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Abstract 

 
This technical research report proposes the usage of a statistical approach named Partia l Least 
squares (PLS) to define the relationships between critical success factors for ERP 
implementation projects. In previous research work, we developed a unified model of critical 
success factors for ERP implementation projects. Some researchers have evidenced the 
relationships between these critical success factors, however no one has defined in a formal way 
these relationships. PLS is one of the techniques of structural equation modelling approach. 
Therefore, in this report is presented an overview of this approach. We provide an example of 
PLS method modelling application; in this case we use two critical success factors. However, 
our project will be extended to all the critical success factors of our unified model. To compute 
the data, we are going to use PLS-graph developed by Wynne Chin. 
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1. Introduction 

 
Over the past years, Enterprise Resource Planning (ERP) implementation projects success has 
been treated as one of the main issues in ERP research. Several studies have been published 
related with the Critical Success Factors (CSFs) in ERP implementation projects. In a previous 
stage of this research we unified these lists of CSFs and we created a unified model of CSFs in 
ERP implementation projects (Esteves and Pastor 2000). In this study we attempt to analyze 
how a set of CSFs lead to the success of an ERP implementation project and how these CSFs 
are interrelated between them. 
 
The starting point for this present research is the assumption, that the different CSFs are 
interrelated. This assumption is supported by some studies (Baker et al. 1974, Pinto and Slevin 
1989, Lechler and Gemünden 2000). However there is no study associated with ERP 
implementation projects. According to Lechler and Gemünden (2000) "the detailed analysis of 
interactions among the success factors is necessary and provides information for further inquiry 
concerning the series of effects that lead to project success or failure". This study is also 
important for manager predict the success of their ERP implementation projects through the 
control and monitorization of these CSFs. In order to model these relationships between CSFs, 
we explore the possibility of using a statistical approach named Partial Least Squares (PLS). 
 
This technical research report is structured as follows. First we describe the background of this 
study. Next, we present the research methodology proposal to analyze the interdependence 
between CSFs. Then, we describe the structural equation modeling methods and we focus in a 
particular one, the partial least squares method, this method is described in detail. Finally we 
present some considerations. 
 

2. Background 

This section provides a brief description of the current research state of art. Until now, we made 
four phases: 

• Analysis of ERP research issues –we made a literature review and we categorized all 
the publications we found through the ERP lifecycle. We also defined the main topics 
researched and future topics for research. 

• Definition of CSFs in ERP implementation projects –we defined a CSFs unified 
model for ERP implementations (see next section). 

• Analysis of CSFs relevance along ASAP implementation methodology phases – 
using process quality management (PQM) method, we defined the relevance of these 
CSFs along the phases of a typical SAP implementation project. 

• Analysis of most critical processes in SAP implementation projects  – we extend the 
concept of most critical processes provided by PQM, and we defined a new criticality 
indicator for complex software projects such as an ERP implementation project. Based 
on this indicator we established the most critical processes in a typical SAP 
implementation project. 

 
Nowadays, we are studying the interdependencies between CSFs. Next, we will attempt to 
define a set of metrics for each CSF. Next section describes our CSF unified model since this 
model is the basis for the study we present in this report. 
 

2.1 Critical Success Factors Unified Model for ERP Implementations  
 
Rockart (1979) was the first author that applied the CSF approach in the information systems 
area. He proposed the CSF method to help CEOs specify their own information needs about 
issues that were critical to their organizations, so that information systems could be developed 
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to meet those needs. According to his account, CSFs are “the limited number of areas in which 
results, if they are satisfactory, will ensure successful competitive performance for the 
organization". They have been applied to many aspects and tasks of information systems, and 
more recently to ERP systems implementations (ex. Bancroft et al. 1998, Brown and Vessey 
1999, Clemons 1998; Dolmetsch et al. 1998, Gibson and Mann 1997, Holland et al. 1999, Kale 
2000, Parr et al 1999, Stefanou 1999, Sumner 1999).  
 
Based in a set of studies published by several authors, containing commented lists of CSFs in 
ERP implementations, Esteves and Pastor (2000) unified these lists and created a CSFs unified 
model (see figure 1). The advantage of this model is that it unifies a set of studies related with 
lists CSFs identified by other authors; the CSFs are categorized in different perspectives and, 
each CSF is identified and defined. 
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• Sustained management support 
• Effective organizational change management 
• Adequate project team composition 
• Good project scope management 
• Comprehensive business re-engineering 
• Adequate project sponsor role 
• Adequate project manager role 
• Trust between partners 
• User involvement and participation 

• Dedicated staff and consultants 
• Appropriate usage of consultants 
• Empowered decision makers 
• Adequate training program 
• Strong communication inwards and outwards 
• Formalized project plan/schedule 
• Reduce trouble shooting 
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 • Avoid customization 

• Adequate ERP implementation strategy 
• Adequate ERP version 

• Adequate software configuration 
• Adequate legacy systems knowledge 

Figure 1 – Our Unified critical success factors model. 

A detailed explanation of this model can be found in Esteves and Pastor (2000). In previous 
work, we established the relevance of these CSFs along SAP implementation phases (Esteves 
and Pastor 2001b).  
 

2.2 CSFs Along SAP Implementation Phases 
 
In 1996, SAP introduced the Accelerated SAP (ASAP) implementation methodology with the 
goal of speeding up SAP implementation projects. ASAP was advocated to enable new 
customers to utilize the experience and expertise gleaned from thousands of implementations 
worldwide. The accelerated SAP (ASAP) implementation methodology is a structured 
implementation approach that can help managers achieve a faster implementation with quicker 
user acceptance, well-defined roadmaps, and efficient documentation at various stages. This is 
specifically targeted for small and medium enterprises adopting SAP.  
 
The key phases of the ASAP methodology, also known as the ASAP roadmap, are: project 
preparation, business blueprint, realization, final preparation, go live & support. The structure of 
each phase is the following: each phase is composed of a group of work packages. These work 
packages are structured in activities, and each activity is composed of a group of tasks. For each 
task, a definition, a set of procedures, results and roles are provided in the ASAP roadmap 
documentation. According to a survey of Input company (Input 1999) organizations have been 
more satisfied with SAP tools and methodologies than with those of implementation partners. 
CSFs relevance along SAP implementation phases is described in figure 3 (source: Esteves and 
Pastor 2001b). 
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Phase1 Phase2 Phase3 Phase4 Phase5
Organizational Strategic Sustained Management Support 8 5 5 6 8

Effective Organizational Change 6 9 6 5 6
Good Proj. Scope Management 5 4 4 5 5
Adequate Proj. Team Composition 5 4 4 4 4
Meaningful Business Process Reengineering 4 7 4 4 5

Perspective User Involvement and Participation 5 8 10 7 5
Proj. Champion Role 10 10 9 10 10
Trust Between Partners 5 4 4 5 5

Tactical Dedicated Staff and Consultants 5 5 4 5 6
Strong Communication Inwards and Outwards 7 7 5 6 8
Formalized Proj. Plan/Schedule 9 7 7 7 5
Adequate Training Program 5 5 5 7 4
Preventive Trouble Shooting 4 4 7 9 7
Usage of Appropriate Consultants 5 4 4 4 4
Empowered Decision Makers 3 5 5 5 4

Technological Strategic Adequate ERP Implementation Strategy 5 4 4 4 4
Avoid Customization 4 4 4 4 4

Perspective Tactical Adequate ERP Version 4 4 4 4 4
Adequate Software Configuration 5 6 10 6 6
Adequate Legacy Systems Knowledge 3 4 4 4 4  

Figure 2- CSFs relevance along the ASAP implementation phases. 

 
Next step consists in the establishment of the relationships between CSFs. The whole scheme of 
relationships is represented in figure 3. 

CSF1CSF1

CSF3CSF3

CSF2CSF2

CSFnCSFn

Phase 1Phase 1

Phase 3Phase 3

Phase 2Phase 2

Phase 4Phase 4

Phase 5Phase 5

CSF1CSF1

CSF3CSF3

CSF2CSF2

CSFnCSFn

Phase 1Phase 1

Phase 3Phase 3

Phase 2Phase 2

Phase 4Phase 4

Phase 5Phase 5

 
Figure 3 – Relationships between CSFs and, CSFs and ASAP phases. 

 

3. Research Methodology Proposal 

 
The aim of this study is to investigate the relationships among CSFs and between CSFs and 
ERP success. The CSFs were defined in a previous stage (see section 2). Data for this study will 
be collected using questionnaire survey. A Part of the survey is presented in appendix A. It has 
three parts: project description, project general characteristics and then, questions related with 
the different CSFs. Our research methodology will have four important steps: 
 

• Development of the questionnaire – this step is done. 
• Data collection – we are currently seeking respondents and defining our sample. 
• Data analysis  – this step is to analyze the items reliability. Individual item reliability is 

assessed by examining the loadings and cross-loadings of each of the construct’s 
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indicators. There are two possible techniques, Cronbach’s alpha test and composite 
reliability (see section 4.5.1).  

• PLS usage - we attempt to use Partial Least Squares (PLS) to establish the relationship 
between the different CSFs. PLS is a well established technique for estimating path 
coefficients in structural models and has been widely used in various research studies 
(e.g. Fornell and Bookstein 1982, Cool et al. 1989, Fornell et al. 1990, Johanson and 
Yip 1994, Birkinshaw et al. 1995). PLS method has gained interest and use among 
researchers in recent years because of its ability to model latent constructs under 
conditions of non-normality and small to medium sample sizes (Chin 1998, Compeau 
and Higgins 1995). Section 4 explains in detail this method and how we will apply it.  

 

4. Structural Equation Modeling 

 
4.1 SEM Overview 

 
Structural Equation Modeling (SEM) techniques such as LISREL and PLS are second 
generation data analysis techniques that can be used to test the extent to which IS research meets 
recognized standards for high quality statistical analysis (Bagozzi and Fornell 1982). SEM 
represents a technique which (Chin 2000): 

• Combines an econometric perspective focusing on prediction. 
• A psychometric perspective modeling latent (unobserved) variables inferred from 

observed – measured variables. 
• Resulting in greater flexibility in modeling theory with data compared to first 

generation techniques. 
 
SEM is a largely confirmatory, rather than exploratory, technique. That is, a researcher is more 
likely to use SEM to determine whether a certain model is valid, rather than using SEM to 
"find" a suitable model. According to Gefen et al. (2000, p. 4), “the intricate causal networks 
enable by SEM characterize real-world processes better than simple correlation-based models”. 
Therefore, SEM is more suited for the mathematical modeling of complex processes to serve 
both theory (Bollen 1989) and practice (Dubin 1976) than first generation regression models. 
Unlike first generation regression tools, “SEM not only assesses the structural model - the 
assumed causation among a set of dependent and independent constructs – but, in the same 
analysis, also evaluates the measurement model – loadings of observed items (measurements) 
on their expected latent variables (constructs)” (Gefen et al. 2000, p. 5). Gefen et al. (2000, p. 6) 
mention that SEM techniques “also provide fuller information about the extent to which the 
research model is supported by the data than in regression techniques”. 
 

4.2 SEM Methods and Their Usage 
 
Gefen et al. (2000) analyzed the extent to which SEM is being used in IS research (see table 1). 
They analyzed three major IS journals (MIS Quarterly, Information & Management and 
Information Systems Research) during the four year period between January 1994 and 
December 1997. Gefen et al. (2000, p. 7) pointed out that: “table 1 clearly shows that SEM has 
been used with some frequency for validating instruments and testing linkages between 
constructs in two or three widely known IS journals”. 
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SEM approaches I&M 
(n=106) 

ISR 
(n=27) 

MISQ 
(n=38) 

All three journals 

PLS 2% 19% 11% 7% 
LISREL 3% 15% 11% 7% 
Other* 3% 11% 3% 4% 
Total 8% 45% 25% 18% 

*Other includes SEM techniques such as AMOS and EQS. 

Table 1 – Use of structural Equation Modeling tools (source Gefen et al. 2000). 

 
Issues LISREL PLS Linear Regression 

Objective  
of overall 
analysis 

Show that the null hypothesis of 
the entire proposed model is 
plausible, while rejecting path-
specific null hypotheses of no 
effect 

Reject a set of path-
specific null hypotheses 
of no effect. 

Reject a set of path-
specific null hypotheses 
of no effect. 

Objective  
of variance 
analysis 

Overall model fit, such as x2 or 
high AGF1. 

Variance explanation 
(high R-square) 

Variance explanation 
(high R-square) 

Required 
theory base 

Requires sound theory base. 
Supports confirmatory research. 

Does not necessarily 
require sound theory 
base. Supports both 
exploratory and 
confirmatory research. 

Does not necessarily 
require sound theory 
base. Supports both 
exploratory and 
confirmatory research. 

Assumed 
distribution 

Multivariate normal, if estimation 
is through ML. Deviations from 
multivariate normal are supported 
with other estimation techniques. 

Relatively robust to 
deviations from a 
multivariate 
distribution. 

Relatively robust to 
deviations from 
multivariate 
distribution, with 
established methods of 
handling non-
multivariate 
distributions. 

Required 
minimal 
sample size 

At least 100-150 cases. At least 10 times the 
number of items in the 
most complex construct. 

Supports smaller 
sample sizes, although a 
sample of at least 30 is 
required. 

Table 2 – Comparative analysis between techniques (Gefen et al. 2000). 

Compared to the better known factor-based covariance fitting approach for latent structural 
modeling (exemplified by software such as LISREL, EQS, COSAN, and EZPATH), the 
component-based PLS avoids two serious problems: inadmissible solutions and factor 
indeterminacy (Fornell and Bookstein 1982). The philosophical distinction between these 
approaches is whether to use structural equation modeling for theory testing and development or 
for predictive applications (Anderson and Gerbing 1988). In situations where prior theory is 
strong and further testing and development is the goal, covariance based full-information 
estimation methods (i.e., Maximum Likelihood or Generalized Least Squares) are more 
appropriate. Yet, due to the indeterminacy of factor score estimations, there exists a loss of 
predictive accuracy. This, of course, is not of concern in theory testing where structural 
relationships (i.e., parameter estimation) among concepts are of prime concern.  
 
For application and prediction, a PLS approach is often more suitable. Under this approach, it is 
assumed that all the measured variance is useful variance to be explained. Since the approach 
estimates the latent variables as exact linear combinations of the observed measures, it avoids 
the indeterminacy problem and provides an exact definition of component scores. Using the 
iterative estimation technique (Wold 1981), the PLS approach provides a general model which 
encompasses, among other techniques, canonical correlation, redundancy analysis, multiple 
regression, multivariate analysis of variance, and principal components. Because the iterative 
algorithm generally consists of a series of ordinary least squares analyses, identification is not a 
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problem for recursive models nor does it presume any distributional form for measured 
variables.  
 
Chin and Newsted (1999) provided a summary of the comparison between the different SEM 
techniques using as criteria: objectives, approach, assumptions, parameter estimates, latent 
variable scores, epistemic  relationship between a latent variable and its measures, implications, 
model complexity and sample size (see table 3). 
 

Criterion PLS LISREL 
Objective Prediction oriented Parameter estimated 
Approach Variance based Covariance based 
Assumptions Predictor specification 

(non parametric) 
Typically multivariate normal 
distribution and independent 
observations (parametric) 

Parameter estimates Consistent as indicators and sample 
size increase (i.e., consistency at 
large) 

Consistent 

Latent variable scores Exp licitly estimated Indeterminate 
Epistemic relationship 
between a latent 
variable and its 
measures 

Can be modelled in either formative 
or reflective mode 

Typically only with reflective indicators 

Implications Optimal for prediction accuracy Optimal for parameter accuracy 
Model complexity Large complexity (e.g., 100 

constructs and 1000 indicators) 
Small to moderate complexity (e.g., less 
than 100 indicators) 

Sample size Power analysis based on the portion 
of the model with the largest number 
of predictors. Minimal 
recommendations range from 30 to 
100 cases. 

Ideally based on power analysis of 
specific model – minimal 
recommendations range from 200 to 
800. 

Table 3 – comparison between SEM techniques (source: Chin and Newsted 1999). 

4.3 SEM Components  
 
SEM involves three primary components (Chin 2000): 

• Indicators (often called manifest variables or observed measures/variables). Indicators 
are usually represented as squares. For questionnaire-based research, each indicator 
represents a particular question. 

• Latent variables (or construct, concept, factor). Latent variables are normally drawn as 
circles. Latent variables are used to represent phenomena that cannot be measured 
directly. 

• Path relationships (correlational, one-way paths, or two way paths). These relationships 
are defined using arrows. 

 
The graphical representation of SEM is represented in figure 4. A structural equation model 
may include two types of latent constructs--exogenous and endogenous. The are represented in 
the following way:   

• Exogenous constructs - ξ. 
• Endogenous constructs - η.  

 
These two types of constructs are distinguished on the basis of whether or not they are 
dependent variables in any equation in the system of equations represented by the model. 
Exogenous constructs are independent variables in all equations, in which they appear, while 
endogenous constructs are dependent variables in at least one equation--although they may be 
independent variables in other equations in the system. In graphical terms, each endogenous 
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construct is the target of at least one one-headed arrow, while two-headed arrows only target 
exogenous constructs. 
 

 
Figure 4 – Graphical representation of a SEM model (source: Rigdon 1996). 

 
Parameters representing regression relations between latent constructs are typically labelled 
with: 

• γ - the regression of an endogenous construct on an exogenous construct. 
• β - the regression of one endogenous construct on another endogenous construct. 

 
Typically in SEM, exogenous constructs are allowed to covary freely. Parameters labelled with 
the Greek character "phi" (φ) represent these covariances. This covariance comes from common 
predictors of the exogenous constructs, which lie outside the model under consideration. 
 
Manifest variables associated with exogenous constructs are labelled X, while those associated 
with endogenous constructs are labelled Y. Otherwise, there is no fundamental distinction 
between these measures, and a measure that is labelled X in one model may be labelled Y in 
another. Few SEM researchers expect to perfectly predict their dependent constructs, so model 
typically include a structural error term, labelled with the character ζ. 
 

4.4 SEM Notation 
 
SEM models are represented in a variety of notations, but the most commonly use is the one of 
Jöreskog (1973, 1977) known as LISREL. The SEM model has two primary components, a 
latent variable and a measurement model. The latent variable is 

 
η = α + Bη + Γξ + ζ.   (1) 

 
Where: 

• η is an m x 1 vector of latent endogenous variables,  
• ξ is an n x 1 vector of latent exogenous variables,  
• α is an m x 1 vector of intercept terms,  
• B is an m x m matrix of coefficients that give the influence of the ηs on each other,  
• Γ is an m x n matrix of coefficients for the effect of the ξ on η, and  
• ζ is the m x 1 vector of disturbances that contains the unexplained parts of the ηs.  
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The traditional LISREL notation has two equations for the measurement model: 
 

y* = νy + Λyη + δ, (2) 
 

x* = νx + Λxξ + δ, (3) 
Where: 
• y*  is the p x 1 vector of indicators of the latent variables in η,  
• νy  is the p x 1 vector of intercept terms, 
• Λy  is the p x m factor loading matrix of coefficients giving the linear effect of  η on y*, and 
• δ    is the p x 1 vector of measurement errors or disturbances. 
 
Analogous definitions and assumptions hold for (3). 
 
In relation to indicators, they can be categorized in formative and reflective indicators. 
Formative indicators (also known as cause measures) “are measures that form or cause the 
creation or change in a latent variable” (Chin 1998). Examples of formative indicators would be 
the amount of beer, wine, consumed as indicators of mental inebriation. 
  

4.5 SEM Measurement Model 
 
A measurement model is “a device for connecting observed, or indicator, variables to one or 
more latent variables such that ‘true’ values on the latter can be separated from error” (Bacon 
1999). Joreskorg and Sorbom (1993) mentioned that a measurement model consists of a set of 
observed indicators, which serve for respective measurement instruments of the latent variables. 
The measurement model consists of: 

• X and Y variables that are measures of the exogenous and endogenous constructs, 
respectively. Each X should load onto one ξ, and each Y should load onto one η. 

• λx representing the path between an observed variable X and its ξ, i.e., the item loading 
on its latent variable. 

• θδ representing the error variance associated with this X item, i.e., the variance not 
reflecting its la tent variable ξ. 

• λy representing the path between an observed variable Y and its η, i.e., the item loading 
on its latent variable. 

• θε representing the error variance associated with this Y item, i.e., the variance not 
reflecting its latent variable η. 

 
SEM users typically recognize that their measures are imperfect, and they attempt to model this 
imperfection. Thus, structural equation models include terms representing measurement error. 
In the context of the factor analytic measurement model, these measurement error terms are 
uniqueness or unique factors associated with each measure. Measurement error terms associated 
with X measures are labelled with the character δ while terms associated with Y measures are 
labelled with ε . Conceptually, almost every measure has an associated error term. In other 
words, almost every measure is acknowledged to include some error. According to Cheng 
(2001, p. 652), “prior to the test of the hypothesized relationships among constructs, the 
measurement model must hold. If any indicators do not measure its underlying construct and/or 
are not reliable, the model must be modified before it can be ‘structurally’ tested”. Next, we 
discuss the issue of reliability. 
 

4.5.1. Reliability 
 
According to (Vogt 1993, p. 195), “reliability of a measure is the extent to which it provides 
consistent results from one application to the next, or the degree to which it is free of random 
error”. Individual item reliability is assessed by examining the loadings and cross-loadings of 
each of the constructs’s indicators. Operationally, reliability is defined as the internal 
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consistency of a scale, which assesses the degree to which the items are homogeneous. 
Cronbach's alpha is a widely used measure of internal consistency (Cronbach 1951, Nunnaly 
1978).  
 
The main techniques for analysis are the internal consistency measures (such as Cronbach’s 
alpha) and composite reliability measures. Cronbach’s alpha “tends to be a lower bound 
estimate reliability, whereas IC is a closer approximation under the assumption that the 
parameter estimation are accurate” (Chin 1998, p. 320). Churchill (1979) suggests that 
Cronbach’s alpha be the first measure ones uses to assess quality of the instrument. Cronbach’s 
alpha can be considered an adequate index of the inter-item consistency reliability of 
independent and dependent variables if those constructs have reliability values of 0.7 or greater 
(Nunnally 1978, Sekaran 1992). 
 
The appropr iate measures to use with survey instruments that generally tackle a number of 
constructs are commonly referred to as measures of composite reliability (Werts et al. 1974). 
The composite reliability measure proposed by Werts et al. (1974), which is an alternate 
conceptualization of reliability, represents the proportion of measure variance attributable to the 
underlying trait. The Werts et al. (1974) composite reliability represents the ratio of trait 
variance to the sum of trait and error variance. Scales with composite reliability greater than 50 
percent are considered to be reliable although Nunnaly (1978) suggests the value of 0.6. 

4.5.1.1. Cronbach’s Alpha Test 

Cronbach's alpha measures how well a set of items (or variables) measures a single 
unidimensional latent construct.  When data have a multidimensional structure, Cronbach's 
alpha will usually be low. Technically speaking, Cronbach's alpha is not a statistical test - it is a 
coefficient of reliability (or consistency).  Cronbach’s alpha can be written as a function of the 
number of test items and the average inter-correlation among the items:  

( )
_

_

11 rN

rN

×−+

×
=α  

 
Here N is equal to the number of items and r-bar is the average inter-item correlation among the 
items.  One can see from this formula that if you increase the number of items, you increase 
Cronbach's alpha.  Additionally, if the average inter-item correlation is low, alpha will be low.  
As the average inter-item correlation increases, Cronbach's alpha increases as well. This makes 
sense intuitively - if the inter-item correlations are high, then there is evidence that the items are 
measuring the same underlying construct. This is really what is meant when someone says they 
have "high" or "good" reliability.  They are referring to how well their items measure a single 
unidimensional latent construct.  Thus, if you have multidimensional data, Cronbach's alpha will 
generally be low for all items.  In this case, run a factor analysis to see which items load highest 
on which dimensions, and then take the alpha of each subset of items separately. 
 

4.5.1.2. Composite Reliability 

Cronbach’s alpha is the typical procedure to assess reliability. However, Cronbach alpha is 
based on a restrictive assumption that all indicators are equally important. An alternative 
conceptualization of reliability is that it represents the proportion of measure variance 
attributable to the underlying dimension (Werts et al. 1974). According to Chin et al. (1996, 
p.33), “while Cronbach’s alpha with its assumption of parallel measures represents a lower 
bound estimate of internal consistency, a better estimate can be gained using the composite 
reliability formula” also known as “latent variable reliability”. The technique was suggested by 
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Werts et al. (1974), see also Dillon and Goldstein (1984) and Fornell and Larker (1981). The 
composite reliability ρc of a measure X, with indicators X1, X2,…, Xn is given by: 
 

( )
( ) ∑

==

=

+

=

∑

∑
n

i
i

n

i

n

i
c

eX

X

i

i

11

2
1

2

)var(var

var

λ

λ
ρ  

 
where: 

• λi,  is the factor loading of Xi. 
• var X is the variance of X (i.e., available in a SEM equation measurement model). 
• ei is the error variance for Xi.  

 
4.6 SEM Structural Model 

 
In SEM, the structural model includes the relationships among the latent constructs. It is the set 
of exogenous and endogenous variables in the model, together with the direct effects (straight 
arrows) connecting them, and the disturbance terms for these variables (reflecting the effects of 
unmeasured variables not in the model). This stage of analysis involves the evaluation of the 
relationships between the latent variables. “If a structural model has non-significant paths, it 
reveals the need to propose new relationships on condition that these new paths are theoretically 
justified. The process is to produce a series of nested structural models for testing. These 
structural models must be developed one by one where later models must be stemmed from 
previous models and must have theoretical grounds” (Cheng 2001, p. 654). According to Cheng 
(2001) the best fitting structural model refers “to a model that is the best in achieving the 
goodness-of-fit indices among all tested structural models. 
 

4.7 SEM Steps  
 
Next we explain the different steps of SEM methodology (Bollen and Long 1993, p. 1): 

• Step 1: Specification -  Statement of the theoretical model in terms of equations or a 
diagram.  

• Step 2: Identification - The model can in theory be estimated with observed data (to 
learn the general rules of identification).  

• Step 3: Estimation - The model's parameters are statistically estimated from data. 
Multiple regression is one such estimation method, but most often more complicated 
methods are used. (For a list of estimation programs and their links look at Joel West's 
page.)  

• Step 4: Model it - The estimated model parameters are used to predict the correlations 
or co-variances between measured variables and the predicted correlations or co-
variances are compared to the observed correlations or co-variances (to see measures of 
model fit).  

 
Cheng (2001) proposed an incremental approach to apply SEM techniques (see figure 5). This 
approach distinguishes clearly the analysis of SEM measurement and structural models. 
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Figure 5 – SEM incremental approach proposed by Cheng (2001). 

5. PLS Method 

 
In this section we explain in detail the PLS method. We start by a PLS method overview, then, 
we discussed the issue of sample size and finally, we describe the statistics that must be worked 
out with PLS method. 
 

5.1 PLS Overview 
 
Partial Least Squares (PLS) was invented by Herman Wold (mentor to Karl Jöreskog, founder 
of SEM). Nowadays, PLS is a well-established technique for estimating path coefficients in 
structural models and has been widely used in various research studies (e.g. Fornell and 
Bookstein 1982, Cool et al. 1989, Fornell et al. 1990, Johanson and Yip 1994, Birkinshaw et al. 
1995). Section 5.2 presents an analysis by Gefen et al. (2000) about the usage of SEM 
techniques including PLS. The conceptual core of PLS is an iterative combination of principal 
components analysis relating measures to constructs, and path analysis allowing the 
construction of a system of constructs (Thompson et al. 1995). The hypothesising of 
relationships between measures and constructs, and constructs and other constructs is guided by 
theory. The estimation of the parameters representing the measurement and path relationships is 
accomplished using Ordinary Least Squares (OLS) techniques.  
 
PLS can be a powerful method of analysis because of the minimal demands on measurement 
scales, sample size, and residual distributions. Although PLS can be used for theory 
confirmation, it can also be used to suggest where relationships might or might not exist and to 
suggest propositions for later testing.  
 
Finally, PLS is considered better suited for explaining complex relationships (Fornell, Lorange, 
and Roos, 1990; Fornell and Bookstein, 1982). As stated by Wold (1985, p. 589), "PLS comes 
to the fore in larger models, when the importance shifts from individual variables and 
parameters to packages of variables and aggregate parameters". Wold states later (p. 590), "In 
large, complex models with latent variables PLS is virtually without competition". PLS 
modeling consists of three sets of relations (Fornell and Cha 1992):  

• Inner relations – the inner relations specify the relationships between different latent 
constructs, 
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• Outer relations – the outer relations describe the relationships between the latent 
variables and the set of manifest variables and, 

• Weight relations – the weights relations define the estimated latent constructs as 
weighted aggregates of the observed variables. 

 
In PLS, two kinds of measurement models can be specified: reflective and formative. The 
reflective model assumes that the manifest variables are a reflection of the latent constructs.  In 
contrast, the formative model assumes that the observed variables form the latent construct. 
Chin (2000) refers the conditions when we might consider using PLS: 

• Do you work with theoretical models that involve latent constructs? 
• Do you have multicollinearity problems with variables that tap into the same issues? 
• Do you want to account for measurement error? 
• Do you have non-normal data? 
• Do you have a small sample set? 
• Do you wish to determine whether the measures you developed are valid and reliable 

within the context of the theory you working in? 
• Do you have formative as well as reflective measures? 

 
As in multiple linear regression, the purpose of PLS is to build a linear model, Y=XB+E, where: 

• Y is an n cases by m variables response matrix, 
• X is an n cases by p variables predictor (design) matrix, 
• B is a p by m regression coefficient matrix, 
• E is a noise term for the model, which has the same dimensions as Y. 

 
 

5.2 Computational Approach 
 
The standard algorithm for computing partial least squares regression components (i.e., factors) 
is non-linear iterative partial least squares (NIPALS). There are many variants of the NIPALS 
algorithm, which normalize or do not normalize certain vectors. The following algorithm, which 
assumes that the X and Y variables have been transformed to have means of zero, is considered 
to be one of most efficient NIPALS algorithms (Statsoft 2001).  
 
For each h=1,…,c where A0=X'Y, M0=X'X, C0=I, and c given,  

1. compute qh, the dominant eigenvector of Ah'Ah  
2. wh=GhAhqh, wh=wh/||wh||, and store wh into W as a column  
3. ph=Mhwh, ch=wh'Mhwh, ph=ph/ch, and store ph into P as a column  
4. qh=Ah'wh/ch, and store qh into Q as a column  
5. Ah+1=Ah - chphqh' and Bh+1=Mh - chphph'  
6. Ch+1=Ch - whph'  

 
The factor scores matrix T is then computed as T=XW and the partial least squares regression 
coefficients B of Y on X are computed as B=WQ. An alternative estimation method for partial 
least squares regression components is the SIMPLS algorithm (de Jong, 1993), which can be 
described as follows.  
 
For each h=1,…,c, where A0=X'Y, M0=X'X, C0=I, and c given, 

1. compute qh, the dominant eigenvector of Ah'Ah  
2. wh=Ahqh, ch=wh'Mhwh, wh=wh/sqrt(ch), and store wh into W as a column  
3. ph=Mhwh, and store ph into P as a column  
4. qh=Ah'wh, and store qh into Q as a column  
5. vh=Chph, and vh=vh/||vh||  
6. Ch+1=Ch - vhvh' and Mh+1=Mh - phph'  
7. Ah+1=ChAh  
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Similarly to NIPALS, the T of SIMPLS is computed as T=XW and B for the regression of Y on 
X is computed as B=WQ'. 
 

5.3 Sample Size  
 
Sample size can be smaller, with a strong rule of thumb suggesting that it be equal to the larger 
of the following: (1) ten times the scale with the largest number of formative (i.e., causal) 
indicators (note that scale s for constructs designated with reflective indicators can be ignored), 
or (2) ten times the largest number of structural paths directed at a particular construct in the 
structural model. A weak rule of thumb, similar to the heuristic for multiple regression 
(Tabachnik and Fidell,1989, p. 129), would be to use a multiplier of five instead of ten for the 
preceding formulae. An extreme example is given by Wold (1989) who analyzed 27 variables 
using two latent constructs with a data set consisting of ten cases. In general, the most complex 
regression will involve: 

(1) The indicators on the most complex formative construct, or 
(2) The largest number of antecedent constructs leading to an endogenous construct 

 
Sample size requirements become at least ten times the number of predictors from (1) or (2) 
whichever is greater (Barclay et al. 1995). Second order factors can be approximated using 
various procedures. One of the easiest to implement is the approach of repeated indicators 
known as the hierarchical component model suggested by Wold (cf. Lohmöller, 1989, pp. 130-
133). In essence, a second order factor is directly measured by observed variables for the entire 
first order factors. While this approach repeats the number of manifest variables used, the model 
can be estimated by the standard PLS algorithm. This procedure works best with equal numbers 
of indicators for each construct.  
 
Nevertheless, being a limited information method, PLS parameter estimates are less than 
optimal regarding bias and consistency. The estimates will be asymptotically correct under the 
joint conditions of consistency (large sample size) and consistency at large (the number of 
indicators per latent variable becomes large). Furthermore, standard errors need to be estimated 
via resampling procedures such as jackknifing or bootstrapping (cf. Efron and Gong, 1983). 
Rather than being viewed as competitive models, the covariance fitting procedures (i.e., ML and 
GLS) and the variance-based PLS approach has been argued as complementary in nature.  
 

5.4 PLS Statistics  
 
According to Gefen et al. (2000), a set of PLS statistics must be worked out in order to verify 
our model. At the measurement model level, PLS estimates item loadings and residual 
covariance. At the structural level, PLS estimates path coefficients and correlation among the 
latent variables, together with the individual R2 and Average Variance Extracted (AVE) of each 
of the latent constructs.  
 
AVE  is calculated as: ∑λi

2var(F) / (∑λi
2var(F) + ∑θii) where λI, F, and θii are the factor loading, 

factor variance, and unique/error variance respectively. If F is set at 1, then θii is the 1-square of 
λi. T-values of both paths and loadings are then calculated using either a jackknife or a bootstrap 
method. Good model fit is established with significant path coefficients, acceptably high R2 and 
internal consistency (construct reliability) being above 0.70 for each construct (Thompson et al. 
1995). Convergent and discriminant validity are assessed by checking that that AVE of each 
construct is larger than its correlation with the other constructs, and each item has a higher 
loading (calculated as the correlation between the factor scores and the standardized measures) 
on its assigned construct than the other constructs. 
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6. An Example  

 
Based on a literature review and a web survey we made (for more details see: Esteves and 
Pastor 2001a), we defined an interdependence model between project sponsor, project manager 
roles and ERP project success. We started by providing a definition for both the project sponsor 
and the project manager figure:  

– The ERP project sponsor is the person devoted to promote the ERP project, who has the 
ownership and responsibility of obtain the project resources. He must control and monitor the 
project, helping remove obstacles in order to facilitate the success of the ERP project. Usually 
this figure is a senior executive of the company. 

– The ERP project manager is the person devoted to plan, lead and control the project on the 
run in its several tasks. He is also responsible for ensuring the scope is properly and 
realistically defined, and communicating it to the whole company. One of his/her most 
important tasks is to promote good working relationships across the project. 

 
The interdependence model is represented in figure 3 with the standard notations of the SEM 
approach. Based on these interdependencies, we define three hypotheses for further research: 

H1 - there is a positive relationship between project sponsor role and project manager role  
H2 - there is a positive relationship between project sponsor role and the success of the ERP 
implementation project. 
H3 - there is a positive relationship between project manager role and the success of the ERP 
implementation project. 
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Figure 6 – SEM model for project sponsor, project manager and their interdependencies in ERP 

implementation projects. 

 
As explained in the SEM components section, the variables in squares represent the indicators, 
in our case they are the items of the survey developed. The variables in squares labelled ε i and δi 
represent the error associated with each item. The survey to collect data (see appendix A) uses a 
likert scale to measure the opinion of respondents in each indicator. As illustrated in figure 6, 
the model consists of two independent variables (project sponsor and project manager) and one 
dependent variable (ERP project success). 
  



17 

An alternative to the graphical representation (figure 6) is to represent the model specification 
using the SEM notation described in section 4.4. In this example it is: 
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7. Considerations  

 
This technical research report proposes the usage of a statistical approach named Partial Least 
squares (PLS) to define the relationships between CSFs for ERP implementation projects. Some 
researchers have evidenced the relationships between these CSFs, however no one has defined 
in a formal way these relationships. PLS is one of the techniques of structural equation 
modeling approach. Therefore, this report presents an overview of this approach. We provide an 
example of PLS method modeling application, in this case we use two CSFs. However, our 
project will be extended to all the CSFs of our unified model. 
 
To compute the data, we are going to use PLS-graph developed by Wynne Chin. This software 
has been under development for the past 9 years. Academic beta testers include Queens 
University, Western Ontario, UBC, MIT, University of Michigan, Wharton University, etc. 
(Chin 2000). 
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Appendix A 

 
Project Description 
Company.  
Type of company  
Project duration:  
Start date:  
ERP system implemented:  
Number of users:  
Your function in the ERP project:  
Your e-mail:  
Project Ge neral Characteristics  
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S1 This project was finished in the expected time      
S2 This project was finished on budget      
S3 The project obtained the expected functionality      
S3 The system is being used by its intended users      
S4 The project benefited the potential users      
S5 If you could go back and start again, you would implement the ERP system 

in the same way 
     

S6 The ERP system chosen was the adequate      
S7 The implementation of the ERP system had a positive impact on the 

organisation culture and values 
     

Project Specific Questions  
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 Project sponsor role      
PS1 The project sponsor reviewed the scope periodically      
PS2 The project sponsor inquire frequently      
PS3 The project sponsor got the resources for the project      
PS4 Project sponsor shown commitment and support with the project      
 Project manager role      
PM1 The project manager reviewed the scope periodically      
PM2 The project manager motivated the team along the project      
PM3 The project manager had frequent meetings with project team      
PM4 The project manager skills included technical, business and 

organisational skills 
     

PM5 The project manager reported the project status to his superiors in a 
regular basis 

     

 


