
3 + pL

6 + pL
12 −

p2
6 = p0

3
And therefore, mutual information can be obtained as:

I(A : B′) = 1− h
(

[1− e′, e
′

2
,
e′

2
]

)
. (5.77)

Eve’s information is computed by recalling the analysis made before

• In the case she sends the non-local point, she has no information.

• In case she sends out a local point, for one value of x, she knows perfectly Bob’s symbol b.
Pre-processing leaves b unchanged with probability 1−2q, and sends it to b±1 with probability
q each. The component of mutual information in this case is

(1− 2q)
pL
2

log3(3(1− 2q)) + 2q
pL
2

log3(3q) (5.78)

Thus Eve’s information is lowered from 1 to 1− h([1− 2q, q, q]).

• For the other value of x, she is uncertain between two values of b. Considering Bob’s flips:

b

b b+ 1

b− 1

�
�
��1−2q

-q

@
@
@R

q

Eve’s random guess in (x, ?2) will be right with probability 1−2q
2 + q

2 = 1−q
2 . Eve’s information

is lowered from the previous 1− h([ 1
2 ,

1
2 , 0]) to 1− h([ 1−q

2 , 1−q
2 , q]).

Since each case of the local points analyzed is equiprobable,

I(E;B′) = pL

(
1− 1

2

[
h([1− 2q, q, q]) + h([

1− q
2

,
1− q

2
, q])

])
. (5.79)

From (5.77) and (5.79), rCK can be computed by optimizing the value of q. Doing the optimization
numerically, in Figure 5.5 one can see that the improvement due to pre-processing is clear.

Two-way classical post-processing

The possibility of extracting a secret key from the correlations of Table 5.8 using advantage distil-
lation without considering pre-processing has been studied. Alice selects N of her symbols that are
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identical, Bob accepts if and only if his corresponding symbols are also identical. The probability
that Bob accepts is pN0 + [eAB(+1)]N + [eAB(−1)]N , and consequently

ẽAB(±1) =

(
1−p0

2

)N
pN0 + 2

(
1−p0

2

)N =
(1− p0)N

2NpN0 + 2(1− p0)N
≈
(

1− p0

2p0

)N
. (5.80)

As in the case d = 2, Eve has to make a random guess if and only if she has sent PR2,3 for all
the N instances:

ẽE(±1) &
1

3

(
pNL
p0

)N
. (5.81)

Therefor, a secret key can be extracted using advantage distillation as long as pNL >
1−p0

2 , that is
as long as

5p0 > 4p1 + 3 . (5.82)

The limiting curve is plotted in Figure 5.5. Its extremal points are pNL >
1
5 for p1 = 0 and pNL >

1
9

for p2 = 0.

Intrinsic information d = 3

From Table 5.8 we can extract that the mutual conditioned information in this case is:

I(A;B | E) = (2(p0 − p1)− 1) = pNL (5.83)

This is exactly what happened in the case of d = 2. In this case, the numerical optimization is harder
because there are more symbols to consider and because their probabilities depend of 2 parameters.
Intuitively, one can think that the maps of the form:

(0, ?2) (1, ?2) (2, ?2)

(0, ?2) (1, ?2) (2, ?2)

(?, ?) (?, ?) (?, ?)

�
���

q

@
@@R

1−q

�
���

q

@
@@R

1−q

�
���

q

@
@@R

1−q

will also give us the intrinsic information as a generalization of the case of d = 2.

b = 0 b = 1 b = 2

a = 0 2(p0−p1)−1
3 + (1− q)p13 (?, ?) (1− q) 1−p0

6 (?, ?) (1− q) 1−p0
6 (?, ?)

1+p1−p0
3 (0, 0)

q p13 (0, ?2) q 1−p0
6 (0, ?2) q 1−p0

6 (0, ?2)

a = 1 (1− q) 1−p0
6 (?, ?) 2(p0−p1)−1

3 + (1− q)p13 (?, ?) (1− q) 1−p0
6 (?, ?)

1+p1−p0
3 (1, 1)

q 1−p0
6 (1, ?2) qp13 (1, ?2) q 1−p0

6 (1, ?2)

a = 2 (1− q) 1−p0
6 (?, ?) (1− q) 1−p0

6 (?, ?) 2(p0−p1)−1
3 + (1− q)p13 (?, ?)

1+p1−p0
6 (2, 2)

q 1−p0
6 (2, ?2) q 1−p0

6 (2, ?2) q p13 (2, ?2)

Table 5.9: Probability distribution Alice-Bob-Eve for the sifted data, for d = 3, assuming decompo-
sition (5.71) for M2, and the channel for Eve presented above. We express all joint probabilities as
functions of p0 and p1
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With these transformations we have that the mutual conditioned information in this case is:

I(A;B | E)q = ((2(p0 − p1)− 1) + (1− q)p1 + (1− q)(1− p0))

(1− h[ (2(p0−p1)−1)+(1−q)p1
((2(p0−p1)−1)+(1−q)p1+(1−q)(1−p0)) ,

1
2 (1−q)p0

((2(p0−p1)−1)+(1−q)p1+(1−q)(1−p0)) ,
1
2 (1−q)p0

((2(p0−p1)−1)+(1−q)p1+(1−q)(1−p0)) ]) (5.84)

This case is different from the one of d = 2, because with this expression one can find lines where
I(A;B | E)q = 0 of the form p1 = 1

1+q ( 5
2p0 − 1

2qp0 + q
2 −

3
2 ). This means that a positive key rate is

impossible in the presence of these zeros.

Mapping all the symbols (i, ?2) into (?, ?), where i = 0, 1, 2, that is q = 0. The obtained
conditional mutual information reads

I(A : B|Ē) = P (?, ?) ×[
1− h

(
2p0 − pL
2− pL

,
1− p0

2− pL
,

1− p0

2− pL

)]
. (5.85)

Contrary to what happened in the d = 2 case, this quantity vanishes for some points inside the
region of Bell violation Indeed, Eq. (5.85) is zero on the line 5p0 − 2p1 − 3 = 0. For different values
of q in the map described, the intrinsic information is zero also below the line, that is for

5p0 − 2p1 − 3 ≤ 0 . (5.86)

This region overlaps with the non-local region (Figure 5.6).

Figure 5.6: Intrinsic information d = 3

5.4.3 Secret key extraction: generic d

Additional results were proven for a generic d in [18]. In summary, it was there conjectured that
secrecy can be extracted from quantum non-local correlations for any d; and more precisely, that
the amount of extractable secrecy increases when increasing d.



Chapter 6

Conclusions

The research in quantum information theory is intense and advancing in the two-fold goal of un-
derstanding reality and developing applications of quantum mechanics to information theory. Par-
ticularly, a lot has been done in the area of device independent cryptographic protocols based in
quantum phenomena. The security in these protocols is based in the statistics observed by the
honest parties when they interact with the devices’ results, which allow them to decide if secrecy
can be extracted.

A device providing secret key generation from the laws of quantum physics is for the parties a
black box. The interactions of the parties with the device, the protocol, must be reliable and strong
in order to guarantee security based exclusively in these interactions.

It’s the phenomena of quantum non-locality that makes possible this feature: when a Bell in-
equality is violated with enough margin, secret shared randomness can be produced and therefore,
security is guaranteed.

From the point of view of the project, the work done in 2006 was a first approach to the
materialization of these concepts. The study of the CHSH protocol and its extension was made
with restrictions in the assumptions: assuming individual attacks, bound to extract a secret key
was obtained from some no-signaling probability distributions if a Bell inequality was violated. In
particular, noisy quantum states can be used to distribute correlations, that are non-local enough
to contain distillable secrecy.

The author could study concepts from classical and quantum information theory related to
secrecy generation and interact with cutting-edge research at the moment.

6.1 Perspectives ’06

The article published in 2006 ([18]) raised some perspectives that are worth to be cited here:

• Extend the security proofs to more general attacks by an eavesdropper limited by non-
signaling.

• Develop device-independent proof of security against an eavesdropper which would be limited
by quantum physics. From Alice and Bob perspective, non-locality should be the basis of
security. On the side of Eve, the requirement that she must respect quantum physics is a
limitation, compared to power we gave her in this paper; so one can hope to obtain a device-
independent proof with better bounds.

• Look for optimal protocol in terms secret key extraction. The fact that all non-local probability
distributions can generate secrecy implies that better procedures could be found to the ones
described or that non-local distributions close to the local limit provide examples of bipartite
bound information [35, 36].

6.2 Device independent quantum cryptography ’16

The idea of developing quantum key distribution protocols that were independent of the device
employed and were based in the violation of Bell inequalities was continued and perfected. The

87
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following recall of the research that has been done until this year is extracted from [44]. A long
line of research since the publication of [18] led to protocols and proof techniques that establishes
non-vanishing key rates with noise tolerance in an i.i.d. setting (devices with no memory or no
time dependent behavior). The adversaries supposed supra quantum in the work here presented,
were analyzed assuming the limitations of quantum physics and extending the type of attacks from
individual to general. In [43], the security of a DIQKD protocol based in the CHSH inequality was
proven in the asymptotic limit, when the device is used n→∞ and under the i.i.d. assumption.

The maximum amount of randomness that can be generated from one system violating a specific
Bell inequality by a given amount has been well studied.

The study of security proofs in each protocol are complex and further development is made in
developing security proofs for the iid and non iid scenarios.



Appendix A

Codis utilitzats

A.1 Intrinsic information numerical analysis

Es presenta a continuació el codi emprat per tal de realitzar la optimització de la informació
intŕınseca en el cas d = 2.

A.2 Codi Matlab

Code intrzero.m: Optimization function of intrinsic information

function [ x , f v a l ] = i n t r z e r o ( v )
global p
B=v

Aeq=[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 ;
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ;
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 ;
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 ;
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] ;

b=[1 ; 1 ; 1 ; 1 ; 1 ] ;
%l b=−ub ;
%x0 = [1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/%5

↪→ 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1 / 5 ] ; % Make a s t a r t i n g guess
↪→ at the s o l u t i o n

%x0 = [1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2
↪→ 0.2 1 0.2 0.2 0.2 0.2 0.2 1 ] ;

x0=[1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ] ;
%x0 =[1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 ] ;
%x0 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ;
%x0 =[1 0.3 0.2 0 0 0 0.7 0.2 0 0 0 0 0.2 0 0 0 0 0.2 0.7 0 0 0 0.2 0.3

↪→ 1 ] ;
%x0 = [ 0 . 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

↪→ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 . 5 ] ;
opt ions = opt imset ( ’ LargeSca le ’ , ’ o f f ’ , ’ DiffMaxChange ’ ,1 e−6, ’ MaxSQPIter ’

↪→ , 15) ;

opt i ons = opt imset ( ’ Display ’ , ’ i t e r ’ , ’ D iagnos t i c s ’ , ’ on ’ , ’TolX ’ , 1 . 0 e−2) ;
%l b = [1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5

↪→ 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5] ;%[0 0 0 0 0 0 0 0 0 0 0 0 0
↪→ 0 0 0 0 0 0 0 0 0 0 0 0 ] ;

%l b =[0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
↪→ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
↪→ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0 . 0 0 0 1 ] ;
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%l b =[0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.01 0.01 0.01 0.01
↪→ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
↪→ 0 . 0 1 ] ;

lb = [ 0 . 0 0 1 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001
↪→ 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001 0 .001
↪→ 0 .001 0 .001 0 . 0 0 1 ] ;

%l b =[0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
↪→ 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
↪→ 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0 . 0 0 0 5 ] ;

ub = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ;
[ x , f v a l ] = fmincon ( @objfun , x0 , [ ] , [ ] , Aeq , b , lb , ub , [ ] , opt ions ) ;

function f = obj fun ( x )

global p
% Nonlinear o b j e c t i v e f u n c t i o n

% Var iab l e o b j v a l shared wi th o b j f u n and runsharedva lues

f =0;
for i =0:4

f=f−( entr ( x(1+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p/4+x(3+5∗ i )∗(1−p) /2)+entr ( x(4+5∗ i ) ∗p
↪→ /4+x(5+5∗ i ) ∗p/4+x(3+5∗ i )∗(1−p) /2)+entr ( x(1+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p
↪→ /8+x(4+5∗ i ) ∗p/8+x(3+5∗ i )∗(1−p) /2)+entr ( x(5+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p
↪→ /8+x(4+5∗ i ) ∗p/8+x(3+5∗ i )∗(1−p) /2)−entr ( x(1+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p
↪→ /8+x(3+5∗ i )∗(1−p) /2)−entr ( x(4+5∗ i ) ∗p/8+x(5+5∗ i ) ∗p/4+x(3+5∗ i )
↪→ ∗(1−p) /2)−entr (p/8∗x(2+5∗ i ) )−entr (p/8∗x(4+5∗ i ) )−entr ( x(1+5∗ i ) ∗p
↪→ /4+x(2+5∗ i ) ∗p/4+x(3+5∗ i )∗(1−p)+x(4+5∗ i ) ∗p/4+x(5+5∗ i ) ∗p/4) ) ;

%repasar l a d e f i n i c i o n de i n f mutua condic ionada
end

end

end

Codi programa.m:

i =1;
s o l = [ ] ;
p l = [ ] ;
c a l c = [ ] ;
opt = [ ] ;
global p
for p = 0 . 5 : 0 . 0 1 : 1
[ x , f v a l ]= i n t r z e r o (p) ;
x ;
p l ( i )=p ;
c a l c ( i )=−(1/2+1/2∗p) ∗ log2 ((1/2+1/2∗p) )−(1−(1/2+1/2∗p) ) ∗ log2 (1−(1/2+1/2∗p

↪→ ) )
−1/4∗(2−p)∗(−p/(2−p) ∗ log2 (p/(2−p) )−(1−p/(2−p) ) ∗ log2(1−p/(2−p) ) ) ;
s o l ( i )=f v a l ;
opt ( i )=(1−p/2)∗(1+ entr ((1/2−3∗p/8) /(1/2−p/4) )+entr (p/8/(1/2−p/4) ) ) ;
i=i +1;
end
s o l
plot ( pl , so l , ’−b ’ , pl , ca l c , ’ : g ’ , pl , opt , ’−r ’ )
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Figure A.1: Representation of the output of an example numerical optimization of the intrinsic
information. No candidates were found with lower values thant the candidate proposed for d = 2

Codi calcul.m

global p
j =1;
s o l = [ ] ;
p l = [ ] ;
g i s = [ ] ;
z e ro = [ ] ;
%f o r p =0.999999:0.00000001:0.9999999999

%f o r y =0:0 .1 :1
%f o r z =0:0 .1 :1
%f o r t =0:0.1:1− z
%f o r p =0.999999:0.00000001:0.9999999999
for p =0.000001 :0 .001 :1
%x=[1 0.7 0.2 0 0 0 0.3 0.2 0 0 0 0 0.2 0 0 0 0 0.2 0.3 0 0 0 0.2 0.7

↪→ 1 ] ;
%x=[1 0 0 0 0 0 y 0 0 0 0 1−y 1 1−y 0 0 0 0 y 0 0 0 0 0 1 ] ;
%x = [1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5

↪→ 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1 / 5 ] ; % Make a s t a r t i n g guess
↪→ at the s o l u t i o n

%x=[1 0.4 0.2 0 0 0 0.6 0.2 0 0 0 0 0.2 0 0 0 0 0.2 0.6 0 0 0 0.2 0.4
↪→ 1 ] ;

%x=[1 0.3 0.2 0 0 0 0.7 0.2 0 0 0 0 0.2 0 0 0 0 0.2 0.7 0 0 0 0.2 0.3
↪→ 1 ] ;

%x=[1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ] ;
%x=[1 0.5 0 0 0 0 0.5 0 0 0 0 0 1 0 0 0 0 0 0.5 0 0 0 0 0.5 1 ] ;
%x=[1 0 0 0 0 0 y 0 0 0 0 1−y 1 1−y 0 0 0 0 y 0 0 0 0 0 1 ] ;
%x=[(1−y )∗(1− z ) 0 0 0 0 y∗(1− z ) 1 0 0 0 z 0 1 0 z 0 0 0 1 y∗(1− z ) 0 0 0

↪→ 0 (1−y )∗(1− z ) ] ;
%x=[1 0 z /2 0 0 0 y z /2 0 0 0 1−y 1−z−t 1−y 0 0 0 t /2 y 0 0 0 t /2 0 1 ] ;
x=[1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 ] ;
p l ( j )=p ;
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f =0;
for i =0:4

f=f−( entr ( x(1+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p/4+x(3+5∗ i )∗(1−p) /2)+entr ( x(4+5∗ i ) ∗p
↪→ /4+x(5+5∗ i ) ∗p/4+x(3+5∗ i )∗(1−p) /2)+entr ( x(1+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p
↪→ /8+x(4+5∗ i ) ∗p/8+x(3+5∗ i )∗(1−p) /2)+entr ( x(5+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p
↪→ /8+x(4+5∗ i ) ∗p/8+x(3+5∗ i )∗(1−p) /2)−entr ( x(1+5∗ i ) ∗p/4+x(2+5∗ i ) ∗p
↪→ /8+x(3+5∗ i )∗(1−p) /2)−entr ( x(4+5∗ i ) ∗p/8+x(5+5∗ i ) ∗p/4+x(3+5∗ i )
↪→ ∗(1−p) /2)−entr (p/8∗x(2+5∗ i ) )−entr (p/8∗x(4+5∗ i ) )−entr ( x(1+5∗ i ) ∗p
↪→ /4+x(2+5∗ i ) ∗p/4+x(3+5∗ i )∗(1−p)+x(4+5∗ i ) ∗p/4+x(5+5∗ i ) ∗p/4) ) ;

end

g i s ( j )=−(1/2+1/2∗p) ∗ log2 ((1/2+1/2∗p) )−(1−(1/2+1/2∗p) ) ∗ log2 (1−(1/2+1/2∗p)
↪→ )−1/4∗(2−p)∗(−p/(2−p) ∗ log2 (p/(2−p) )−

(1−p/(2−p) ) ∗ log2(1−p/(2−p) ) ) ;
s o l ( j )=f ;
ze ro ( j )=(1−p/2)∗(1+ entr ((1/2−3∗p/8) /(1/2−p/4) )+entr (p/8/(1/2−p/4) ) ) ;
%zero ( j )=(1−p/2∗(1+y ) )∗(1+ entr ((1/2−(3+y )∗p /8) /(1/2−(1+y )∗p /4) )+entr ((1−

↪→ y )∗p/8/(1/2−(1+y )∗p /4) ) ) ;
i f s o l ( j )<zero ( j )

print ( ’ Es menor ’ ) ;
% y

% z
% t

s o l ( j )
ze ro ( j )

end
j=j +1;

end
plot ( pl , so l , ’−r ’ , pl , zero , ’−b ’ , pl ,1−pl , ’ : ’ )%, pl , g i s , ’ : b ’
end
end
end

%p l o t ( p l , so l , ’− r ’ , p l , zero , p l , g i s , ’ : b ’ )
%p l o t ( p l , so l , p l ,1− p l )

A.3 Maple codes

Representació de les fites d’informació per d = 3
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Figure A.2: Representation of the output of an example numerical optimization of the intrinsic
information. No candidates were found with lower values thant the candidate proposed for d = 2

Figure A.3: Representation of secrecy extraction bounds and intrinsic information=0 in the slice of
the polytope d = 3
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