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Abstract. This paper enhances and analyses the power of local weighted
similarity measures. The paper proposes a new entropy-based local
weighting algorithm to be used in similarity assessment to improve the
performance of the CBR retrieval task. It has been carried out a compara-
tive analysis of the performance of unweighted similarity measures,
global weighted similarity measures, and local weighting similarity
measures. The testing has been done using several similarity measures,
and some data sets from the UCI Machine Learning Database Reposi-
tory and other environmental databases.

1   Introduction

Over the last decade an important progress has been made in the Case-based Rea-
soning (CBR) field. Specially, because problems are more clearly identified, and re-
search results have led to real applications where CBR performs well. As noticed in [2],
in this situation, it has also become clear that a particular strength of CBR over most
other methods is its inherent combination of problem solving with sustained learning
through problem solving experience. In CBR, similarity is used to decide which in-
stance is closest to a new current case, and similarity measures have attracted the
attention of many researchers in the field.

Theoretical frameworks for the systematic construction of similarity measures have
been described in [16], [15], [17], [14] and [4]. Other research work introduced new
measures for a practical use in CBR systems, such as Bayesian distance measures in
[9] and some heterogeneous difference metrics in [21]. Also, a review of some used



similarity measures was done in [12]. On the other hand, there are many works than
propose discretization as a methodology to deal with continuous features [10], [6],
[21].
This paper aims to analyse and to study the performance of several commonly used
measures in addition with a discretization pre-process, global feature weighting, and
local feature weighting. The measures are evaluated in terms of predictive accuracy on
unseen cases, measured by a ten-fold cross-validation process. In this comparative
analysis, we have selected two basic similarity measures (Euclidean and Manhattan),
two unweighted similarity measures (Clark and Canberra), two heterogeneous similar-
ity measures (Heterogeneous Value Difference Metric and Interpolated Value Differ-
ence Metric) and an exponential weighted similarity measure called L’Eixample. Al-
though all these are distance measures, we can refer to similarity measures by means
of the relation:
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1.1   Related Work

One core task of CBR retrieval is similarity computation. Many researchers have been
trying to improve similarity assessment. In later years, many of them are focusing on
feature weighting. Feature weighting is a very important issue. It is intended to give
more relevance to those features detected as important, and at the same time, it is
intended to give lower importance to irrelevant features. Most general methods for
feature weighting use a global scheme. It means to associate a weight to all the space
of the feature (e.g., [13] and [8]). On the other hand, some local scheme methods have
been proposed, such as assigning a different weight to each value of a feature ([18]),
or allowing feature relevance to vary across the instances ([5]), or setting weight ac-
cording to the class value ([7]), or using a different similarity metric for each test case
([3]), or combining both schemes ([1]). In this paper, it is argued that a feature may be
irrelevant in some subspace of values, but in other subspaces of values it can cor-
rectly predict the class of an example. If a continuous attribute is present, a discretiza-
tion pre-process is suggested and a specific weight is associated to each resulting
range or interval. If the attribute is discrete, a specific weight is associated to each
possible value. The importance of one specific value (or range) will be determined by
the distribution of the class values for that feature value (or range). In other words, if
the entropy of one value (or range) respect the class value is high, a low weight is set.
On the other side, a high weight is associated to a value (or range) showing a low
entropy.
[20] Presents a five-dimension framework for feature weighting: bias, weight space,
representation, generality and knowledge. Taking into account that point of view, our
approach can be classified as Bias: Preset, Weight Space: Continuous, Representation:
Given, Generality: Local and Knowledge: Poor.



The paper is organised in the following way. Section 2 outlines main features about
the new entropy-based local weighting algorithm. In Section 3, background informa-
tion on selected similarity measures to carry out the study is provided. Section 4 pres-
ents the results comparing the performance of all distance measures using diverse
criteria to handle continuous attributes and feature weights tested on ten randomly-
selected databases from the UCI Machine Learning Repository and other databases.
Finally, in Section 5 conclusions and future research directions are outlined.

2   Entropy-Based Local Weighting

A retrieval method should try to maximise the similarity between the current case and
the retrieved one(s). And this task usually implies the use of general domain knowl-
edge. Selecting the best similar case(s), it is usually performed in most CBR systems
by means of some evaluation heuristic functions or distances, possibly domain de-
pendent. Commonly, each attribute or dimension of a case has a determined impor-
tance value (weight), which is incorporated in the evaluation function. This weight
could be static or dynamic depending on the CBR system purposes. Also, the evalua-
tion function computes an absolute match score (a numeric value), although a relative
match score between the set of retrieved cases and the new case can also be com-
puted.

Most CBR systems represent cases as a plain structure composed by a set of at-
tribute-value pairs, x={x1, x2,…, xn, xc} where n is a set of (numeric or symbolic) fea-
tures, and xc is x’s class value. In such situation, these systems use a generalised
weighted distance function, which can be described as:
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In our approach, the continuous attributes have to be discretised, Afterwards, a spe-
cific weight is assigned, both to discretised continuous attributes or discrete attrib-
utes. Next, the discretis ation method used (CAIM algorithm), and the new entropy-
based local weighting algorithm are described.

2.1   Discretisation

Some of the similarity measures have a good performance when the attributes are all
continuous or all discrete. Others incorporate mechanisms to deal appropriately all the
types of attributes. Our proposal is to make a discretization pre-process on the con-
tinuous attributes in such way that the general accuracy can be improved [6]. Discreti-
zation may serve to mark differences that are important in the problem domain. There



exist many discretization algorithms in the literature, and had been compared among
them to prove their general accuracy [6], [19]. To improve the retrieval accuracy, a
global and supervised method to discretize all the continuous attributes, the CAIM
algorithm proposed by Kurgan and Cios in [10], was selected. This algorithm tries to
maximise the dependency relationship between the class label and the continuous-
values attribute, and at the same time, to minimise the number of discrete intervals. In
our approach all the continuous attributes were divided in a number of intervals equal
to the number of present classes in the database, or in 5 intervals when the number or
present classes are less than 5.  The Class-Attribute Interdependency Maximisation
(CAIM) criterion which measures the dependency between the class variable C and
the discretization variable D for attribute F is defined as:
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where:  n is the number of intervals
i iterates through all intervals, i.e. i=1,2,…n
maxi  is the maximum value among all qir values (maximum value within the ith

column of the quanta matrix), r=1,2,…,S
Mir is the total number of continuous values of attribute F that are within the in-

terval (d r-1,dr]

Table 1. Quanta matrix. Frequency matrix for attribute F and discretization scheme D
IntervalClass

[d0,d1]    …    [d r-1,d r]    …   [dn-1,dn]
Class
Total

C1    q11       …        q1r       …       q1n M 1+

:      :          :           :          :          : :
Ci    q i1       …         q ir       …       q in M i+

:      :          :           :          :          : :
CS    qS1      …         qSr       …       qSn M S+

Interval    M +1     …        M+r      … M

The CAIM criterion is a heuristic measure that quantifies the interdependence be-
tween classes and the number of unique values of the continuous attribute. For a
complete details about the CAIM algorithm see [10].

2.2   Entropy-Based Local Weighting Algorithm

Many works has been done concerning assigning weights to features [Wettschereck
and Aha], [Jarmulak et al.], [13], but most of them uses a global weight for the fea-
tures. Frequently, a single feature may seem irrelevant if you take it in a global way,
but perhaps, a range of this feature is a very good selector for a specific class. Our
proposal is to assign a high weight to this range, and a low weight to the others. In the



tests that have been carried out, entropy values have been used to assign weights to
all the ranges. In the following paragraph we present our approach to calculate local
weights for all the values (ranges) for all the attributes is detailed. The calculated val-
ues are in the range from 0 to 10 in ascending order of relevance. In our approach, a
correlation matrix is filled for each attribute, represented the correlation between attrib-
ute’s values and class value as show in Table 2.

Table 2. Correlation Matrix.
C1 C2 … Cn Tot x Val

V1 q11 q12 … q1n q1+

V2 q21 q22 … q2n q2+

: : : … : :
Vm qm1 qm2 … qmn qm+

Tot x Cla q+1 q+2 … q+n q++

Where:
Vm  is the m value of the attribute, when the attribute is continuous,  Vm represents

one interval.
Cn is the class value n
qmn is the number of instances that have value m (or are in range m for a continu-

ous attribute) and belong to class n.
q+n is the number of instances of class n.
qm+ is the number of instances that have value m (or are in range m for a continu-

ous attribute).
q++ is the number of instance in the training set.

From this matrix, we can obtain the entropy from each value (range):
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This entropy Hij belonging to value (range) j from attribute i will be the basis to calcu-
late the weight for the value j following this simple idea: if the value (or range) has a
maximum possible entropy (“totally random”), then the weight must be 0. On the other
hand, if the value (or range) has a minimum possible entropy (“perfectly classified”)
then the weight must be 10. The minimum possible entropy is 0 when all the instances
with this value (range) belong to the same class, the maximum possible entropy occurs
when the instances with this value (range) are equally distributed in all classes and
can be calculated as follows:
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This equation is equivalent to:
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From here, we can interpolate the weight for attribute i value (range) j between 0 and
Himax into the range from 0 to 10:
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3   Similarity measures

Currently, there are several similarity measures that have been used in CBR systems,
and some comparison studies exist among these similarity measures (see [21] and [12]).
The results obtained in these studies show that the different similarity measures have
a performance strongly related to the type of attributes representing the case and to
the importance of each attribute. Thus, is very different to deal with only lineal or
quantitative data (continuous), with discrete or qualitative (entire) or nominal (qualita-
tive not ordered). To give a greater distance contribution to a more important attribute
than other less important attributes is necessary, too. In this study, the new proposed
paradigm, discretization pre-process and local weights assignment, is performed to
explore how some wide used similarity measure improves the retrieval task in CBR
systems, comparing our approach against classical retrieval evaluation with global
weights, with no weights, and in some cases with no discretization. The selected simi-
larity measures were:

3.1   Measures Derived from Minkowski’s Metric
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Where k is the number of input attributes. When r=1, Manhattan or City-Block  dis-
tance function is obtained. If r=2, Euclidean distance is obtained. When including
weights for all the attributes, the general formula becomes the following:
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Where for not ordered attributes, their contribution to the distance is,
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and  δ is  the δ of Kronecker.

3.2   Unweighted Similarity Measures

In this study two similarity measures that ignore attribute’s weight were included:

Clark:

∑
= +

−
=

K

k kjki

kjki
ji

xx

xx
xxd

1
2

,,

2

,,
),(

and Canberra:

∑
= +

−
=

K

k kjki

kjki
ji xx

xx
xxd

1 ,,

,,
),(

3.3 Heterogeneous Similarity Measures

To obtain a broader study and results, other two distance measures that show very
high values of efficiency have been included. These functions were proposed in [21] :

Heterogeneous Value Difference Metric (HVDM) :
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Where m is the number of attributes. The function da(xa,ya) returns a distance be-
tween the two values x and y for attribute a, and is defined as:







=

linearisaifyxdiffnormalized

nominalisaifyxvdmnormalized

otherwiseunknownisyorxif

yxd

a

aaaa

),,(_

),,(_

;,1

),(2

Where normalized_vdma(x,y), is defined as follows:
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Where:
• Na,x is the number of instances that have value x for attribute a;
• Na,x,c is the number of instances that have value x for attribute a and output

class c;
• C  is the number of output classes in the problem domain



The function normalized_diffa(x,y), is defined as showed below:
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where σa  is the standard deviation of the numeric values of attribute a.

Interpolated Value Difference Metric (IVDM) :
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where  vdma(x,y) is defined as follows:
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C is the number of classes in the database. Pa,x,c is the conditional probability that the
output class is c given that attribute a has the value x. And:
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Where Na,x is the number of instances that have value x for attribute a; Na,x,c is the
number of instances that have value x for attribute a and output class c.

Pa,c(x) is the interpolated probability value of a continuous value x for attribute a and
class c, and is defined:
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In this equation, mida,u and mida,u+1 are midpoint of two consecutive discretized ranges
such that  mida,u≤ x < mida,u+1. Pa,u,c is the probability value of the discretized range u,
which is taken to be the probability value of the midpoint of range u. The value of u is
found by first setting u=discretizea(x), and then subtracting 1 from u if x<mida,u. The
value of  mida,u can be found as follows:



mida,u= mina + widtha * (u+.5)

3.4 Exponential Weighted Similarity Measure

L’Eixample distance measure.

Some distance functions, sometimes, does not capture the significant differences
among the attributes. They are a lineal weighted combination of one-dimensional
distances that can lose significant differences as the number of attribute increases.   
After a competence study, a normalised exponential weight-sensitive distance func-
tion was developed and was named as L’Eixample distance [17], [14]. It was thought
that a non-lineal weighted multi-dimensional distance function would be required for a
better matching performance. It takes into account the different nature of the quantita-
tive or qualitative values of the lineal (ordered) attributes, and the modalities of cate-
gorical (not ordered) attributes.
L’Eixample distance is sensitive to weights. For the most important attributes, that is
weight > α, the distance is computed based on their qualitative values, i.e. maintaining
or amplifying the differences between cases. And for those less relevant ones, that is
weight ≤ α, the distance is computed based on their quantitative values, i.e. reducing
the differences between cases. L’Eixample distance used to rank the best cases is:
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Ci is the case i; Cj is the case j; Wk is the weight of attribute k; Aki is the value of the
attribute k in the case i; Akj is the value of the attribute k in the case j; qtv(Aki) is the
quantitative value of Aki; qtv(Akj) is the quantitative value of Akj; Ak is the attribute k;
upperval(Ak) is the upper quantitative value of Ak; lowerval(Ak) is the lower quantita-
tive value of Ak; α is a cut point on the weight of the attributes; qlv(A ki) is the qualita-
tive value of Aki; qlv(Akj) is the qualitative value of Akj; #mod(Ak) is the number of
modalities (categories) of Ak; δqlv(Aki),qlv(Akj) is the δ of Kronecker.



4   Experimental Evaluation

To test the efficiency, all similarity measures were tested with no weights, with global
weights and with the new entropy-based local-weighting approach. A nearest neigh-
bour classifier was implemented, using each one of the 7 distance measures: HVDM,
IVDM, Euclidean, Manhattan, Clark, Canberra and L’Eixample. Each distance measure
was tested, with the three weighting schemes, in the 10 selected databases from the
UCI database repository plus 2 other environmental databases. Detailed description of
the databases is shown in table 3 where number of instances in each database (#Inst.),
the number of continuous attributes (Cont), ordered discrete attributes (Disc), not
ordered discrete attributes (NODisc), number of classes (#Class) and missing values
percentage (%Mis.).

Table 3. Major properties of databases considered in the experimentation
Database Short

Name
#Inst Cont Disc NODisc #Class %Miss

Breast Cancer Br.Can. 699 0 9 0 2 0
Glass Glass 214 9 0 0 7 0
Hepatitis Hepat. 155 6 0 13 2 5.7
Ionosphere Ionosp. 351 34 0 0 2 0
Iris Iris 150 4 0 0 3 0
Liver Disorders Liver D 345 6 0 0 2 0
Pima Indians Diabetes Pima 768 8 0 0 2 0
Soybean (large) Soyb. L 307 0 6 29 19 21.7
Votes Votes 435 0 0 16 2 7.3
Zoo Zoo 90 0 0 16 7 0
Air Pollution Air P. 365 5 0 0 4 0
WasteWate rTreat.Pl. WWTP 793 14 0 1 24 35.8

To verify the accuracy of the retrieval in a CBR system, a test by means of a 10-fold
cross-validation process was implemented. The average accuracy over all 10 trials is
reported for each data test, for each similarity measure, and for each weighting scheme.
The highest accuracy achieved in each data set for the three weighting schemes is
shown in boldface in tables 4a and 4b.

4.1   Normalisation

A weakness that most of the similarity measures show is that if one of the attributes
has relatively large range of values, can hidden the meaning of the other attributes
when the distance is computed. To avoid this effect, the contribution to the distance
of each attribute is normalised, and the common way of doing it is to divide the dis-
tance of each attribute by the range (maximum value – minimum value) of the attribute.
Thus, the contribution of each attribute to the total distance will be in the rank of 0..1.
In the tests carried out in all the databases, the values were normalised for all the con-
tinuous attributes in the computation of the Euclidean, Manhattan and L’Eixample



distance measures. Canberra and Clark distances make a type of normalisation avoid-
ing that attributes influence into others. HVDM and IVDM make a normalisation by
means of the standard deviation of the numeric values of the attributes.

4.2   Missing Values

In Euclidean, Manhattan, Clark, Canberra and L’Eixample distance measures, a pre-
processing task was carried out to substitute the missing input values by the average
value obtained of the instances with valid values. This was done for all the attributes.
In the case of HVDM, a distance of 1 is given when one of the values compared or
both are unknown. IVDM treats the unknown values as any another value. Thus, if the
two values compared are both missing, the distance between them is 0.

4.3   Global Weighting Algorithm

Although there are some global weighting schemes in the literature, a new approach
has been designed. To implement the global weighting algorithm we have used a new
approach based on estimated probabilities and correlation. The information present in
the correlation matrix (table 2) has been used looking for the maximum value at each
column (q+i). This value divided by the number of the instances belonging to class i,
represent the best prediction of the class i in all the feature space. The main idea is to
put together this information for all the class values, in such way that the global
weight of the attribute will be higher in the same proportion that the prediction was
higher. The computation of the prediction is as follows:
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n is the number of classes
q+i is the total of instances belonging to class i
qmax,i is the maximum value of the column i

The number of different values of the feature biases this value, so that, when there are
a few values, the lower limit of the prediction will be higher, such as 0.5 for two differ-
ent values. In fact, the lowest limit will be 1/|a|, where |a| is the number of different
feature values. With this in mind, Ha is escalated to obtain the global weight in the
rank 0..10 for attribute a:
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Table 4a.   Generalisation accuracy results.
Similarity Measure Databases

Name Weight Br.Can. Glass Hepat. Ionosp. Iris Liver
Dis.

Clark N/A 96.55 62.75 81.89 84.03 95.99 65.11
Canberra N/A 96.33 67 80.11 89.46 94.70 61.76

No 95.46 67.59 79.59 83.21 95.28 61.19
Global 96.35 72.05 78.40 84.34 95.32 61.74Euclidean
Local 95.90 77.19 81.41 92.06 95.90 64.80

No 96.33 70.43 79.59 90.61 93.95 61.78
Global 95.91 76.23 78.59 91.27 95.95 61.14Manhat-

tan
Local 96.33 80.91 80.74 93.47 95.90 64.90

No 96.35 70.43 79.59 90.61 93.95 61.78
Global 96.14 76.23 80.39 91.17 94.61 61.14L’Eixample
Local 96.76 79.46 83.93 95.16 96.57 64.01

No 94.99 72.36 76.67 86.32 94.67 62.92
Global 95.48 73.95 76.67 89.77 96.14 63.73HVDM
Local 96.77 73.83 77.12 93.47 93.94 68.12

No 95.57 70.54 82.58 91.17 94.67 58.23
Global 96.12 66.94 76.34 79 95.23 60.55IVDM
Local 96.59 69 79.93 93.16 85.97 66.05

Table 4b.   Generalisation accuracy results.
Similarity Measure Databases Ave rage

Name Weight Pima Soyb
Large

Votes Zoo Air P. WWTP

Clark N/A 67.31 92.55 93.15 96 91.05 36.31 80.22
Canberra N/A 66.92 91.37 93.15 96 90.50 37.19 80.37

No 67.40 91.21 92.75 93.99 93.52 40.60 80.14
Global 66.38 91.51 95.51 96 97.53 40.87 81.33Euclidean
Local 71.72 90.77 95.41 96 100 42.61 83.64

No 67.79 91.50 92.75 93.99 97.80 41.64 81.51
Global 67.72 92.25 94.94 96 97.80 41.64 82.45Manhat-

tan
Local 71.96 89.89 96.47 96 99.72 45.52 84.31

No 67.79 91.50 92.75 93.99 91.05 41.97 80.98
Global 69.28 92.25 94.41 96 98.61 41.76 82.66L’Eixample
Local 73.92 92.53 95.41 96 100 46.02 84.98

No 71.09 90.88 95.17 98.89 91.93 44.65 81.71
Global 68.01 92.75 95.20 95.53 96.97 37.96 81.84HVDM
Local 71.20 92.85 95.40 96 97.09 46.16 83.49

No 69.28 92.18 95.17 98.89 92.74 29.12 80.84
Global 65.85 93.69 95.36 95 91.78 26.36 78.51IVDM
Local 68.71 92.07 95.51 96 95.09 28.50 80.54



5   Conclusions and Future Work

Main conclusions after the analyses of the performance among all three weighting
schemes and all the similarity measures are that, in general, local weighting approach
outperforms the global weighting schemes and the unweighted schemes. It can be
argued from the whole table examination, and specifically, from the average accuracy
of the local weighting schemes. They always are higher than the other schemes in all
databases and in all measures, except one time. These results confirm the importance
of weighting schemes in case-based similarity assessment.
A new entropy-based local weighting algorithm has been proposed. This local
weighting approach seems to be better than the other weighting schemes with inde-
pendence of the similarity measure or database used. Only IVDM measure seems to
not to be very sensitive to the weighting schemes.
Also, it has been confirmed what was found out in a previous study [14]. L’Eixample
distance similarity measure, which is very sensible to weighting schemes and discreti-
zation processes, seems to lightly outperform the other measures, in general, although
it needs a very accurate weight selection and discretization processes, as pointed [11].
A first step has been done in the design of suitable weight selection techniques, with
the proposed entropy-based local weighting approach. Future work will be focused on
the design, study and analysis of other local weighting algorithms, as well as in new
discretization algorithms. Comparison with other local weighting schemes is currently
being done with promising results.
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